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ABSTRACT
Analytics are in the core of many emerging applications and
can greatly benefit from the abundance of data and the progress
in the processing capabilities of modern hardware. Still, new
challenges arise with the extreme complexity of deciding how
to execute analytics workflows given the plethora of choices of
various cloud providers, the fragmented nature of diverse Big
Data technologies, and the difficult task of resource provision-
ing to dynamically satisfy the demands of running streaming
analytics over time. In this paper, we demonstrate a prototype
system that optimizes streaming analytics workflows across Big
Data platforms and computer clusters. Our system is the first
that (i) considers a multi-user setup, (ii) examines the availability
of multiple (potentially, geo-dispersed) compute choices, and (iii)
provides a holistic framework covering a wide variety of practical
optimization and adaptive resource allocation scenarios over a
variety of streaming Big Data platforms.

1 INTRODUCTION
Analytics-as-a-Service (AaaS) providers offer subscription-based,
domain-specific Business Intelligence (BI) solutions. End-to-end
BI solutions collect relevant data, analyze them and present re-
sults in a manner largely tailored to business analysts. Still, under
the hood, IT professionals have to deal with the complexity of
the hardware and software infrastructure. Administering such an
infrastructure designed to serve multiple, concurrently running
analytics workflows of various end-users involves complex deci-
sions. The choice of compute clusters (e.g., corporate data center,
one or more cloud providers), Big Data platforms and hardware
resources for multiple users with dozens of analytics requests
are dimensions of a hard to manage decision problem.

Consider the following real-world, motivating scenario from
the financial domain. In the AaaS model, a financial advisory
company provides BI services to their customers via client appli-
cations enabling them to design analytics workflows and submit
them to a financial AaaS provider. The provider executes the re-
quested analytics tasks over an infrastructure composed of one or
more Big Data platforms deployed on multiple compute clusters,
henceforth termed sites. For instance, Microsoft Azure HDInsight
supports Apache Spark and Kafka, while Google Cloud also offers
Apache Flink. These sites may be located near regional market
data centers. Even for a single on-premises compute cluster that
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accumulates all relevant market data, the financial AaaS provider
often exports their workload peaks to public clouds operating
over a hybrid cloud setting.

Such analytics workflows are streaming in nature. For instance,
customers want to maintain a diversified portfolio. Thus, they
require continuous analysis of stock trades and bids to extract
knowledge about highly correlated pairs of stocks and counts of
bids per stock. In that, financial advisors can automatically recom-
mend bids on uncorrelated stocks or (using the aforementioned
count) indicate the leaders in pinpointed correlations.

For efficiently exploiting the available infrastructure, we need
to make informed decisions about the sites and the resources
required for the workflows running on a multitude of Big Data
platforms. Given the complexity of the underlying multi-site,
multi-platform setting and the often unpredictably bursty amount
of client requests, this becomes a non-trivial, multi-objective,
multi-dimensional optimization problem. Performance metrics
for guiding such decisions combine throughput, communication
cost, processing and network latency as well as various Service
Level Agreement (SLA) constraints. In addition, these are not
one-shot decisions. In streamingworkflows, data rates, data distri-
butions, workflow concurrency degree, etc, which affect the said
metrics, are highly volatile variables. Running workflows require
continuous monitoring through lightweight metrics collection,
which may often lead to reevaluation of workflow execution
strategy (i.e., workflow execution plans) and elastic (adaptive)
resource allocation at runtime.

Contributions. We present SheerMP, a system that provides
end-to-end support for optimized AaaS infrastructure adminis-
tration under the presence of large-scale streaming workflows.
SheerMP is the first that (i) considers a multi-user setup, (ii) ex-
amines the availability of multiple (potentially, geo-dispersed)
compute choices, and (iii) provides a holistic framework cov-
ering a wide variety of practical optimization and adaptive re-
source allocation scenarios. SheerMP automates optimization
decisions, submits and migrates streaming analytics workflows,
and monitors their execution over a variety of streaming Big
Data platforms. Our prototype supports popular streaming Big
Data platforms, such as Apache Flink, Spark Structured Stream-
ing, and Kafka.

