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ABSTRACT

Most accurate machine learning models unfortunately produce

black-box predictions, for which it is impossible to grasp the

internal logic that leads to a speci�c decision. Unfolding the logic

of such black-box models is of increasing importance, especially

when they are used in sensitive decision-making processes. In

this workwe focus on forests of decision trees, whichmay include

hundreds to thousands of decision trees to produce accurate pre-

dictions. Such complexity raises the need of developing explana-

tions for the predictions generated by large forests. We propose a

post hoc explanation method of large forests, named GAM-based

Explanation of Forests (GEF), which builds a Generalized Addi-

tive Model (GAM) able to explain, both locally and globally, the

impact on the predictions of a limited set of features and feature

interactions. We evaluate GEF over both synthetic and real-world

datasets and show that GEF can create a GAM model with high

�delity by analyzing the given forest only and without using any

further information, not even the initial training dataset.

1 INTRODUCTION

EXplainable AI (XAI) research aims at answering the ineludible

need for AI systems of being trustworthy, fair, and understand-

able [13]. In this work we focus on the understandability of

complex AI models. Among the models that are most e�ective,

we limit our interest to forests of decision trees such as Random

Forests (RFs) [3] or Gradient Boosted Decision Trees (GBDTs) [8].

These are very accurate in several application scenarios [29], but

their large size (up to thousands of decision trees) makes them a

black box that is impossible to be interpreted by a human [2]. A

common approach to “open the black box” is to conduct a post

hoc explainability analysis to provide a surrogate model, i.e., an

understandable model that can be used as an explainer of the

complex model.

The general scenario for a black-box explanation procedure

is the following: a black-box model, trained by some learning

algorithm, is given to an explainer algorithm that is able to extract

an explanation starting from the characteristics of the model

under investigation usually employing also the training dataset.

In our case, we assume that the dataset on which the forest

was trained is not available anymore, e.g., for privacy concerns

between di�erent parties or even di�erent departments of the

same company. In other words, we allow the explainer to be a
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third party, such as a certi�cation authority, which has access to

the forest only. We assume that the forest is fully known to this

third party, meaning not only the query API but also its structure,

its test nodes, and its leaves.

Explanation strategies struggle between global explanations

that provide a surrogate having a behavior similar to that of

the black-box model across a given training dataset, and local

explanations whose scope is limited to a small subspace around

a speci�c instance. We aim at reconciling these two contrasting

e�orts by generating a GAM [15] as an explanation of a forest.

GAMs are known to be highly explainable models [2]. In fact,

a GAM is a piecewise function that can globally approximate

the given forest, and where each “piece” can locally explain the

behavior of the forest in a limited subspace. We investigate di�er-

ent strategies to train an e�ective GAM explainer by exploiting

the information encompassed within a given forest of decision

trees. Since in our scenario we assume to not have access to

the original training set, the explanation GAM is trained on a

synthetic dataset generated from information elicited from the

analysis of the given forest. We propose feature selection and

data sampling methods for generating such a dataset to make it

possible to e�ciently train a GAM explainer that exploits both

univariate and bi-variate components. We call this framework

GAM-based Explanation of Forests (GEF) and the general schema

is illustrated in Fig. 1. We highlight that the GEF framework en-

compasses two steps: i) the generation of the synthetic dataset

D∗ on the basis of the forest at hand to be explained, and ii) the

creation of an explainable GAM-based model �. Even though the

two steps are normally investigated in di�erent tasks, in this sce-

nario they are strongly intertwined since we do not have access

to the original dataset and it is necessary to accurately generate

a synthetic version of it to train a GAM as an explanation of the

initial forest. For both these two steps we propose and evaluate

di�erent strategies.

In summary, the contributions of this work are as follows:

• we propose GAM-based Explanation of Forests (GEF), a

post hoc explanation method that provides a GAM as an

explanation of a given forest of decision trees;

• GEF provides explanations without using the dataset on

which the forest to be explained was trained, thus creating

a new way of explaining a model when, for privacy or

legal reason, we cannot access data used to train it;

• we propose and evaluate several heuristic strategies for

identifying the most important features and feature inter-

actions, as well as for sampling the feature space on the

basis of the information available at the test nodes of the

given forest.
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Figure 1: The GAM-based Explanation of Forests (GEF) framework.

• GEF can e�ciently provide global explanations with a

single training step;

• GEF provides local explanations that inform the analyst on

the impact of the most important features, and also on the

expected outcome of the model after slight modi�cations

of such features.

2 RELATED WORKS

We report two di�erent types of works present in the literature

that are related to the two main steps of our framework: works

encompassing various forms of dataset generation techniques,

and works that aim to explain a machine learning model by

di�erent means.

Dataset generation techniques. To the best of our knowledge,

limited e�ort has been devoted to the study of dataset generation

techniques that can create a dataset from scratch using only the

information available within a forest. The approach most rele-

vant to this work is the method proposed by Cohen et al. [5].

The authors used the information encompassed within the split-

ting values of a forest to generate synthetic data with the aim of

training a compact surrogate model. Indeed, the authors propose

an intuitive heuristic strategy of considering all the midpoints

between the splitting thresholds on the same features. In our

analysis (see section 3) we consider this method and we also ex-

plore additional methods of exploiting the information enclosed

in the given forest with the aim of generating synthetic data.

It is worth citing that there are works in the Adversarial Ma-

chine Learning (AdvML) �eld that use a very small set of the

inputs representative of the input domain to build a synthetic

dataset, as in the techniques proposed by Papernot et al. [26, 27].

In addition, besides the AdvML �eld, various techniques are used

to generate (partially) data for privacy concerns [7], and, in par-

ticular, in some case a RF is used as a synthesizer to perform

multiple imputations of data [4]. These methods do not apply

directly to the scenario of this work.

