
EGG-SynC: Exact GPU-parallelized Grid-based Clustering by
Synchronization

Jakob Rødsgaard Jørgensen

jakobrj@cs.au.dk

Department of Computer Science

Aarhus University

Aarhus, Denmark

Ira Assent

ira@cs.au.dk

Department of Computer Science

DIGIT Aarhus University Centre for Digitalisation, Big

Data and Data Analytics

Aarhus University

Aarhus, Denmark

ABSTRACT
Clustering by synchronization (SynC) is a clustering method that

is motivated by the natural phenomena of synchronization and

is based on the Kuramoto model. The idea is to iteratively drag

similar objects closer to each other until they have synchronized.

SynC has been adapted to solve several well-known data mining

tasks such as subspace clustering, hierarchical clustering, and

streaming clustering. This shows that the SynC model is very

versatile. Sadly, SynC has an 𝑂 (𝑇 × 𝑛2 × 𝑑) complexity, which

makes it impractical for larger datasets. E.g., Chen et al. [8] show

runtimes of more than 10 hours for just 𝑛 = 70, 000 data points,

but improve this to just above one hour by using R-Trees in their

method FSynC. Both are still impractical in real-life scenarios.

Furthermore, SynC uses a termination criterion that brings no

guarantees that the points have synchronized but instead just

stops when most points are close to synchronizing.

In this paper, our contributions are manifold. We propose a

new termination criterion that guarantees that all points have

synchronized. To achieve a much-needed reduction in runtime,

we propose a strategy to summarize partitions of the data into

a grid structure, a GPU-friendly grid structure to support this

and neighborhood queries, and a GPU-parallelized algorithm

for clustering by synchronization (EGG-SynC) that utilize these

ideas. Furthermore, we provide an extensive evaluation against

state-of-the-art showing 2 to 3 orders of magnitude speedup

compared to SynC and FSynC.

1 INTRODUCTION
Clustering is the task of grouping similar objects to identify un-

known structures in the data, e.g., customer groupings, and is

one of the most common data mining tasks. Clustering by syn-

chronization (SynC) [6] is a clustering definition that can capture

arbitrarily shaped clusters, requiring only a neighborhood radius

𝜀 and a threshold for the termination criterion. SynC is based

on the Kuramoto model from physics which captures the nat-

ural phenomena of synchronization. In their paper, they show

that SynC can capture clusters that visually stand out as actual

clusters, which other clustering methods like DBSCAN [10] or k-

means [11] do not. Furthermore, SynC [6] also provides a method

to test increasing sizes of 𝜀 and only returns the clustering with

the best score. This effectively hides 𝜀 for the user but at a much

higher runtime. The SynC algorithm has shown to be versatile

and has been used to solve several related data mining tasks such

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

as outlier detection [18], hierarchical clustering [19], subspace

clustering [21], and clustering streaming data [20].

The concept of clustering by synchronization is powerful, as

seen in several papers [18–21], and experiments [6, 7]. However,

SynC is very slow to compute due to the 𝑂 (𝑇 × 𝑛2 × 𝑑) time

complexity, where 𝑇 is the number of iterations, 𝑛 is the number

of points, and 𝑑 is the dimensionality. This complexity arises

since, for each iteration, SynC computes the update using the

𝜀-neighborhood by going through all points. FSynC [8] tries to

remedy this by using an R-Tree to speedup the neighborhood

query and achieves one order of magnitude speedup. However,

the paper still reports that it takes more than an hour to cluster

just 70, 000 points. Furthermore, SynC uses a measure 𝑟𝑐 for syn-

chronization; when 𝑟𝑐 reaches 1, all points have synchronized

with their neighborhoods. However, since the update never actu-

ally moves the points to the neighborhood’s mean, 𝑟𝑐 does not

necessarily reach 1. SynC instead terminates whenever 𝑟𝑐 ≥ 𝜆

which implies that not necessarily all points have synchronized

and that SynC is effectively computing an approximation, with

no bounds, of the definition of clustering by synchronization.

To get the necessary speed and accuracy, we provide an ex-

act and fast algorithm. FSynC has investigated the use of data

structures to speed up the computation, and this provides up to

around 10× speedup. To achieve further speedup, we see great

potential in using modern hardware’s high computational power,

such as the graphic processing unit (GPU). However, to utilize

the many cores of the GPU, algorithms and data structures must

adhere to the computational model of the GPU, which is vastly

different from the CPU model.

Our contributions.We propose:

• A new termination criterion for SynC that guarantees that

the correct clustering is found,

• a strategy for partitioning the data into a grid of cells

that can be summarized in a way that lets us compute the

update of each point much faster,

• a GPU-friendly grid structure that supports this summa-

rization and balances time and space efficiency,

• and an exact and fast GPU-parallelized algorithm for clus-

tering by synchronization that utilizes these ideas.

All our contributions are manifested in a new exact and fast

GPU-parallelized Grid-based algorithm for clustering by syn-

chronization called EGG-SynC.

2 RELATEDWORK
In the literature, various approaches for data clustering are stud-

ied. SynC [6] is a clustering method that captures clusters re-

vealed by synchronization, makes no assumption about data dis-

tribution, requires no human interaction, and allows the detection

Series ISSN: 2367-2005 195 10.48786/edbt.2023.16

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.16

of clusters of arbitrary shape, size, and density. Density-based

approaches like DBSCAN [10], and DENCLUE [12] also detect

clusters of arbitrary shape and size but require a threshold for the

global density of a cluster and do not capture clusters of varying

density. DPC [17] and OPTICS [2] capture clusters of varying

density, but require user selection of density parameters.

Somework onGPU-parallelizing clustering algorithms is based

on analysis of neighborhoods, like G-DBSCAN [1], GPU accel-

erated OPTICS [14], and GPU-INSCY [13]. They mainly achieve

speedup by precomputing neighborhoods in parallel in three

stages; computing the size of each neighborhood, performing

an inclusive scan to identify where each neighborhood should

start and end in memory, and populating the neighborhoods.

G-DBSCAN computes the neighborhood and then utilizes a GPU-

parallelized breadth-first search (BFS) to assign the clusters. GPU-

accelerated-OPTICS only computes the neighborhood on the

GPU and the rest on the CPU. GPU-INSCY uses the neighbor-

hoods in a subspace to prune the neighborhoods in its super-

spaces. An adaptation of G-DBSCAN processes multiple sub-

spaces concurrently and grows clusters simultaneously instead

of running BFS for each cluster. Precomputing neighborhoods

comes at the cost of high space usage, 𝑂 (𝑛 × E[|𝑁𝜀 (𝑝) |]). For
SynC this would quickly become prohibitively large. Data points

move closer to each other, implying that the expected neigh-

borhood size becomes 𝑂 (E[|𝑁𝜀 (𝑝) |]) = 𝑂 (𝑛). Therefore the

space usage and runtime would become 𝑂 (𝑛2). Instead, we pro-
pose a space- and runtime-efficient method that both prunes and

summarizes data points for computing the clustering. Moreover,

because SynC changes the location of points, existing pruning

strategies that rely on information about previously computed

neighborhoods do not apply to SynC. We, therefore, propose a

new strategy for pruning in this work.