Related Work. Cross-platform systems [1, 6, 9, 10, 13, 15, 19,
20] focus on batch, instead of streaming settings [14] and do
not consider runtime adaptation. Systems supporting streams
focus on a single streaming platform [1, 17]. Stream processing
systems [5, 7, 11, 12, 18, 21, 23] have touched upon aspects of
optimization in the context of adaptive re-scaling of streaming
analytics workflows. Nonetheless, these works focus on a single
engine as well, e.g., Apache Storm, Heron, and Spark Streaming.
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Figure 1: System architecture

2 DEMONSTRABLE FEATURES OF SheerMP
Figure 1 shows the architecture of SheerMP. The workflow lifecy-
cle starts with the workflow designer. Next, the flow is sent to the
optimizer, which generates a workflow execution plan making
cost model-driven decisions. Finally, the workflow is sent to the
dispatcher (not explained here) and gets scheduled for execution
on one or more platforms and sites.

Workflow creation. SheerMP integrates RapidMiner (RM)
Studio1 to enable graphical workflow design. Workflows are im-
ported to RM via our REST API connector using JSON encoding.
We support all stream transformation operators provided by
Spark Structured Streaming, Flink, and Kafka, as well as online
machine learning [8] and data synopses operators [16] provided
by the streaming extension of RM. SheerMP uses a dictionary to
map platform-agnostic operators of logical workflows designed
in RM to physical operators for the supported platforms. RM
connection objects are used to derive the resource capacity at
available sites.

Statistics collection. SheerMP collects a variety of perfor-
mance metrics for running workflows following common prac-
tices met in APM systems [3] and periodically probes metrics
via JMX or taps onto endpoints such as Yarn REST APIs and
CloudWatch. The metrics collected at runtime are stored in an
ELK stack2 deployment.

Benchmarking. We use automated micro-benchmarks to pro-
file operators and feed our cost models avoiding a cold start. The
optimizer uses the cost models at runtime to generate plans for
new workflows or reevaluate plans of long-running workflows.
The Benchmarking module submits sample jobs in a principled
fashion and uses our Statistics Collector to collect metrics at both,
(a) the operator level, such as job duration, input/output type (i.e.
Kafka, or custom source/sink), records/bytes sent/received, key
ranges and distribution of incoming tuples, provisioned resources
(workers, CPU, memory), choices of compute cluster/cloud and
Big Data platform, etc., as well as (b) the workflow level, such as
throughput, latency, communication and state size (accounting
for migration cost), CPU/memory/queue utilization, containers
allocated, and so on.

Cost estimation. Currently, we support two cost estimators,
one employing traditional, System-R like techniques and one
using Bayesian Optimization (BO) inspired by [2]. For the latter,
we use the statistics collected from micro-benchmarks and/or
workflow execution to train a Gaussian Process Regression (GPR)

1https://rapidminer.com/
2https://www.elastic.co/what-is/elk-stack

model for the various operators and (parts of) workflows exe-
cuted in different (Big Data platform, site) pairs.

The BO-based cost models are built following best practices
based on our experience. One method is as follows. (a) We choose
an acquisition function to prescribe which micro-benchmarks
to run. A good choice is the Expected Improvement (EI) [2] that
reduces fast the prediction uncertainty in the GPRs based on a
small number of micro-benchmarks. (b) Then, we choose a uni-
form sample (e.g., 5%) of all possible micro-benchmarks to fit an
initial GPR. (c) Next, we improve the GPR by executing 10% of all
possible micro-benchmarks, each determined by the EI function.
At workflow runtime, the GPRs of our cost model are improved
incrementally with new statistics throughout the execution.

Optimization. The Optimizer solves a multi-criteria optimiza-
tion problemwith objectives involving throughput maximization,
communication cost, processing and network latency, CPU, mem-
ory usage, andmigration cost reduction.Wemaximize a weighted
combination of these objectives under resource capacity and SLA
constraints. We provide a suite of optimization algorithms (Fig-
ure 2) with operator-based and plan-based algorithmic families.

Operator-based. These algorithms start from upstream, oper-
ators of a topologically sorted workflow, compute a candidate
physical design (e.g., site and platform assignment), and pro-
gressively build an execution plan by considering downstream
operators: (a) Exhaustive search (ES): enumerates all (operator,
platform, site) combinations for each operator. (b) A*-like search:
our novel A* variation [8] employs heuristics to prune the search
space using a priority queue and returns a graph (instead of a
path) with physical operators. (c) Greedy search (GS): it keeps
only the best physical instantiation for each operator before
examining (operator, platform, site) configurations for its down-
stream ones. At runtime adaptation (which we discuss next),
these algorithms execute from scratch.