Explainable Arti�cial Intelligence. In XAI we can distinguish

between global and local explainers [12]. Global explainers usu-

ally aim at creating a surrogate model that is understandable

and has the same behavior as the given black-box model. Tree-

prototyping methods fall into this category, where a large forest

is summarized by a single and simpler decision tree, or a small

number of representative trees [32]. To some extent, Knowledge

Distillation [16] can be used to distill an interpretable model out

of a complex one. In addition, some standard visualization meth-

ods such as the Partial Dependence Plot [8] or the Individual Con-

ditional Expectation [10] are used to get a global understanding

of the model behavior, even though in this case the explanation

is not an interpretable model but only a representation of the

marginal e�ect of (usually) one or two features.

Local explainers instead train a simple model to provide an

explanation of the behavior of the complex model in a local area

of the feature space. For instance, we might be interested in

understanding why a given instance is misclassi�ed. These meth-

ods di�er in the de�nition of the local area and in the surrogate

produced. LIME [28], SHAP [22], and LORE [11], among others,

belong to this category.

Other methods try to be both local and global, such as in [24],

where a matrix-like visualization technique is used to represent

the rules learned by a RF, and in [35] where the authors try to

include di�erent visualization techniques to overcome the draw-

backs of each approach. Even though the linked visualization

techniques present in the literature o�er a powerful way to inves-

tigate simple ensemble of trees, they usually su�er from scalabil-

ity problems because they try to fully conserve the structure of

each tree that becomes an infeasible way to explain a forest when

the number of trees becomes larger. Finally, in this category, it

is worth highlighting that also the popular tool SHAP can be

used to explain a model globally by aggregating the local expla-

nations on the whole training set [21]. In this work we compare

our method mainly with the latter, acknowledging its theoretical

solid foundations and its wide usage among practitioners.

Another distinction thatwe canmake is betweenmodel-agnostic

andmodel-speci�c explanation techniques. As the names suggest,

a model-agnostic method can be used with every black-boxmodel

since it does not depend on its internal characteristics, and, on the

other hand, a model-speci�c explanation can be used only with

speci�c types of black-box models because it exploits their inner

details. During the years a variety of model-speci�c methods

have been developed to explain the prediction made by neural

networks, including Saliency Maps [31] and representation of

the features learned [25], among others. However, little atten-

tion has been paid to explanations speci�c to forests of decision

trees, perhaps considering them quite explainable by themselves

while they are de facto black-box models when they encompass

hundreds or thousands of trees.

In this work we propose a novel post hoc explanation method,

named GEF, that uses GAMs as surrogate models to explain

forests of decision trees. A GAM is known to be a highly explain-

able model since, in its basic form, is a simple sum of a limited set

of univariate basis functions that can be used to explain how each

single feature impacts the �nal prediction of the given black-box

model.
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3 GAM-BASED EXPLANATION OF FORESTS

Our goal is to build a GAM explainer � for a given forest of deci-

sion trees T , where the original training dataset D is unknown

for privacy or other reasons. For training �, we need to build

a synthetic dataset D∗, generated by exploiting only the infor-

mation encompassed by T . Furthermore, we want to keep the

complexity of � as low as possible while maintaining a high level

of �delity with respect to the original model T .

In the following, we brie�y introduce GAMs, then we discuss

(i) how to select a subset of relevant features and feature interac-

tions in order to maintain the complexity of the surrogate model

low, (ii) how to generate training samples in such feature space,

and (iii) how to train the explanation GAM.

3.1 GAMs

Before discussing GAMs we introduce some notation. Let Į ∈ RĚ
be an instance in a 3-dimensional vector space, with G Ġ the value

of its 9-th feature. An instance Į is associated with a target label

~ generated by some unknown target function 6, i.e., 6(Į) =

~. A GAM in its basic form models the target variable ~ as a

combination of ? smooth functions, and it can be de�ned as

follows [15]:

; (` (Į)) = U +
Ħ∑
Ġ=1

B Ġ (G Ġ ), � [B Ġ (G Ġ )] = 0.

Where ` (Į) = � [~ |Į] and ; (·) is the so-called link function that

is able to describe the relationship between the ? functions B Ġ (G Ġ )
and the expected value of ~, while U is a learned constant value

that represents the intercept of the model. From the explainability

point of view, the analyst is promptly provided with a plot of

each basis function B Ġ that clearly describes the relation between

each feature and the target variable ~. Each B Ġ is usually modeled

as a cubic spline, which is a piecewise cubic polynomial with

continuous derivatives up to order 2. By �tting a GAM on a

dataset D∗
= {(Įğ , ~ğ )}Ċğ=1 of # training instances, we can �nd

an approximation of 6. Indeed, a GAM with cubic smoothing

splines is the minimizer of the following cost function:

� (U, B1, . . . , BĦ ) =
Ċ∑
ğ=1

©­«
~ğ − U −

Ħ∑
Ġ=1

B Ġ (Gğ Ġ )ª®¬
2

+

Ħ∑
Ġ=1

_ Ġ

∫
[B ′′Ġ (G Ġ )]

23G Ġ

where Gğ Ġ is the value of the 9-th feature of the 8-th instance in

D∗. The function � formalizes the trade-o� between the least

squared error of the GAM model and the smoothness of each

spline weighted by the _ Ġ parameters. We highlight that smooth-

ness reduces the over�tting risk and improves explainability by

limiting the “wobbly” behavior of the learned splines.

GAMs have been used to build explainablemodels from data [19].

Interestingly, bi-variate components can be included to improve

accuracy [20] thus formalizing a GAM as:

; (` (Į)) = U +
Ħ∑
Ġ=1

B Ġ (G Ġ ) +
Ġ=Ħ,ġ=Ħ∑
Ġ=1,ġ=1

B Ġġ (G Ġ , Gġ ).

A judicious use of bi-variate components is however required.

The number of bi-variate components is potentially quadratic in

the number of features thus increasing the computational cost,
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Figure 2: A toy example of a dataset that can be �tted with

a GAM.

over�tting risk, and also reducing the explainability of the �nal

GAM for a human who is overwhelmed by a large number of

splines. In this work we aim to build GAM explainers that include

a limited number of univariate and bivariate components, i.e.,

features and features pairs, as described in the following section.