The concept of clustering by synchronization is also used

for outlier detection [18], hierarchical clustering [19], subspace

clustering [21], and stream clustering [20]. However, a drawback

of SynC is the complexity of 𝑂 (𝑇 × 𝑛2 × 𝑑), which has given

rise to works on improving its runtime. FSynC [8] is a version

of SynC that uses the indexing structure R-Tree to support an

efficient finding of the neighborhoods. This reduces the time it

takes to find the neighborhoods from𝑂 (𝑛 ×𝑑) to𝑂 (log(𝑛) ×𝑑 +
|𝑁𝜀 (𝑥) | × 𝑑). However, since SynC synchronizes the points of

each cluster at a common location, the neighborhoods quickly

become the size of each cluster. Even the best case, where the

points are distributed equally among the 𝑘 clusters, implies a

𝑂 (𝑛/𝑘 ×𝑑) runtime for each iteration. In their experiments, they

show one order of magnitude speedup. However, this still implies

that it takes more than an hour to run FSynC on just 70, 000

data points. As the neighborhoods become denser in the later

iterations, FSynC becomes slower. We propose a strategy that

leverages that the center of each neighborhood becomes denser

to summarize regions fully within the neighborhood and avoid

looking at the points in this region.

LSSPC [22] is a variation of SynC that can handle larger

datasets. This is achieved by reducing the dataset using a method

called CDC, running SynC on the reduced dataset, and assigning

the remaining data points to clusters. CDC works by creating a

minimum enclosing ball in an expanded feature space and, while

there are still points outside the ball, expanding the ball to include

the point farthest away from the center. The support vectors are

returned as the reduced dataset when all points are covered. After

running SynC, the remaining points are assigned to the cluster

Algorithm 1 SynC(𝐷, 𝜀, 𝜆)
1: 𝑡 = 0, 𝑟𝑐 = 0

2: while 𝑟𝑐 < 𝜆 do
3: for 𝑝 ∈ 𝐷 do
4: for 𝑖 = 0, ..., 𝑑 − 1 do
5: 𝑝𝑡+1

𝑖
= 𝑝𝑡

𝑖
+ 1

|𝑁𝜀 (𝑝𝑡) | ×
∑
𝑞∈𝑁𝜀 (𝑝𝑡) sin(𝑞

𝑡
𝑖
− 𝑝𝑡

𝑖
)

6: 𝑟𝑐 = 1

|𝐷 |
∑
𝑝∈𝐷

1

|𝑁𝜀 (𝑝𝑡) |
∑
𝑞∈𝑁𝜀 (𝑝𝑡) 𝑒

−| |𝑞𝑡−𝑝𝑡 | |

7: 𝑡 = 𝑡 + 1

8: return synCluster(𝐷𝑡)

with the largest overlap with the neighborhoods. The remaining

points are assigned to isolated clusters or outliers.

PSynC [7] is a CPU-parallelized SynC version that reduces

the runtime by partitioning the dataset into areas with a roughly

equal number of points, performing SynC on each partition in

parallel, and merging the results to create the full clustering.

Since the neighborhood of a point may span multiple partitions,

PSynC computes the means of so-called 𝐾-neighborhood regions

for each point as an approximation of their location. This ap-

proximation, unfortunately, comes without a guarantee as to

the deviation from the correct result. PSynC also notes that the

termination criterion is not exact and uses a criterion that con-

siders the number of clusters but still does not provide an exact

termination criterion. We propose the first exact SynC algorithm

that provides efficient GPU-parallel computation and scalability

to large datasets without the need for approximations.

Several clustering methods are based on 𝑘-nearest neighbors

(kNN) [3, 16], which fixes the size of the neighborhood to 𝑘 , in-

stead of varying the number of points as in 𝜀-neighborhoods.

Some clustering definitions based on 𝜀-neighborhood have been

adapted to kNN-neighborhood instead. This provides results

faster, but only approximately, e.g., the DPC approximation Fast-

DPeak [9]. Another strategy is data summarization via some

suitable set of statistics. BIRCH clustering [23] approximates sets

of points as micro-cluster spheres, which are clustered to cre-

ate the actual result. BIRCH assigns points to micro-clusters in

their processing order, and the resulting approximation quality

depends on this order. In this work, we focus on exact clustering

according to the SynC cluster model without any loss in accuracy.

3 CLUSTERING BY SYNCHRONIZATION
Clustering by synchronization (SynC) [6] is inspired by the natu-

ral phenomena of synchronization, e.g., a group of people with

similar traits often come together and form common opinions;

as time evolves, they become more similar and reach a state of

local synchronization. The Kuramoto model from physics cap-

tures this interaction pattern. The basic idea of SynC is to itera-

tively move points closer to the points in their 𝜀-neighborhood

𝑁𝜀 (𝑝) := {𝑞 ∈ 𝐷 | |𝑝 − 𝑞 | ≤ 𝜀}, see Algorithm 1. Given a dataset

𝐷 ∈ R𝑛×𝑑 , an 𝜀 radius, threshold 𝜆, and a 𝛾 radius, the location

of points 𝑝 ∈ 𝐷 is iteratively updated using a function based on

the Kuramoto model:

𝑝𝑡+1𝑖 = 𝑝𝑡𝑖 +
1

|𝑁𝜀 (𝑝𝑡) |
×

∑
𝑞∈𝑁𝜀 (𝑝𝑡)

sin(𝑞𝑡𝑖 − 𝑝
𝑡
𝑖), (1)

where 𝑖 is the dimension and 𝑡 is the current iteration. Since the

sin function is used, distances must be within 0 and 𝜋/2 for points
to approach each other. Böhm et al. [6], therefore, normalize the

data between 0 and 1. Throughout this paper we use drag and

move as synonyms for points being updated using Equation 1.

196

Instead of running the algorithm until the points have fully

synchronized, Böhm et al. [6] compute what they call the Cluster

Order Parameter:

𝑟𝑐 =
1

|𝐷 |
∑
𝑝∈𝐷

1

|𝑁𝜀 (𝑝𝑡) |
∑

𝑞∈𝑁𝜀 (𝑝𝑡)
𝑒−| |𝑞

𝑡−𝑝𝑡 | | . (2)

Where 𝑟𝑐 approach 1 when the points have synchronized. How-

ever, 𝑟𝑐 = 1 is never reached, since we use sin to update the

location, instead SynC terminates whenever 𝑟𝑐 ≥ 𝜆. Böhm et al.