Plan-based. These algorithms start with a good-enough exe-
cution plan placing operators close to data sources (e.g. Kafka
topics). At runtime adaptation, they improve the current plan by
exploring one (operator, platform, site) migration action at a time.
Plan-based algorithms are inherently parallelizable, as migration
actions can be examined in tandem, and work well with large
workflows. (a) Hybrid BFS (hBFS): exhaustive BFS strategy simi-
lar to hybrid top-down, bottom-up BFS [4]. (b) Random-pick (RP):
picks a random sampling of possible migration actions, inspired
by QuickPick [22]. (c) Heuristic-sky (HS): examines one (operator,
platform, site) migration action and if the resulted plan improves
at least one performance dimension, it attempts more changes
on that plan; otherwise, it skips the search towards this direction.
(d) Greedy-lo & Greedy-ps (GLO & GPS): greedy ensembles that
perform fast plan enumeration using counting and number base
switch. GLO keeps the best plan per operator and attempts more
(operator, platform, site) migration actions on each such plan,
pruning the rest of the search space. GPS keeps only the best
overall plan and attempts more migration actions on it.

The plan-based greedy ensembles work as follows. For a work-
flow with O operators that can be placed into P platforms and S
sites (other dimensions can be added easily), the possible plans
are (𝑃 ∗ 𝑆)𝑂 . To speed up the algorithm, we consider each opera-
tor as a vector that can take P*S values and construct an index
into the O vectors as a O-digit, base-(P*S) number. Each digit
of this number is an index into one of the vectors. Then, with a
simple counting we can produce the respective plans. For exam-
ple, for 4 operators and 4 possible values (e.g., 2 platforms and 2
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Figure 2: Optimizer algorithms (left), logical workflow (middle), connections to sites (bottom), optimized workflows (right)

sites) we count from 0 to 44 = 256, and convert each number to
4 base-4 digits, and use these digits as indices into the operator
vectors to get a plan. In this example, the possible actions are
[P1|S1, P1|S2, P2|S1, P2|S2]. Hence, the number 164 maps to 2210,
which represents the plan: O1(P2S1) -> O2(P2S1) -> O3(P1S2) ->
O4(P1S1). This technique lends itself nicely to parallelism and
enables efficient pruning of large chunks of the plan space.

The ‘automatic’ option in Figure 2 picks an algorithmic family
and an algorithm based on the workflow size (#operators) and
an application-defined cutoff execution time for the optimization
process. Operator-based algorithms are preferred for small work-
flows (20-25 operators) and plan-based for larger ones. The GUI
presents the algorithms from computationally expensive (more
accurate) to faster ones (less accurate). Within each algorithmic
family, an algorithm is faster than its preceding one by an order
of magnitude due to more aggressive pruning.

Adaptation. Long-running streaming workflowsmay become
suboptimal as their inputs change or their execution environ-
ment changes as other workflows are added or terminated. To
maintain the offered service within the given SLAs, periodically
we reevaluate problem workflows, i.e., workflows whose perfor-
mance (e.g., latency, throughput, resource utilization) deteriorates
beyond an acceptable margin. Then, we perform an adaptation
event using either of the algorithmic families as described above.
Preserving the state of the running workflows, we migrate run-
ning workflows on-the-fly to other sites or platforms with one
of either two goals: improve the performance of the affected
workflow or improve the performance of the entire workload.
To do so, the optimizer may suggest a new plan to satisfy the
new runtime conditions, balancing out the migration cost with
the expected performance improvement, i.e., 𝑐𝑜𝑠𝑡_𝑛𝑒𝑤_𝑝𝑙𝑎𝑛 −
𝑐𝑜𝑠𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑙𝑎𝑛 −𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡 . These costs are weighted
combinations of all performance dimensions. The migration cost
combines communication cost and network latency due to state
transfers to other site(s), dropped throughput and increased pro-
cessing latency during job migration.

Our techniques are specifically designed for cross-platform
stream processing because they (a) support runtime adaptation,
(b) provide instantly plans for arbitrarily complex workflows and
networks, with parallel optimization algorithms, and (c) employ
BO-based cost models with GPRs for computationally inexpen-
sive, incremental cost model updates. Such optimization features
are crucial for AaaS with highly volatile statistical properties of
streaming workloads.