To conclude the description of GAMs, in Fig. 2 we present a

toy example of a set of bi-variate data samples and how they

can be easily described by a GAM. Even in this toy example,

understanding the behavior of the data plotted in Fig. 2a might

not be straightforward. A GAM model, as the one depicted in

Fig. 2b, can instead easily show the role of the two variables. In

fact, the GAM �tted on such data points is ~̂ (x) = B1 (G1) +B2 (G2),
where B1 (G1) and B2 (G2) are illustrated respectively in Fig. 2c and

Fig. 2d. It is now clear to the analyst that the data at hand can be

easily explained with a linear contribution from feature G1 and a

sinusoidal trend from feature G2.

From a practical point of view, after the last step of GEF the

analyst has the chance to analyze the GAM created and verify

how the variation of each feature a�ects the �nal prediction. The

�nal result available to the analyst looks similar to the functions

of one variable available in Fig. 2c and Fig. 2d, and thus we assume

that it is easy for a practitioner familiar with additive models to

analyze the contribution of each feature to the �nal prediction.

We recall that each contribution is simply summed up to obtain

the �nal prediction in case we have ; (` (x)) = ` (x). Due to their

additive form, GAMs are normally considered intrinsically highly

interpretable models among researchers [20, 23, 36]. We point

out that GAMs are not the only type of models available that

can be useful to explain a complex forest, also models that are

less general can be used, such as Generalized Linear Model or

even a simple linear regression, and using such models instead

of GAMs can have pros and cons. For example, a simple linear

regression model of the form ~̂ (x) = V1G1 + V2G2 + . . . + VĚGĚ is

fairly easy to interpret because the contribution of each feature

G Ġ corresponds to its corresponding weight 3 Ġ , and therefore it is

considered more interpretable with respect a GAM. However, the

higher interpretability of a simple linear regression model comes
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Figure 3: The results of di�erent sampling using the �ve proposed strategies. The original thresholds distribution is

pictorially presented through a kernel density estimation with a gaussian kernel, while the sampled thresholds is showed

using a rug plot.

with the cost of having a very limited �exibility in �tting complex

functions, e.g., the function in Fig. 2d cannot be approximated

reasonably well with a linear function. On the other hand, GAM

can comparatively approximate a larger variety of functions.

3.2 Univariate components selection

We focus on the most commonly used type forests made of binary

decision trees where each node predicate is in the form Gğ f E ,

where the 8-th features 5ğ is tested against the threshold E . In

order to build our explainer we assume to have full access to

the given forest T , and therefore to have full knowledge of its

structure, trees, and nodes. We exploit this information to de�ne

the feature space ofD∗. Given these features, we can then sample

a synthetic dataset D∗ from the de�ned feature space.

A naïve strategy is to select all the features, denoted by � ,

occurring in T . Unfortunately, this basic approach has the dis-

advantages of increasing the cost of training the �, “sparsifying”

the feature space of D∗, and reducing the interpretability of the

�nal � due to the large number of splines possibly generated.

We thus perform feature selection to identify a subset of the

most relevant features present in the forest T . From a practi-

cal point of view, most forest training libraries store the loss

reduction contributed by each node in T . Therefore, we resort

to selecting the most important features by accumulating their

loss reduction across the nodes in the forest where the feature

occurs. We denote the resulting set of features as � ′, � ′ ¦ � . In

our framework, we let the analyst balancing to chose the number

of univariate components |� ′ | so as to balance the accuracy of

the generated GAM and its complexity.

3.3 Sampling

Once the feature set � ′ is given, we can then apply di�erent

strategies to generate D∗. We de�ne the sampling domain �ğ of

a feature 5ğ ∈ � ′ as the subset of admissible value in R for 5ğ . We

then use the following Random Sampling strategy. An instance

G ∈ D∗ is generated by sampling uniformly at random in the

multidimensional space �1 × . . . × �Ĥ , where �ğ is the sampling

domain of �ğ , �ğ ∈ � ′. The sampling is repeated # times to build

a dataset D∗ of # instances. Larger values of # improve the

coverage of the feature space for the GAM learning. Moreover,

the larger |� ′ | is, the larger # should be.

Sampling strategies face the issue of selecting the points that

best represent the function to be modeled. By analyzing the given

forest T , we can extract the feature thresholds used which can

be considered the most relevant points in the features space ac-

cording to the forest itself. In fact, we aim to produce a more �ne-

grained sampling for the areas of larger variability in the forest

predictions. Also borrowing from feature discretization strate-

gies [34], in the following we investigate di�erent approaches

to de�ne the sampling domains. Except for the �rst method, we

denote with  the number of points in each �ğ .

All-Thresholds. Given the list of increasing feature thresholds

+ğ = (E1, . . . , EĪ ) occurring in the predicates 5ğ f E in T , let,ğ =

(F1, . . . ,FĪ−1) be the list of midpoints of the corresponding +ğ
whereF Ġ = (E Ġ+E Ġ+1)/2.We de�ne the domain�ğ corresponding

to the feature 5ğ as �ğ = {F : F ∈,ğ } ∪ {E1 − n, EĪ + n}, where E1
and EĪ are respectively the minimum and maximum thresholds,

and n allows for extending the sampling domain beyond such

thresholds. In our experiments we set n = 0.05(EĪ −E1). It is worth
noticing that we take the midpoints of consecutive thresholds E Ġ
and E Ġ+1 to ensure a more representative dataset and to avoid the

corner cases where a feature value is equal to a node threshold.

This method is equivalent to the approach used by [5].

 -Quantile. The sampling domain of each feature is de�ned

as the set of the  -quantiles of +ğ .

Equi-Width. We de�ne the sampling domain of each feature

as the set of  points that split the interval [E1 − n, EĪ + n] into
sub-intervals of equal size.