[6] use 𝜆 = 0.999. When the points reach a state of local syn-

chronization, the algorithm terminates, and the sets of points

synchronizing together are returned as the clusters in the final

clustering. SynC assigns the clusters by going through all not yet

clustered points; all points within the 𝛾-neighborhood constitute

a cluster. However, the termination criterion does not guarantee

that the points that synchronize are within a 𝛾-neighborhood

and, therefore, does not guarantee a correct result nor a bounded

approximation quality.

SynC shows several desirable properties. It can capture ar-

bitrarily shaped clusters with no assumption about data distri-

bution, size, density, or the number of clusters. Furthermore,

it naturally separates outliers from the cluster without specific

measures, requiring no human interaction. As with all clustering

methods, SynC also has its drawbacks. For SynC, we have iden-

tified the inaccuracy in termination and cluster gathering and

the long runtime. We, therefore, strive to fix the inaccuracies and

reduce the runtime.

FSynC [8] tries to reduce the runtime using R-Trees, an in-

dexing structure that supports neighborhood queries, but their

experiments show that it still takes more than an hour to cluster

just 70, 000 points. We propose using modern hardware such as

the Graphics Processing Unit to achieve a faster runtime. We

also provide a GPU-friendly grid structure that can be used to

correctly terminate when the points have synchronized, gather

the clusters, and perform neighborhood queries. Furthermore,

we propose a strategy to summarize the grid cells to achieve even

higher speedup.

4 EGG-SYNC
As mentioned in Section 1, SynC is a clustering concept with

many advantages; however, SynC’s biggest drawback is its slow-

ness. As shown in Section 2, there have been multiple works on

making SynC faster. PSynC gains up to 160× speedup by parti-

tioning the data and running SynC on each partition of different

CPU threads, but at the cost of a less accurate result. On the

other hand, FSynC does not lose accuracy and gains around 10×
speedup by using the R-Tree for indexing to speed up the neigh-

borhood query used in the update function. However, FSynC still

reports more than an hour of runtimes for just 70, 000 data points.

Even though FSynC computes the same result as SynC, the 𝜆-

termination of SynC and FSynC does not guarantee a correct

result. We are neither content with an approximative solution

nor a runtime of hours for a relatively small dataset. To ensure

a correct result, we propose a new termination criterion, and to

achieve further speedup, we propose to utilize modern hardware

such as the GPU; however, this requires developing an algorithm

for a vastly different computational model. We thus present a

new exact GPU-parallel grid-based algorithm for clustering by

synchronization (EGG-SynC). Our proposed algorithm includes

a novel exact termination criterion and proof of correctness. We

also devise a GPU-friendly grid-based data structure to support

neighborhood queries efficiently. To further reduce the runtime

Figure 1: A cluster that should synchronize (be dragged to-
gether in later iterations), but where 𝜆-termination incor-
rectly terminates with 3 separate clusters instead.

of the costly update function, we propose a strategy to summa-

rize the points in the grid cells and use the precomputed values

to reduce the number of points the update function needs to go

through. We show how to compute the new update function in

parallel across points. Furthermore, we use the grid structure to

check the synchronization criterion, Definition 4.2, and gather

the final clustering when the synchronization criterion is sat-

isfied. At last, we collect the individual parts and propose our

algorithm EGG-SynC.

4.1 Exact termination criterion
SynC aims to assign points that synchronize at the same location

to the same cluster. Böhm et al. [6] define points synchronizing as

a cluster. SynC uses a cluster order parameter 𝑟𝑐 , Equation 2, as

a measure of local synchronization. When 𝑟𝑐 reaches 1, all points

have synchronized. However, SynC uses the sin of the distance

between the points to drag them closer, Equation 1, and for 0 <

𝑥 ≤ 1, sin(𝑥) < 𝑥 implying that points that are not at the same

location will never reach the same location, and 𝑟𝑐 never reach

1. Instead SynC terminate whenever 𝑟𝑐 exceeds 𝜆 where they

use a value of 𝜆 = 0.999. The 𝜆 threshold provides a termination

criterion, but the approximation quality of the clustering result

depends on the choice of 𝜆. Unfortunately, no guarantees on the

quality of the approximation are provided. 𝜆-termination, as we

will call it for simplicity, may indeed produce incorrect results:

consider, e.g., a small cluster on the border of the 𝜀 radius of

larger clusters which in later iterations can "drag" the clusters

together, see Figure 1. As we can see in the figure, the issue is that

the impact of the smaller cluster on the termination condition

in this iteration is small, but later iterations will make these

clusters synchronize into a single cluster nonetheless. Consider

a dataset of 1, 000, 000 points, a 𝜆 = 0.999, and 𝜀 = 0.025, then

there may be thousands of points in the small cluster, but the

𝜆-termination criterion of 𝑟𝑐 still reaches values above 𝜆, even

though the clusters should eventually be dragged into a single

cluster. Furthermore, 𝜆 is an extra parameter that the user must

set. The fact that 𝜆-termination [6] does not indicate how close

the points are to reaching their local synchronization point, is

also noted by Chen et al. [7] who propose to add the number

of clusters to the termination criterion. Still, their termination

criterion suffers from the same fundamental problems. In this

work, we propose a different approach to overcome these issues.

Instead of defining an approximate measure of synchronization,

we determine a state where the algorithm can safely terminate

and gather points that eventually synchronize, thereby providing

the first exact termination criterion. We begin with our formal

definition of clustering by synchronization.

197

Definition 4.1 (Clustering by Synchronization). Given dataset

𝐷 , parameter 𝜀, and iterative updates using Equation 1. A non-

empty 𝐶 ⊆ 𝐷 is a cluster iff there exists an iteration 𝑡 such that

the following conditions are satisfied for all future iterations 𝑡 ′:

(1) ∀𝑡 ′ ≥ 𝑡,∀𝑝, 𝑞 ∈ 𝐷 : 𝑝 ∈ 𝐶,𝑞𝑡 ′ ∈ 𝑁𝜀 (𝑝𝑡
′) ⇒ 𝑞 ∈ 𝐶

(2) ∀𝑡 ′ ≥ 𝑡,∀𝑝, 𝑞 ∈ 𝐶 : 𝑞𝑡
′ ∈ 𝑁𝜀 (𝑝𝑡

′)

Given the Clustering by Synchronization, Definition 4.1, the

state we want to capture in the synchronization criterion, Defi-

nition 4.2, is, therefore, when the neighborhoods do not change

anymore, since this would imply that we know exactly which

points will synchronize together when the iterations go towards

infinity. To check this, we define two terms that should be sat-

isfied for all points 𝑝 . First term verifies that all points 𝑞 within

the 𝜀-neighborhood of 𝑝 are within the half radius 𝜀/2 as well,
implying that all neighborhoods either fully overlap 𝑁𝜀 (𝑞1) ∩
𝑁𝜀 (𝑞2) = 𝑁𝜀 (𝑞1) or has no overlap at all 𝑁𝜀 (𝑞1) ∩ 𝑁𝜀 (𝑞2) = ∅.
The second term verifies that no points can be dragged into the

𝜀-neighborhood of 𝑝 using the update function. Since a point, 𝑞

can only be dragged close to and not beyond all points within

its neighborhood, the minimum bounding rectangle (MBR), the

smallest axis-aligned hyper-cube that encloses a set of points, is

a conservative approximation for where 𝑞 can be moved. To con-

clude that 𝑞 can not move into the neighborhood of 𝑝 , therefore,

it suffices to check that the 𝜀/2-neighborhood’s MBR of 𝑞 does

not intersect the 𝜀 radius of 𝑝 .