3 OUR PRESENTATION
Our presentation script will be using the diversified portfolio
maintenance scenario discussed in the introduction and further
described below. We will provide a multitude of apriori designed
streaming analytics workflows running concurrently comprising
a demanding workload with varying characteristics.

SheerMP users will be able to graphically create and submit
a streaming workflow. After submission, but before deploying
the corresponding jobs, the users can iterate over this process
and either examine the workflow as is or they can pick an opti-
mization algorithms from SheerMP’s suite and visually inspect
the generated physical workflow. Finally, they will deploy the
workflow for execution.

The users can then lively explore the initial resource alloca-
tion, workflow performance, as well as subsequent adaptation
decisions for the workflow via the admin dashboard. Figure 3
illustrates example snapshots of SheerMP’s admin dashboard.
SheerMP practical benefits will be deduced via intuitive graphi-
cal representations of resource consumption, performance, and
workflow adaptation in the admin dashboard. To evaluate the
effectiveness of SheerMP, a separate dashboard will provide me-
dian, average 𝐿1 and 𝑅2 scores computed over the predicted
values of the optimization objectives versus the actual ones, as
workflows are deployed or adapted.

Workflow optimization. In the scenario of financial AaaS
presented earlier, we use real Level 1 (stock trades), Level 2 (bids
on stocks) data (∼5000 stocks/∼10 TB from various regional
market data centers/clusters) provided by a European financial
company. Figure 2(middle) presents an application of the diver-
sified portfolio maintenance workflow. The workflow ingests
Level 1 and Level 2 stock data from markets via a number of
Kafka sources, unions market data and aims at discovering cross-
correlations among pairs of stocks as well as identify the leaders
(with more bids) in these pairs.

Thisworkflow is particularly resource demanding as the straight-
forward way to detect cross-correlations results in a complexity
that is quadratic to the number of ingested streams. Ingested
market data are filtered to include any potential subset of stocks.
Data streams are split with Level 2 data being directed to the
bottom branch of the workflow where counts of bids per stock
within a time window are computed. Simultaneously, at the top
branch of the workflow, Level 1 stock data streams are directed
to a Project operator which keeps only the timestamp and price
attributes of each trade of a stock. Then, correlated stock pairs
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Figure 3: Example snapshots showing the topology of a multi-site, multi-platform setting and a list of running workflows

(surpassing a given threshold) are computed and get joined with
the respective count of bids per stock from the bottom branch of
the workflow. Cross-correlations and leader stocks are directed
to proper Kafka topics for visualization purposes.

This workflow presents several optimization opportunities.
Figure 2 illustrates options of optimization algorithms (at the left)
and available sites (middle-bottom) to execute the workflow. On
the right, we see example results of flow optimization with the
A*-like algorithm. In this case, the initial flow is split into two
parts: the part handling incoming data traffic is sent to ‘Brehmen
Flink‘ site, and the computationally demanding correlation and
join operations are sent to the ‘Athens Flink‘ site.

Monitoring & Runtime Adaptation. Next, we will demon-
strate the monitoring and runtime adaptation capabilities of
SheerMP. We will present the system at normal operation where
multiple streaming analytics workflows run concurrently. For
ease of presentation, we will present a small number of 10-12
streaming workflows running, and we will monitor workload
operations in the presence of events, such as (a) varying data
rates, (b) long-running workflows hogging system resources,
(c) addition/removal of workflows, and so on. We will then ob-
serve how SheerMP performs runtime adaptation to remediate
ad hoc problems. Figure 3 shows example snapshots of one of
our dashboards depicting site metrics (e.g., CPU, memory and
queue utilization), platforms load, and workflow execution re-
lated metrics (e.g., resource allocation metrics, site and platform
placement). In online mode, the dashboard shows workflows
added or removed dynamically, or placed at different locations
and platforms.

Experimental Highlights. The workflow of Figure 2 opti-
mized by SheerMP across 3 clusters (each running Apache Flink
with 32 task slots) achieves 2x to 10x higher throughput for our
financial AaaS scenario’s workload, compared to running it as a
single job on one cluster. In the same scenario, our cost models,
trained according to the best practices described in Section 2, can
accurately capture trends (>80% 𝑅2 score) across performance
dimensions throughout the workflow execution.
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