 -Means. We �rst cluster known feature thresholds +ğ by us-

ing the :-Means algorithm with : =  , and �nally de�ne the

sampling domain of the feature as the centroids of the resulting

clusters. If the number of di�erent values in +ğ is lower than the

number of centroids, we use : =<8=( |+ğ |,  ).
Equi-Size. The list of increasing thresholds +ğ is split into  

contiguous sublists of equal size, and then the average value of

these sublists de�nes the sampling domain of a feature. It is a

similar strategy to  -Quantile but with the main di�erence that

we do not consider the exact values of the quantiles in+ğ , but we

rather compute the average of the values between two quantiles.

The last four sampling strategies proposed aim at reducing the

size of the sampling domain when the number of distinct thresh-

olds is large.  -Quantile is designed to reuse the exact thresholds

values available, Equi-Width takes evenly-spaced points in the

feature domain,  -Means tries to model the data distribution

so as to focus on denser areas, while Equi-Size has the goal of

properly covering the full domain. For the sake of clarity, Fig. 3

presents a comparison of the samples obtained using the di�erent

sampling strategies for a feature �ğ that behaves like a sigmoid

function of the form ~ = 4G? (50(G − 0.5))/(4G? (50(G − 0.5)) + 1).
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As depicted in the �gure, the majority of the thresholds in

the original forest T are accumulated in the sub-domain of the

function with the largest variability, which in the illustrative

example is around 0.5, and it is worth noticing that the various

techniques behave di�erently in this region. :-Quantile, -Means,

and Equi-Size follow the density of the original distribution, and

they emphasize more the di�erence between regions with low

and high density. On the other hand, Equi-Width is not a�ected

by the original distribution, and regions with higher variability

are treated as the ones with lower variability.

Eventually, a dataset D∗
= {(Įğ , ~ğ )}Ċğ=1 of # training in-

stances is generated by sampling Įğ as discussed above and feed-

ing the forest T with such instance Įğ to get the corresponding

prediction ~ğ .

3.4 Bi-variate components selection

To improve the accuracy of the explainer �, we include also bi-

variate splines. To do so we need to identify a subset of feature

pairs that are more likely to be relevant, and thus we limit our

search to the set of features that are present in � ′, following the

so-called heredity principle [6], according to which an interaction

between 5ğ and 5Ġ is considered interesting only if both 5ğ and 5Ġ
are present as main e�ects, i.e., 5ğ , 5Ġ ∈ � ′. Note that this step is

conducted independently of the dataset D∗, and therefore the

bi-variate components can be identi�ed before the data sampling.

Since the number of all possible pairs can be extremely large,

we propose four di�erent heuristic strategies to identify a suitable

number of important pairs. Starting from the one with the small-

est computational cost to the one with the highest complexity

we have: Pair-Gain exploits the features importance, Count-Path

and Gain-Path use the information available in the nodes, and

H-Stat employs the H-statistic [9]. Therefore, for each pair of

features 5ğ , 5Ġ ∈ � ′, we de�ne four di�erent ways to measure the

importance � (5ğ , 5Ġ ) of their interaction as follows.

Pair-Gain. In this case, we simply de�ne the strength of a

feature interaction as � (5ğ , 5Ġ ) = � (5ğ ) + � (5Ġ ) where � (5ğ ) is the
accumulated loss reduction as in the univariate feature selection.

This can be considered a quick baseline, with a very limited

computational cost.

Count-Path. Given a tree ) ∈ T , we de�ne the importance

�Đ (5ğ , 5Ġ ) of the feature pair (5ğ , 5Ġ ) limited to the tree ) as the

number of decision paths in ) that include both features. The

Count-Path importance can be computed recursively as follows.

Given the root A of ) , we denote with 5Ĩ the feature used in

the splitting criterion of A , and then we set the value �Đ (5Ĩ , 5Ġ )
equal to the number of 5Ġ , 9 ≠ A , present in ) . Then we re-

cursively repeat the procedure in the left and right subtrees of

A accumulating the results for all feature pairs until reaching

the leaves. We discard the order of appearance as we consider

�Đ (5ğ , 5Ġ ) = �Đ (5Ġ , 5ğ ). Finally, the Count-Path importance for the

forest T is computed by summing up the contributions from its

trees: � (5ğ , 5Ġ ) =
∑
Đ ∈T �Đ (5ğ , 5Ġ ).

Gain-Path. In this strategy we simply apply the same heuristic

as in Count-Path, but instead of counting the nodes, we accumu-

late the minimum gain found in each pair of nodes. We recall that

each node stores the reduction of loss achieved when the node

was added to the tree at training time. In this regard, Gain-Path

is a weighted version of Count-Path.

H-Stat. Given the list of all the possible pairs of features (5ğ , 5Ġ )
we de�ne their importance � (5ğ , 5Ġ ) by computing the H-statistic.

We recall that the H-statistic � (5ğ , 5Ġ ) between the features 5ğ

and 5Ġ is de�ned as:

� (5ğ , 5Ġ ) =

∑Ċ
ġ=1

[
�̂ğ Ġ

(
Gġğ , Gġ Ġ

)
− �̂ Ġ

(
Gġ Ġ

)
− �̂ Ġ

(
Gġ Ġ

)]2
∑Ċ
ğ=1 �̂

2
ğ Ġ

(
Gġğ , Gġ Ġ

)
where �̂ğ is the one-dimension estimated partial dependence

function for the feature 5ğ and �̂ğ Ġ is the bi-dimensional partial

dependence function for the features 5ğ and 5Ġ . In our scenario

the partial dependence functions for each feature, and for each

pair of features, are computed from a sample of the synthetic

dataset created D∗.

Given any of the above strategies, we eventually select only the

top feature pairs sorted by their importance � (5ğ , 5Ġ ). We denote

with � ′′ the set of the most important interactions selected by

the analyst. In summary, while � ′ de�nes the feature space of
D∗ and the set of univariate splines of �, the set � ′′ de�nes the
bi-variate components of �.

3.5 Fitting the GAM

In order to create an explanatory model � that accurately mimics

the behavior of the original forest T while maintaining a certain

user-de�ned level of explainability, we assume that the end-user

is in charge of selecting the number of univariate components

|� ′ | and the number of bi-variate components |� ′′ |.
Thus, to sum up the whole procedure, we �rst employ the

feature selection procedures to identify the feature set � ′, we
create the synthetic dataset D∗ using one of the sampling strate-

gies illustrated above, �nally we select the set of interactions � ′′.
The last step consists in �tting a GAM on D∗ so as to have an

explainable surrogate of the given forest T .