Definition 4.2 (Synchronization Criterion). The criterion for

termination is:

∀𝑝 ∈ 𝐷 : �𝑞 :(𝜀/2 < | |𝑝 − 𝑞 | | ≤ 𝜀)
∧�𝑞 :(𝜀 < | |𝑝 − 𝑞 | | ≤ 𝜀 + 𝛿

∧ (𝑑𝑖𝑠𝑡 (𝑀𝐵𝑅(𝑁𝜀/2 (𝑞)), 𝑝) ≤ 𝜀),

where 𝑑𝑖𝑠𝑡 (𝑀𝐵𝑅, 𝑝) =
√∑𝑑

𝑖 min𝑐∈𝑀𝐵𝑅 |𝑝𝑖 − 𝑐𝑖 |2 is the smallest

Euclidean distance from any corner of the MBR to points 𝑝 and

𝛿 = 𝜀 − 𝜀 ×
√

15

16
+ 𝜀/2 − sin(𝜀/2) is the extra radius that must be

checked, see Appendix D for proof.

We provide the following theorem and lemmas to prove that

this criterion ensures that the final clustering is correctly deter-

mined. We want to prove that the first term implies that all points

sharing a common neighborhood always move closer to each

other. First, Lemma 4.3 proves that if the first term is satisfied

for all points, then all intersecting neighborhoods are fully inter-

secting. Next, Lemma 4.4 proves that all points with a common

neighborhood move closer to each other.

Lemma 4.3 (Identical set of neighbors.). Given a point 𝑝 ∈
𝐷 , if there does not exist a point 𝑞 ∈ 𝐷 where 𝜀/2 ≤ ||𝑝 − 𝑞 | | ≤ 𝜀,
then all points 𝑜 ∈ 𝑁𝜀 (𝑝) must have the same neighbors, i.e.,
𝑁𝜀 (𝑝) = 𝑁𝜀 (𝑜). See Appendix A for proof.

Lemma 4.4 (Denser neighborhoods.). Given points 𝑝, 𝑞 ∈ 𝐷
at iteration 𝑡 , if 𝑁𝜀 (𝑝) = 𝑁𝜀 (𝑞) then | |𝑝𝑡+1 − 𝑞𝑡+1 | | ≤ | |𝑝𝑡 − 𝑞𝑡 | |,
i.e., the distance between points is smaller in subsequent iterations.
See Appendix B for proof.

We now have the foundation to prove that no points leave

the neighborhood. Even though points are being updated closer

to their neighborhood and, therefore, further from other points,

there is still a small chance that points in a neighborhood could

drag themself into another neighborhood and, by that, merge the

two neighborhoods. To prove that if the second term is satisfied

this can not happen we provide Lemma 4.6. Since the update

Equation 1 can tilt slightly from a straight line, we need to prove

that this becomes smaller in later iterations, to support this we

provide Lemma 4.5.

Lemma 4.5. Given 𝑥,𝑦 ∈ (0, 1] and 𝑦 > 𝑥 , then:
sin(𝑦 − sin(𝑦))
sin(𝑥 − sin(𝑥)) >

sin(𝑦)
sin(𝑥) . (3)

See Appendix C for proof.

Lemma 4.6. Given 𝑝, 𝑞 ∈ 𝐷 at iteration 𝑡 if the synchronization
criterion, Definition 4.2, is met and 𝑞𝑡 ∉ 𝑁𝜀 (𝑝𝑡) then �𝑡 ′ > 𝑡 :

𝑞𝑡
′ ∈ 𝑁𝜀 (𝑝𝑡

′), i.e., no new point 𝑞 can move into the neighborhood
𝑁𝜀 (𝑝) of any point 𝑝 . See Appendix D for proof.

We provide Theorem 4.7 to collect all the parts and conclude

that when the synchronization criterion Definition 4.2 is met, we

can correctly gather the final clustering.

Theorem 4.7 (Gathering Clusters). Given 𝑝 ∈ 𝐷 at itera-
tion 𝑡 , if the synchronization criterion, Definition 4.2, is met then
𝑁𝜀 (𝑝𝑡) = 𝐶 |𝑝 ∈ 𝐶 , i.e., 𝑁𝜀 (𝑝) is the set of points that 𝑝 synchro-
nizes with and, therefore, the final cluster that 𝑝 belongs to.

Proof. By Lemma 4.3, since all points only have neighbors

within the 𝜀/2 neighborhood, all points must have the same

points in their neighborhoods as their neighbors do. By Lemma

4.4, all points with identical neighborhoods move closer; thus, the

neighborhoods never lose points. Lastly, by Lemma 4.6, no points

move into the neighborhood when the synchronization criterion,

Definition 4.2, is met. This implies that the neighborhoods do not

change anymore. Therefore, when the synchronization criterion

is met, each point’s 𝑝 neighborhood is the set of points that 𝑝

synchronizes with and, therefore, the final cluster that the point

𝑝 belongs to according to Definition 4.1. □

With this proof, we establish the first exact termination crite-

rion for clustering by synchronization, determining a state where

the algorithm can safely terminate and gather the final clusters.

4.2 GPU-friendly grid structure
Clustering algorithms have been primarily developed with the

implicit assumption of a sequential single-threaded model of the

CPU. Modern hardware architectures, however, employ different

computational models requiring different algorithmic solutions.

The modern CPU contains up to tens of cores where threads can

execute individual instructions concurrently as SMT (Simultane-

ousMulti-Threading). It provides hardware units that can execute

a single instruction on hundreds of data entries simultaneously

as SIMD (Single Instruction, Multiple Data).

In this work, we propose to exploit the massive parallelism

in modern GPUs (Graphics Processing Units) for efficient SynC

clustering. GPUs consist of thousands of cores that provide high

computational power at the cost of a more restricted computa-

tional model, where warps, groups of 32 threads, execute with

a shared program counter. All threads in a warp execute the

same operation as SIMT (Single Instruction, Multiple Threads).

In the CUDA programming environment, threads are organized

into blocks and further distributed among warps. The blocks are,

furthermore, organized in a grid. Physically, cores on the GPU

are grouped in SMs (Streaming Multiprocessors), which share

fast access to L1-cache and can synchronize during execution.

Thread in a block is executed within the same SM and therefore

has the capabilities of the SM. Furthermore, all threads can access

198

the slower main memory of the GPU, known as global memory.