To maintain a low level of complexity and automate the ex-

planation process as much as possible, we propose to use only

third-order spline terms with a �xed number of p-spline basis for

each continuous feature in � ′, factor terms for each categorical

variable in � ′, and penalized tensor products for each variable in

� ′′. Since the information about the type of features, categorical

or not, is not often available inside the forest, we use, as a heuris-

tic, the number of thresholds present for a feature Įğ to identify

it as categorical. This means that, if |+ğ | < ! we assume that Įğ
is categorical. In our tests we set ! = 10.

In addition, in a regression problem we set the link function

; to a linear function and we assume that ~ follows a Normal

distribution, while in the classi�cation case we set ; to a logistic

function and we assume that ~ follows a Binomial distribution.

Finally, to �nd the best values for the penalization coe�cients

_ Ġ of each term, with 1 f 9 f ? + @, we used a Generalized

Cross Validation (GCV), varying _ Ġ equally for each term used,

meaning that _1 = _2 = ... = _Ħ+ħ .

4 EXPERIMENTAL EVALUATION OVER
SYNTHETIC DATA

GEF is implemented as a Python package and made available

in a open source repository1. The software used to train the

initial forest T is LightGBM [17] and the software used to �t the

explanatory GAM is PyGam [30].

4.1 Dataset and Model Description

In the following we use synthetic data to validate the capability

of the explainer � generated by GEF to reconstruct the original

1Open source implementation available at https://github.com/veneres/gef
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Figure 4: The �nal components obtained by applying GEF to forest T trained over D′
, where no interactions are present.

Each component is centered with respect to its mean, and they are sorted from left to right by their computed importance.

target function that the forest T approximates, to show the im-

pact of the feature interaction selection strategies and to analyze

the impact of the sampling strategies.

In all the experiments, if not speci�ed otherwise, the Root

Mean Squared Error (RMSE) reported is computed on a fraction

of D∗, used as test set, by comparing the predictions made by

the generated explanation � and the original forest T , because

we assume to not have access to the original data.

To investigate the quality of the approach proposed we use

two synthetic datasets D ′, D ′′, for which the target functions

6′, 6′′ are known, and de�ned as follows:

6′(Į) = Į1 + sin (20Į2)

+ exp (50(Į3 − 0.5))
exp (50(Į3 − 0.5)) + 1

+ arctan (10Į4) − sin (10Į4)
2

+ 2

Į5 + 1

ℎ(Įğ , Į Ġ ) = 2 exp

(
− 1
√
2c

(Įğ − 0.5)2 + (Į Ġ − 0.5)2

2

)

6′′
Π
(Į) = 6′(Į) +

∑
(Ĝğ ,ĜĠ ) ∈Π

ℎ(Gğ , G Ġ )

Function 6′ maps a 5-dimensional instance Į by means of 5 “gen-

erator” functions, where each function maps the corresponding

feature Įğ to a real value~ğ . We structured the function 6′ in such

a way that the contribution ~ğ of each generator function is well

bound in the range [−1, 2], thus we do not have a function that

dominates all the others. Whereas function 6′′
Π
is a modi�cation

of 6′ where Π is a set of three feature pairs which are injected to

test the ability of the proposed strategies to identify correctly the

interactions present inside the data and, as a consequence, repre-

sented by the forest. Speci�cally, we tested our solution with all

the 120 possible triples of interactions pairs. In addition, a noise

component N(0, 0.12) was drawn from a Gaussian distribution

and added to each generating function. Datasets D ′ and D ′′

are built by Random Sampling 10,000 instances in the domain

[0, 1]5, with 8,000 instances used as training set and 2,000 as test

to evaluate the performance of the model. On each dataset we

train a GBDT forest using LightGBM [17] by �ne-tuning the num-

ber of leaves trees in {10, 100, 1000}, number of leaves per tree

in {32, 64, 127, 256} and learning rate in {10−4, 10−3, 10−2, 10−1}
with a 5-fold cross-validation. We used also a 25% of the training

dataset as a validation set for the early stopping criterion. The

�nal best con�guration found for T , after the cross-validation, is

made of 1000 trees with 32 leaves each and with a learning rate

of 0.01 for both the datasets under investigation. After previous

analysis, we found that the number of instances # of D∗ does
not a�ect signi�cantly the results, and therefore # is �xed to

100,000.

4.2 Forests explanation with GEF

We investigate the results obtained by GEF along three di�erent

axes: the impact of the sampling strategy, the e�ectiveness of the

interaction detection methods, and �nally the function recon-

struction capability. Since the number of features used is limited,

to keep the complexity of these synthetic examples bounded on

purpose, we skip the investigation over the feature selection used

to create � ′ and � ′′ and we �x the number of univariate and

bi-variate components respectively to |� ′ | = 5 for both datasets,

while we set |� ′′ | = 0 for the forest learned overD′
, and |� ′′ | = 3

for the forest learned over D′′
.

Sampling strategies comparison. Using di�erent sampling strate-

gies to create D∗ can heavily a�ect the accuracy of the GAM

used as an explainer. In Fig. 5 we show how the RMSE changes

with respect to the number of sampled points  used, and the

sampling strategies employed. We consider values of  up to

20000 which corresponds to the number of thresholds baseline.

In particular we focus only on the simplest synthetic function, i.e.,

6′(Į), and the corresponding dataset D ′. The Equi-Size strategy
performs best, although only on speci�c values of  . In general,

K-Quantile and Equi-Size can give a better accuracy with respect

to the baseline All-Thresholds, while K-Means and Equi-Width

perform worse. The results obtained told us that the sampling

strategies employed heavily a�ect the �delity of the model dis-

tillation. They also con�rm the intuition behind the Equi-size

strategy: it is better to sample more points inside the range where

the variability of the unknown generating function is larger, that

is also the region where more splits are generated by the forest

under investigation.