Due to threads accessing memory concurrently, several consider-

ations must be taken into account. Threads that access the same

memory address can lead to race conditions, and atomic opera-

tions can be used with care to avoid these; however, the atomic

operation takes longer to perform. Global memory access by the

same warp can be combined into one transfer if the memory

accesses coalesce; this requires that the memory accesses are con-

secutive and aligned with global memory. In this paper, parallel
is used to denote parallel execution on the GPU unless specified

otherwise. Computed in parallel means distributing a for-loop

among thread blocks as well as threads within each block.

The main and most time-consuming operation of Equation 1 is

to compute the neighborhood of each point. Using just the dataset

requires going through the entire dataset each time the neigh-

borhood is computed. Therefore, an indexing structure is often

used to speed up the neighborhood query. Tree structures, such

as the R-Tree used in FSynC, support fast neighborhood queries

on the CPU; however, they are not constructed with the GPU in

mind. When constructing a tree, as nodes in the tree reach their

maximal capacity, they are split in two, and the tree’s structure is

altered. If we try to construct an R-Tree in parallel, points may be

inserted by some threads while the tree is being altered by oth-

ers and therefore could end up in the wrong node. Furthermore,

when performing a neighborhood query, each thread may need to

go through multiple different parts leading to branch-divergence,

which slows down performance substantially. Instead, we pro-

pose to use a grid structure to speed up the neighborhood query.

This naturally reduces the runtime of the neighborhood queries,

but in addition, we devise a strategy to summarize the grid cells

such that we do not have to access all points during the update,

following Equation 1. We also show how to check the synchro-

nization criterion using the grid structure and gather the final

clustering.

When designing the grid structure for the GPU, the main

considerations are access-time, query-time, construction-time,

space-usage, and how to construct and access it in parallel using

warps. To make it easy to compute which grid cell a point is

located within, we decide to use a grid structure with a fixed cell

width 𝑐𝑤 , implying that the ID of a cell containing a point 𝑝 is

𝐼𝐷 (𝑝) =
𝑑−1∑
𝑖=0

𝑝𝑖

⌈1/𝑐𝑤⌉𝑖
mod ⌈1/𝑐𝑤⌉, (4)

where IDs are enumerated as seen in Figure 2a. Similarly, this

approach also makes it easy to determine the cells that possibly

intersect the neighborhood radius 𝜀.

In order to fully utilize the many GPU cores when constructing

and accessing the grid structure, we must devise a GPU-friendly

implementation. Recall that all threads within a warp must per-

form the same instruction at all times, or else branches diverge,

slowing processing down. We must also ensure that a thread

does not change part of the structure other concurrent treads

are working on. Furthermore, we must also consider data access

and workload distribution to achieve the highest performance.

Likewise, dynamic memory allocation is relatively expensive to

perform, and we aim to reduce this as much as possible.

4.2.1 List construction. In order to handle the frequent cre-

ation of lists or sets of elements, we need to consider memory

allocation. In the sequential model, elements can be added to

lists on the fly and memory allocated for lists is expanded when

needed. Since dynamic memory allocation is expensive on the

GPU and threads in awarpwait for each other, allocatingmemory

on the fly may quickly lead to a very high runtime. Instead, we

adopt the strategy of maintaining several lists per single memory

allocation. First, compute the size 𝑠𝑖𝑧𝑒𝑠 of each list, then perform

an inclusive scan of the sizes to find the end index 𝑒𝑛𝑑𝑠 of each

list, allocate the total space for the elements in all lists 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ,

and at last populate each list. This requires only one memory

allocation for all lists combined and makes the memory coalesced,

both of which are important for efficiency. If the total size is fixed

between iterations, the memory allocation can even be reused.

The start index of list number 𝑖 is:

getStart(𝑒𝑛𝑑𝑠, 𝑖) =
{
0 if 𝑖 = 0

𝑒𝑛𝑑𝑠 [𝑖 − 1] else

,

and end index as getEnd(𝑒𝑛𝑑𝑠, 𝑖) = 𝑒𝑛𝑑𝑠 [𝑖]. Here, we use stan-
dard C++ notation, where the end is the index after the last entry.

4.2.2 Random access. The first implementation we propose

represents all possible cells in the grid structure enumerated as

in Figure 2a, where the grid cell of a point is determined using

Equation 4. To access the points in each cell, we compute lists of

points as in Section 4.2.1, with the lists of points in 𝑔𝑟𝑖𝑑𝑃𝑜𝑖𝑛𝑡𝑠 ,

their sizes in 𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 , and the end index of each list in 𝑔𝑟𝑖𝑑𝐸𝑛𝑑𝑠 .

Access. Since the grid cell width is fixed, the index of each

cell can be computed in 𝑂 (𝑑) time and the cell can be located

by random access. The total look-up time is, therefore, 𝑂 (𝑑) to
access the grid cells and𝑂 (𝑑 + |𝑔|) to get all points in the grid cell.

Since we do not know the non-empty cells in advance, we must

look at all cells intersecting the neighborhood of a point. This

makes the complexity of updating each point 𝑝 𝑂 (𝑣𝑑 + |𝑁𝜀 (𝑝) |),
where 𝑣 = ⌈𝜀/𝑐𝑤⌉ × 2 + 1 is the possible number of grid cells

along each dimension that the 𝜀 radius can overlap with.

Construction. The random access grid structure is a set of

lists of points constructed as described in Section 4.2.1. This

grid structure is illustrated in Figure 2b. We discuss how to add

the summarized statistics for all cells in Section 4.3.1. Since we

have an index for all cells, also non-empty ones, the number

of cells increases exponentially with 𝑑 , i.e., 𝑂 (𝑤𝑑) space usage,
where𝑤 is the number of cells along each dimension. For lower-

dimensional data, this representation is efficient because the time

complexity depends on the number of dimensions. However, for

higher-dimensional datasets, it leads to space issues; therefore,

we propose an alternative structure for higher-dimensional data

in the following.

4.2.3 Sequential access. To reduce the space usage, we could

represent the grid as a list of non-empty cells, this way we would

never use more than 𝑂 (𝑛 × 𝑑) space. Since there is no direct

mapping between the array entries and the cells in this represen-

tation, we must keep track of which cell each entry represents.

We, therefore, maintain an array 𝑔𝑟𝑖𝑑𝐼𝐷𝑠 of the IDs of each non-

empty cell, see also Figure 2c. In this paper, we view it as a single

value for simplicity’s sake, but in reality, these IDs can become

quite large since the number of cells increases exponentially in

the dimensionality. It is, therefore, represented using 𝑂 (𝑑) in-
tegers in the implementation. Furthermore, we use two arrays

for housekeeping to remove duplicates and tightly pack the non-

empty cells. An array 𝑔𝑟𝑖𝑑𝐼𝑛𝑐𝑙 to mark which cells should be

included and an array 𝑔𝑟𝑖𝑑𝐼𝑑𝑥𝑠 containing the new index of the

first occurrence of each non-empty cell.

199

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

cw

(a) Grid with fixed cell
size.

1 2 0 0 0 2 3 0 ...

1 3 3 3 3 5 8 8 ...

0 1 2 3 4 5 6 7 8
gridSizes:

gridEnds:

gridPoints: 02 34 569 10 ...

Random access:

(b) Random access representation.

0 1 5 6 12 13 17 18

1 3 5 8 10 12 14 17

0 1 2 3 4 5 6 7 8
gridIDs:

gridEnds:

gridPoints: 02 34 569 10 ...

1 2 2 3 2 2 2 3gridSizes:

Sequential access:

...

...

...

(c) Sequential access representation.

0 1 1 6 6 5 6 5

1 3 3 5 5 8 8 8

0 1 2 3 4 5 6 7 8

iGridIDs:

iGridEnds:

iGridPoints: 02 34 569 10 ...

1 2 0 2 0 3 0 0iGridSizes:

Mixed access:

3 5 4 5 0

3 8 12 17 17

oGridSizes:

oGridEnds:

...

...

...

lines 1-3

0 1 6 5iGridIDs': ...

1 1 0 1 0 1 0 0iGridIncl: ...

1 2 2 3 3 4 4 4iGridIdxs: ...

lines 4-7

lines 8-9

1 3 5 8iGridEnds': ...

2 4 6 8 0oGridEnds':
0 1 2 3 4 5 6 7 8

final grid-structure

0 1 6 5iGridIDs: ...

1 3 5 8iGridEnds: ...

2 4 6 8 0oGridEnds:

iGridPoints: 02 34 569 10 ...

(d) Mixed access representation.

Figure 2: Grid representations

Access. To find a specific cell, we scan the array 𝑔𝑟𝑖𝑑𝐼𝐷𝑠 ,

implying a 𝑂 (𝑛 × 𝑑) access-time. However, to retrieve the neigh-

borhood of a point 𝑝 , we only need to traverse the list once, and

the complexity is 𝑂 (𝑛 × 𝑑) as well.
Construction. In the construction of this implementation,

we additionally keep a list of non-empty grid cells but otherwise

again separate it into multiple steps. We need to create all cells in

parallel, but we do not know which cells are empty in advance,

and we do not want to create duplicates. First, we go through all

points in parallel and compute the cell ID 𝑐𝐼𝐷 , which is saved at

the index corresponding to the point’s ID 𝑔𝑟𝑖𝑑𝐼𝐷𝑠 [𝑝] = 𝑐𝐼𝐷 . The
array 𝑔𝑟𝑖𝑑𝐼𝐷𝑠 is now a list of all non-empty cells but possibly

with duplicates. Next, to remove duplicates and compute the

location of the points in each grid cell, we go through each point

in parallel, compute the cell ID 𝑐𝐼𝐷 it belongs to and find the first

entry 𝑖𝑑𝑥 in𝑔𝑟𝑖𝑑𝐼𝐷𝑠 matching 𝑐𝐼𝐷 . At the corresponding location

𝑖𝑑𝑥 in 𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 , we increment the size and set 𝑔𝑟𝑖𝑑𝐼𝑛𝑐𝑙 to TRUE

to mark that this cell ID is the first of multiple duplicates and,

therefore, is the one that should be included. All other duplicates

can be ignored. Next, we perform an inclusive scan on 𝑔𝑟𝑖𝑑𝐼𝑛𝑐𝑙

to find the location 𝑖𝑑𝑥 ′ for where each non-empty cell needs

to be placed to be tightly packed and save the result in 𝑔𝑟𝑖𝑑𝐼𝑑𝑥𝑠 .

Similarly, we perform an inclusive scan on 𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 to find the

end index of the cell’s list of points and save it in 𝑔𝑟𝑖𝑑𝐸𝑛𝑑𝑠 . We

set 𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 to zero and populate the cells’ list of points as in

Section 4.2.1. At last, we repack the grid structure such that all

first occurrences are tightly packed at the beginning. This is

done for each point in parallel. If the cell is marked as included

𝑔𝑟𝑖𝑑𝐼𝑛𝑐𝑙 [𝑝], we move the end index, the size, and the cell ID to

the new location 𝑖𝑑𝑥 ′ = 𝑔𝑟𝑖𝑑𝐼𝑑𝑥 [𝑝] − 1.

Theoretically, the sequential and random access grid struc-

tures have the same worst-case access time since all points could

be within the neighborhood, making the query time 𝑂 (𝑛 × 𝑑).
However, for most datasets, we do not just have a single dense

area at the neighborhood’s size; therefore, the random access

representation would be the fastest. On the other hand, the space

complexity of the random access structure is exponential in 𝑑

making it impractical for higher-dimensional datasets, where the

sequential access structure uses 𝑂 (𝑛 × 𝑑).

4.2.4 Mixed access. Both the random access and the sequen-

tial access representation have their drawbacks. To get the best

of both worlds, we propose a mix of these representations that

balances the access time and the space usage. It is a heuristic to

distribute the long list of grid cells into as many buckets with

random access cells that we can maintain in 𝑂 (𝑛 × 𝑑) space.
To get a compact representation of the grid structure, we create

a random access grid structure for the first 𝑑 ′-dimensions only,

where𝑤𝑑′ ≤ 𝑛 ×𝑑 . We refer to this partial structure as the outer-

grid 𝑜𝐺𝑟𝑖𝑑 . Then for each cell in the outer-grid, we keep a list of

all full-dimensional non-empty cells that fall within the outer-

grid cell. We refer to these full-dimensional cells as the inner-grid

𝑖𝐺𝑟𝑖𝑑 , which is implemented as a sequential access grid structure.

The outer-grid allows us to quickly locate a subset of cells in the

inner-grid that potentially intersect the neighborhood. We then

sequentially check each cell if it intersects the neighborhood.

Similar to the random access, the outer-grid structure consists

of an array𝑜𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 with the number of inner-grid cells, and an

array 𝑜𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 with the end-locations, see Figure 2d. However,

instead of indexing into the end of a list of points, it indexes into

the inner-grid cells within each outer-grid cell, see Figure 2d. The

inner-grid is exactly the same as the sequential access, but the

inner-grid cells are grouped by the outer-grid cells.

The space use of the outer-grid is 𝑂 (𝑛 × 𝑑) by choice of 𝑑 ′

and the inner-grid can at most have 𝑛 non-empty grid cells and,

therefore, uses 𝑂 (𝑛 × 𝑑) space. Therefore, the total space usage
is 𝑂 (𝑛 × 𝑑). For higher-dimensional datasets, this is much better

than the𝑂 (𝑤𝑑) for the random access representation and as good

as the sequential access strategy, but we can still access portions

of the cells by random access.