True function reconstruction. Even though investigating the

impact of the di�erent sampling strategies of GEF is important,

the main goal of the explanation technique proposed is to recon-

struct the function learned by the model. To do that we run GEF

setting the sampling strategies to Equi-size, and = 12,000, using

in this way the setting that gives the best accuracy with respect

to the RMSE as shown in the previous paragraph. The results are

presented in Fig. 4, and they show that the learned components
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Figure 5: RMSE for di�erent sampling strategies and num-

ber of sampled points  .

nicely match the original generator functions with few excep-

tions at the margins of the feature domains. The unusual behavior

of the learned splines near the extremes of the features domain

can be seen as a drawback of the speci�c sampling strategies

since it is more accurate in the regions of the feature domains

associated with a higher number of splits in T . Let’s remark that

GEF is able to reconstruct the original generator functions by

exploiting only the information encompassed by the forest and

without accessing the original training data.

Interaction detection. By focusing on the second dataset D ′′

where three interactions are added, we analyze the ability of

our methods to identify interactions between the data using

the four strategies Pair-Gain, Count-Path, Gain-Path, and H-Stat.

As previously stated, we remark that we evaluate the ability of

our method to identify the presence of interactions inside T
with all the possible triples of interactions that could be present.

Since in the base function 6′(Į) there are 5 features, we can have(5
2

)
= 10 possible di�erent interactions, therefore the total number

of di�erent triples of interactions is
(10
3

)
= 120. In our analysis we

evaluate the accuracy of GEF to identify the interactions between

the features on 120 di�erent realizations of 6′′
Π
using all the 120

possible sets of interactions.

We borrow the Average Precision (AP)metric from the ranking

problem to measure the ability of the four heuristic approaches

at ranking the candidate interactions and we show the results

obtained in Fig. 6. To allow a simpler comparison between the AP

of the di�erent strategies, in Fig. 6, we sorted the 120 possible sets

of interactions in the horizontal axis by their AP obtained with

each di�erent strategy. This means that on the left of the chart

we have the best AP of each strategy and from left to right we

can follow the degradation in performance when di�erent inter-

action sets are added to the generating function 6′. To summarize

the results, we present the Mean, the Standard Deviation (SD),

and the minimum and the maximum of the AP metrics in Ta-

ble 1. The best results are achieved by Gain-Path and H-Stat,

with a small advantage for the former. Nevertheless, a two tailed

Welch’s t-tests states that there is no method that is statistically

di�erence w.r.t. Gain-Path with a signi�cance level U = 0.05. The

good performance of H-Stat is expected. The H-statistic is an

accurate test measuring of the added value of a feature interac-

tion w.r.t. to the single features computed over the whole dataset

at hand. Indeed, computing the H-statistic is computationally

very expensive because it involves the computation of the partial
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Figure 6: Interaction detection strategies comparison. The

horizontal axis indicate the 120 possible sets of interac-

tions.

dependence function of each feature and for each pair of features,

which in turn involves making new predictions over the entire

dataset (or a sample of it). Thus, the complexity is of the order of

$ (# |� ′ |2). Instead, the proposed heuristic strategy Gain-Path is

not dataset driven, but rather model driven: we can �nd the in-

teractions in the forest in linear time with respect to the number

of trees, $ ( |T |), that is in general much smaller than $ (# |� ′ |2),
and with the same level of accuracy of H-Stat.

Fidelity of �. Given that � is �tted on the synthetic dataset

D∗, it is natural to wonder about the “�delity” of � w.r.t. to

original forest T on the original dataset on which T was trained.

In general we assume the original dataset is not available, but

we can anyway pretend to have access to it in this synthetic

evaluation setting.

We evaluate two di�erent kinds of �delity.Wewant to evaluate

how close is the prediction of � i) to the prediction of the forest

T , denoted T (Įğ ) | Įğ , and ii) to the original target label in

the training dataset of T , i.e., ~ğ | Įğ . In Table 2 we report the

coe�cient of determination ('2) measured on the test split of

the two synthetic datasets D′
and D′′

. For the dataset D′′
, we

�x the interactions to � ′′ = {(51, 52), (51, 55), (52, 55)} among the

120 con�gurations available.

Empirical results show that � exhibits high '2 w.r.t. forest

prediction T (Įğ ) on both D′
and D′′

, respectively of 0.986 and

0.938. This con�rms that the �tted � is consistent with the forest

we aim at explaining. Interestingly enough, the values of '2 w.r.t.

the original labels ~ğ are even larger than the original forest for

D′
. Even without accessing the original dataset, the � model is

as accurate as the forest T , and it could even replace the original

forest. On the one hand, the large accuracy might be expected

thanks to the distillation mechanism. On the other hand, this

result con�rms the e�ectiveness of the generation process of the

dataset D∗ on which � is �tted.

5 EXPERIMENTAL EVALUATION OVER
REAL-WORLD DATA

We now apply GEF to a forest trained on real-world data, namely

Superconductivity [14] and Census [18] datasets, respectively se-

lected as representative for regression and classi�cation tasks.

First of all we give an overview of the dataset involved in our

evaluation, then, for sake of brevity, we analyze in detail only the

explanation made on the forest trained over Superconductivity,
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Table 1: Mean value, SD, Minimum and Maximum value of

Average Precision for the di�erent interaction detection

strategies.

Pair-Gain Count-Path Gain-Path H-Stat

Mean 0.450 0.445 0.463 0.457

SD 0.175 0.172 0.172 0.191

Min 0.216 0.216 0.216 0.216

Max 1.000 1.000 1.000 1.000
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Figure 7: Superconductivity dataset: feature selection. Each

cell contains the RMSE computed w.r.t. D∗.

while describing only the �nal results for Census, omitting part

of the analysis made to chose the parameters needed, such as the

sampling strategies or the number of sampled points  .