Access. To retrieve the neighborhood, we identify each of

the outer-grid cells intersecting the neighborhood of 𝑝 this is

𝑂 (𝑣𝑑′) = 𝑂 (𝑛 × 𝑑). Then we traverse the list of inner-grid cells

in each outer-grid cell, we can again at most have 𝑛 non-empty

inner-grid cells and, therefore, this also takes 𝑂 (𝑛 × 𝑑) time. In

total, we use worst-case 𝑂 (𝑛 × 𝑑) to query the neighborhood.

However, in practical experiments, EGG-SynC performs much

faster, see Section 5.

Construction. The mixed access grid structure is constructed

by first building the random access grid structure for the first 𝑑 ′

dimensions, and then for each cell, building a sequential access

grid structure for the full dimensional space, as described in Al-

gorithm 2. All arrays are allocated at the beginning of Algorithm

4 and reused in all iterations to avoid expensive memory allo-

cations. Alongside the construction description, we provide an

example of how the arrays change in Figure 2d (small captions

with respective algorithm lines). To construct the outer grid, we

aim to fill it with the non-empty inner grid cells. However, it is

200

Algorithm 2 constructGrid(𝐷, 𝜀)
1: ∀ points 𝑝 ∈ 𝐷 in parallel: atomically increment the size of

each outer grid cell 𝑜𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠

2: inclusive scan of 𝑜𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 saved in 𝑜𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠

3: ∀𝑝 ∈ 𝐷 in parallel: atomically add the inner cell ID 𝑖𝐼𝐷

containing 𝑝 to the list of inner grid cell in the outer grid cell

containing 𝑝 with ID 𝑜𝐼𝐷

4: ∀𝑝 ∈ 𝐷 in parallel: compute outer cell with ID 𝑜𝐼𝐷 and inner

cell with ID 𝑖𝐼𝐷 containing 𝑝 , find the first occurrence of 𝑖𝐼𝐷

in the list of inner grid cell in 𝑜𝐼𝐷 , and mark it as included;

atomically increment the size of each inner grid cell

5: inclusive scan of 𝑖𝐺𝑟𝑖𝑑𝐼𝑛𝑐𝑙 saved in 𝑖𝐺𝑟𝑖𝑑𝐼𝑑𝑥𝑠

6: inclusive scan of 𝑖𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 saved in 𝑖𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠

7: ∀𝑝 ∈ 𝐷 in parallel: atomically add 𝑝 to the inner grid cell

8: ∀𝑖𝐼𝑑𝑥 in parallel: relocate ends 𝑖𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 [𝑖𝐼𝑑𝑥] and ids

𝑖𝐺𝑟𝑖𝑑𝐼𝑑𝑠 [𝑖𝐼𝑑𝑥] to new location 𝑖𝐼𝑑𝑥 ′ = 𝑖𝐺𝑟𝑖𝑑𝐼𝑑𝑥𝑠 [𝑖𝐼𝑑𝑥] − 1

9: ∀𝑜𝐼𝐷 in parallel: compute new end of each outer

grid cells list of inner grid cells 𝑜𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 ′[𝑜𝐼𝐷] =

𝑔𝑒𝑡𝑆𝑡𝑎𝑟𝑡 (𝑖𝐺𝑟𝑖𝑑𝐼𝑑𝑥𝑠, 𝑜𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 [𝑜𝐼𝐷])
10: swap(𝑖𝐺𝑟𝑖𝑑𝐼𝐷𝑠 , 𝑖𝐺𝑟𝑖𝑑𝐼𝐷𝑠 ′), swap(𝑖𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 , 𝑖𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 ′),

swap(𝑜𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 , 𝑜𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 ′)

challenging to avoid duplicates in parallel processing. In Lines

1-3, we instead temporarily accept potential duplicates, for each

point adding the ID of the inner grid cell the point is located

in, then removing duplicates in Lines 4 where we mark the first

occurrence of each inner cell ID to be included. To save compu-

tations and memory accesses, we count the number of points

in each inner grid cell at the same time. At this stage, the first

occurrence of non-empty inner grid cells is spread out sparsely

in the outer grid. To compute a compact index 𝑖𝐺𝑟𝑖𝑑𝐼𝑑𝑥𝑠 , Line 5

performs an inclusive scan on 𝑖𝐺𝑟𝑖𝑑𝐼𝑛𝑐𝑙 . In Lines 6,7, the inner

grid cells are populated as in Sect. 4.2.1. Lines 8-10 repack the

grid using the computed indices 𝑖𝐺𝑟𝑖𝑑𝐼𝑑𝑥𝑠 into new arrays to

avoid breaking the old structure while reading from it.

To conclude, we now have a data structure that uses 𝑂 (𝑛 × 𝑑)
space and where a neighborhood can be found in worst-case

𝑂 (𝑛×𝑑) time, but likelymuch faster. This is the same as the R-Tree

used in FSynC; however, our grid structure can be constructed

and accessed by multiple GPU threads in parallel and supports

the summarization that we discuss in Section 4.3.1.

4.2.5 Precomputing the surrounding cells. When computing

the update to a point 𝑝 , the thread handling this point must access

the surrounding grid cells to see if they contain any points that

should be included in the neighborhood. Many of these cells are

empty, and for the random access strategy, this implies that some

threads, in a warp, access empty cells while other threads access

non-empty cells. In turn, this results in some threads waiting

on other threads finishing treating the non-empty cells before

continuing to the next cell. To reduce the number of idle threads,

we precompute the non-empty surrounding cells of each cell in

advance. The ids of the non-empty cells are saved in an array

𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝐶𝑒𝑙𝑙𝑠 similar to the points in our grid structure.

First, we compute all non-empty cells 𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝑁𝑜𝑛𝐸𝑚𝑝𝑡𝑦 in

parallel by atomically incrementing the number of non-empty

cells 𝑛𝑜𝑂𝑓 𝑁𝑜𝑛𝐸𝑚𝑝𝑡𝑦 and saving the outer-grid cell ID 𝑜𝐼𝐷 at

that location. Second, in parallel for each non-empty cell 𝑐𝐼𝐷 ,

we go through the surrounding cells and count the non-empty

cells 𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 [𝑐𝐼𝐷]. Third, to get the start and end indices

𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠 of each list of surrounding outer-grid cells in

𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝐶𝑒𝑙𝑙𝑠 , we perform an inclusive scan on the counts of

surrounding cells 𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 to get the end index of each list.

At last, we set the counts 𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 to 𝑧𝑒𝑟𝑜 and, in parallel,

for each non-empty cell 𝑐𝐼𝐷 , we go through the surrounding cells.

If it is non-empty, we increment the count 𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 [𝑐𝐼𝐷] to
get the location 𝑙𝑜𝑐 = 𝑎𝑡𝑜𝑚𝑖𝑐𝐼𝑛𝑐 (𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 [𝑐𝐼𝐷]), compute

the starting location 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 𝑔𝑒𝑡𝑆𝑡𝑎𝑟𝑡 (𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝐸𝑛𝑑𝑠, 𝑐𝐼𝐷) in
𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝐶𝑒𝑙𝑙𝑠 and save the surrounding non-empty cells 𝑜𝐼𝐷

at that location 𝑙𝑜𝑐 plus the starting location 𝑜 𝑓 𝑓 𝑠𝑒𝑡 . Having

this precomputation implies that threads always work with non-

empty cells; however, the number of points contained in each

cell can still differ. We address this issue in the following.