5.1 Datasets and Models descriptions

The �rst dataset, Superconductivity, contains 81 features extracted

from 21,263 superconductors, and the associated goal is to predict

their critical temperature. The features present inside Supercon-

ductivity describe various physical and chemical properties of a

sample of superconducting materials downloaded from the Su-

perconducting Material Database o�ered by Japan’s National In-

stitute for Materials Science. The value of each feature is derived

by the authors of the original paper aiming to �nd a data-driven

model to overcome the rudimentary empirical rules used in the

past to synthesize superconductors. Thus, the main goal of the

dataset is a good test case for our explanation method to discover

new knowledge, which is one of the main motivations in XAI [1].

In addition, the second motivation behind using Superconduc-

tivity as a real-world dataset in our experiments is that it has a

fairly large number of features.

On the other hand, the second dataset, Census, has the goal to

predict the annual salary of a person given some personal infor-

mation. It is selected among others because it contains various

sensitive features such as race, sex, and relationship information

that brings attention to another problem that XAI aims to answer,

i.e. explain to justify [1]. Thus, while it contains only 14 attributes

for 48,842 samples, the nature of the features makes it a perfect

example for our purposes.

To train the forest for Superconductivity and Census datasets,

we used a strategy similar to the one used for the synthetic dataset.

The software used to train the initial forests is LightGBM [17]

Table 2: '2 values of the Forest T and the explainer model

� produced by GEF over the test splits of the synthetic

datasets D ′ and D ′′.

D ′ D ′′

T (Įğ ) | Įğ ~ğ | Įğ T (Įğ ) | Įğ ~ğ | Įğ
Forest (T ) — 0.980 — 0.986

Explainer (GAM) 0.986 0.982 0.938 0.931
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Figure 8: Superconductivity dataset: sampling strategies

comparison.

by �ne-tuning the number of leaves in {100, 1000, 1000}, num-

ber of leaves per tree in {32, 64, 127, 256} and learning rate in

{10−3, 10−2, 10−1} with a 5-fold cross-validation. Even though

not relevant for the main purpose of this paper, we highlight that

by using the proposed learning strategy we can achieve good

results without any particular pre-processing of the data. For

example, for the Superconductivity dataset the RMSE evaluated

on the test set is equal to 11.7 which is not far away from the

results presented in [14], where the RMSE is 9.5. Finally, stan-

dard pre-processing is applied only to Census, where redundant

features (education and education-num) are dropped, and one-

hot encoding is applied to the categorical features: workclass,

marital-status, occupation, relationship, race, sex, native-country.

5.2 Forest explanation with GEF

In Fig. 7 we show the RMSE of the explained � computed overD∗

using as true labels the predictions made by the original forest.

We use All-Thresholds as sampling strategy and Count-Path as

feature interaction heuristic while varying the number of uni-

variate and bi-variate components. As expected the greater the

number of components, either univariate or bi-variate, the better

the accuracy. However, a limited number of terms is su�cient to

achieve a good accuracy, and already with 7 splines we can obtain

an accuracy distant only 5% ca. with respect to the maximum

achievable in the provided scenario, i.e. 9. In addition, in case 7

splines are used, there is no need to add interaction components

since the RMSE improves only of 2% adding 8 interactions. There-

fore we decide to use 7 splines without adding any interaction

components.

Sampling strategy. After having �xed the number of splines

and interaction terms to 7 and 0 respectively, we analyze the

results obtained by using the 4 sampling strategies presented

in section 3. Fig. 8 reports the behavior of GEF on varying the
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Figure 9: Superconductivity dataset: comparison of the univariate splines obtained with GEF (9a) and the partial dependence

analysis of the SHAP values (9b).
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Figure 10: Census dataset: comparison of the univariate splines obtained with GEF (9a) and the partial dependence analysis

of the SHAP values (9b).

sampling methods and the number of sampled points  . We can

see that the number of sampled points  for each feature impacts

a lot for the Equi-Size strategy, while all the other methods are

stable with respect to the variation of . Overall, Equi-Size largely

outperforms the other sampling strategies after a proper tuning,

con�rming the previously discussed results on the synthetic

dataset.

Analysis of the model. On the basis of the previous results, we

�x  = 4,500 and we use the Equi-Size sampling strategy for the

Superconductivity dataset. Regarding the Census dataset, after

running the same analysis, we decide to use 5 splines and 1 inter-

action term, with = 800 using theK-Quantile strategy. In Fig. 9a

we show the top splines of the resulting explainer model � on the

Superconductivity dataset, highlighting a randomly chosen sam-

ple of the dataset. Each plot thus shows the contribution to the

�nal prediction on varying the value of a given feature. The title

of each subplot is an acronym that represents the corresponding

feature, e.g., WEAM stands for Weighted Entropy Atomic Mass.

Similarly in Fig. 10a are presented the �rst 4 splines (sorted by

feature importance) used to explain the forest T trained over the

Census dataset.

The two plots present a global explanation for the initial for-

est, and from the point of view of the analyst, it is possible to

e�ectively understand the impact of the di�erent features and

their interaction on the �nal prediction. For instance, taking into

account the Census dataset, we can observe that the feature Ed-

ucationNum, which represents the level of education a person

where a low number represents a lower degree, is positively cor-

related with the output. This overview can also give us some

hints about possible points of discontinuity, such as in Super-

conductivity where there is a big jump near a value of 1.1 for

the Weighted Entropy Atomic Mass feature. In addition, using a �

we also obtain the Bayesian con�dence intervals of each spline,

computed as in [33] that give us a measure of con�dence of the

model.
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Figure 11: Superconductivity dataset: local explanation

made by GEF over the speci�ed sample (best seen in col-

ored version).

5.3 Comparison with SHAP and LIME

In order to understand the advantages and similarities between

the proposed explanation technique and the state of the art, we

compare GEF against SHAP and LIME. We recall that SHAP is a

local explanationmethod that can provide a global explanation by

aggregating multiple local explanations, while LIME is designed

to be used only as a local explanation method.

Global explanation. We analyze the explanations proposed by

the two global techniques, GEF and SHAP, at a global level com-

paring the splines obtained by GEF, and the partial dependence

plots generated by SHAP from the forests trained over the two

datasets under investigation (Fig. 9, and Fig. 10). We recall that

the proposed GEF framework provides an explanation of a given

forest without accessing the original training data, while the

SHAP partial dependence plots require an expensive process that

replicates the local SHAP analysis on every point of the dataset.

By looking at the �gures representing the two techniques, we

�rst notice that the explanations are consistent with each other,

meaning that the impact trend of the features under analysis is

the same in GEF and SHAP. In addition, in the plots generated

with GEF it is also possible to identify a 95% con�dence interval

computed using a Bayesian approach, while the computation
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Figure 12: Superconductivity dataset: local explanation

made by SHAP over the speci�ed sample.

of a con�dence interval for the SHAP values is not so straight-

forward. This is a very interesting result considering that the

explanation generated by the proposed GEF makes no use of the

input datasets. From a qualitative point of view, we believe the

GEF explanation provides a sharper picture of the role of each

feature in the studied phenomenon. Rather than reporting a cloud

of training data points for each feature value as in SHAP, the

GAM built by GEF provides an expected additive contribution

with con�dence intervals.

Local explanation. Then, in Figs. 11, 12, 13 are represented the

local explanations provided by GEF, SHAP, and LIME respec-

tively, for the same point illustrated in Fig. 9 and highlighted in

black.

The local explanation of SHAP provides the contribution of the

most important features to the �nal model prediction for the se-

lected data point with respect to the mean output. In particular, in

the �gure is indicated the expected value of the forest prediction

function with � (5 (- )), which in SHAP is simply approximate

with the sample mean of the datasets used in input. In our case,

the sample mean is computed over the training dataset. Starting

from the approximation of � (5 (- )), SHAP estimates positive

(depicted in blue) and negative (depicted in red) contributions for

each feature that if added to � (5 (- )) gives the �nal prediction
of the model for the speci�c sample. In this case, we can see that

the feature WEAM, with a value of 1.062 has a strong negative

impact over the prediction, and along with other marked negative

contributions from other features this results in a �nal prediction

below the sample average.

The explanation given by LIME is related to the values of the

coe�cients associated with the Ridge Regression Model �tted in

the neighborhood of the sample under investigation. Deciding

the size of the neighborhood that has to be considered and other

parameters for the explanation can be troublesome in LIME [23].

To simplify the analysis we used only the default parameters

provided by the open-source implementation proposed by the

authors of the original paper [28]. To correctly interpret the

�gure, we highlight that features that have a negative impact on

the prediction are colored in blue and features with a positive

impact are colored in orange. From the explanation obtained, it is

worth to notice that that the WEAM has a strong negative impact

on the prediction as in SHAP, however, the Range Atomic Radius

(RAR) seems also to play an important role, while in SHAP is not

present in the �rst 6 most in�uential features.
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Figure 13: Superconductivity dataset: local explanation made by LIME over the speci�ed sample.

More similar information as the one reported by SHAP is deliv-

ered by GEF. For the most important features we can observe

their contribution to the predicted output. However, given its

spline-based nature, in addition GEF shows clearly how the pre-

diction of the model changes under small modi�cations of the

instance under analysis. To create a local explanation with GEF

we can simply zoom-in the portions of the splines of interest

to obtain a better visualization of the neighborhood of a point

under investigation. In particular, Fig. 11 illustrates the di�er-

ent from the average partial contribution of each feature with a

more intense blue when the feature contribution is well above

the average, and a more intense red when the contribution is

well below the average. The information provided by GEF is

thus better contextualized in the feature space. This is granted

by the fact that GEF is able to build a global explanation model,

while SHAP and LIME provide only point-wise information. Such

global model, through the di�erent “pieces” of the splines, can

provide high-quality local information and understanding to the

analyst.

GEF can be seen as a global explanation method, but we can

also easily place a given random instance on the GAM plots and

investigate howmuch each feature contributes to the �nal predic-

tion and in particular we can interpret how the forest prediction

is a�ected when varying a feature value. Considering the sam-

pled data point, we can see how SHAP suggests a strong negative

contribution from the feature WEAM. GEF con�rms such contri-

bution, but the analyst can clearly see how a small increment may

reverse such behavior to a strong positive contribution. This kind

of information is not available with the local SHAP explanation.

As shown in Fig. 12, even though we can easily understand how

each feature contributes to shift the prediction from the expected

value, we cannot describe how a little variation of the feature

could change the prediction. The same limitation is also present

in LIME.

Finally, we highlight that the proposed GEF framework is

largely more e�ective than SHAP where the partial dependent

plots require the training of a surrogate model for each point

reported, i.e., data instance analyzed. In fact, the computation of

the SHAP values for a set of points depends on the size of the

set under investigation, while with GEF the training time of the

explanation only depends on the number of feature thresholds

used by the forest, which is typically much smaller.

6 CONCLUSION AND FUTUREWORK

In this paper we presented a novel post hoc explanation method

that uses a GAM as a surrogate model for a forest without the

usage of the initial training dataset. We investigated various

sampling and feature selection techniques to create a training

set to learn the GAM, and showed that the resulting GAM can

accurately model a forest’s behavior and it can provide a crisp in-

terpretation of the role of a subset of the most important features

and feature interactions in the prediction process of the given

forest. As a future work, we want to test our post hoc explanation

approach to other kinds of forest, such as RF, to further con�rm

the possibility to apply GEF to all the ensemble of trees given

that no strict assumption is made on the forest in input. Finally,

we highlight that, even though the presented results are promis-

ing, a more accurate evaluation is needed, also involving the

end-user to measure the quality of explanation. Testing GEF in a

real-case scenario including end-users can be useful also to check

the e�cacy of an explanation technique that is based only on the

model, and not on the training dataset, to pursue one of the main

motivations behind XAI, i.e. explain to control [1]. Having greater

control over the model means, for example, using the information

contained in the terms created by GEF to understand possible

unexpected behavior with certain inputs and verify the model’s

robustness against adversarial attacks; everything without the

usage of the original training set.
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