4.2.6 Execution order. Precomputing the surrounding non-

empty grid cells implies that no threads have a non-empty work-

load per cell we handle. However, we still have an unbalanced

workload since some cells can contain a lot of points and others

only a few. To make it more likely that threads in the same warp

have a balanced workload, we aim to have warps handle points

that are located close to each other. To achieve this, we leverage

that the array of all points in the grid structure 𝑖𝐺𝑟𝑖𝑑𝑃𝑜𝑖𝑛𝑡𝑠 is

sorted in order of the grid cells. Instead of updating each point in

the order given in the data set, we access them in sorted order in

the grid structure. This implies that it is much more likely that

all threads in a warp access the same surrounding grid cells and,

therefore, have a more balanced workload since the threads are

likely to access the same points. However, it is still possible that

threads in a warp handle points in different grid cells. It would

be possible to make a warp only handle points within the same

grid cells and just let the remaining threads do nothing, but this

would lead to even lower utilization of the threads.

4.3 Efficient cluster algorithm on the grid
We now have the definitions needed for an exact clustering by

synchronization and a GPU-friendly grid structure to support our

summarization strategy. This section proposes our summariza-

tion strategy and an exact GPU-parallelized grid-based algorithm

for clustering by synchronization (EGG-SynC).

4.3.1 Summarized grid cells. Supporting neighborhood queries
provide speedup, but the worst-case complexity of SynC using

any indexing structure is still quadratic in the number of data

points. In each iteration, to update each point 𝑝 requires all points

in the neighborhood 𝑁𝜀 (𝑝), Equation 1. This is an expensive

task since, as the points synchronize, the neighborhoods become

larger and larger until they contain an entire cluster. If one clus-

ter contains the majority of the points, updating each point in

this cluster would take 𝑂 (𝑛 × 𝑑). Even if the 𝑘 clusters are of

equal size, the update still takes 𝑂 (𝑛/𝑘 × 𝑑). This implies that

the complexity of SynC is still 𝑂 (𝑇 × 𝑛2 × 𝑑). The challenge

is, therefore, the inherent problem of SynC, that the neighbor-

hoods become extremely dense and that SynC has to look at

all points when computing Equation 1. We propose an entirely

new approach that avoids these costly computations in many

cases. The core idea is to precompute summarized statistics that

fulfill several requirements. Since grid cells can be fully included

within multiple neighborhoods, the summarized statistics should

be computed per grid cell and be reusable among points when

computing the update using Equation 1. To ensure an exact result,

the summarized statistics should not provide an approximation

but sufficient information for correct updates. At last, it should

be efficient to precompute the summarized statistics.

201

It is known that sin(𝑦−𝑥) = sin(𝑦) cos(𝑥) −cos(𝑦) sin(𝑥). We

use this to rewrite the update of a point 𝑝:

𝑝𝑡+1𝑖 = 𝑝𝑡𝑖 +
1

|𝑁𝜀 (𝑝𝑡) |
∑

𝑞∈𝑁𝜀 (𝑝)
sin

(
𝑞𝑡𝑖 − 𝑝

𝑡
𝑖

)
= 𝑝𝑡𝑖 +

1

|𝑁𝜀 (𝑝𝑡) |
∑

𝑞∈𝑁𝜀 (𝑝)
sin

(
𝑞𝑡𝑖
)
cos

(
𝑝𝑡𝑖
)

− cos

(
𝑞𝑡𝑖
)
sin

(
𝑝𝑡𝑖
)

= 𝑝𝑡𝑖 +
1

|𝑁𝜀 (𝑝𝑡) |
©­«cos

(
𝑝𝑡𝑖
) ©­«

∑
𝑞∈𝑁𝜀 (𝑝)

sin

(
𝑞𝑡𝑖
)ª®¬

− sin

(
𝑝𝑡𝑖
) ©­«

∑
𝑞∈𝑁𝜀 (𝑝)

cos

(
𝑞𝑡𝑖
)ª®¬ª®¬ . (5)

The sums

∑
𝑞∈𝑁𝜀 (𝑝) sin(𝑞

𝑡
𝑖
) and ∑

𝑞∈𝑁𝜀 (𝑝) cos(𝑞
𝑡
𝑖
) can then be

separated into two parts, one for the points in the grid cells 𝐺𝐹

fully within the neighborhood, and one for the points in grid

cells 𝐺𝑃 partially within the neighborhood:∑
𝑞∈𝑁𝜀 (𝑝)

sin(𝑞𝑡𝑖) =
∑
𝑔∈𝐺𝐹

𝑔𝑟𝑖𝑑𝑆𝑖𝑛[𝑔]𝑖 +
∑
𝑔∈𝐺𝑃

∑
𝑞∈𝑔∩𝑁𝜀 (𝑝)

sin(𝑞𝑖),

(6)

where 𝑔𝑟𝑖𝑑𝑆𝑖𝑛[𝑔] = ∑
𝑝∈𝑔 sin(𝑔) and analogically for cos, which

are the terms that we can precompute and use in multiple updates.

This implies that instead of going through all the points in the

grid cell, we can look up the precomputed sums and use them,

saving us a lot of time. This precomputation is computed in

parallel across points, by computing the grid cell ID and adding

the sin(𝑝) and cos(𝑝) atomically to 𝑔𝑟𝑖𝑑𝑆𝑖𝑛[𝑔] and 𝑔𝑟𝑖𝑑𝐶𝑜𝑠 [𝑔].
This makes it extremely fast in practice compared to the time

it saves doing the update. The points are spread more or less

equally across the neighborhood in the early iterations, but as

the iterations progress, the points come closer and closer to the

center. This implies that EGG-SynC becomes faster in the later

iterations, as we also confirm empirically in the experiments.

4.3.2 Efficient EGG-update. Updating the location of each

point 𝑝 requires that we compute the 𝜀-neighborhood of 𝑝 and

use it to compute the direction in which point 𝑝 should move.

As mentioned in related work Section 2, other GPU-parallelized

algorithms precompute the neighborhood before use. However, as

the neighborhoods of SynC increase in size for each iteration, the

space usage becomes prohibitively expensive, and we must find

alternative strategies. To balance theworkload and reduce branch-

divergence, we precompute the non-empty cells in Section 4.2.5,

group the points by location in Section 4.2.6, and reduce point

access using summarized statistics in Section 4.3.1. The update of

each point, using these concepts, proceeds as in Algorithm 3. For

each point 𝑝 in parallel, we compute the center outer-grid cell

and the center inner cell where 𝑝 lies. For each surrounding outer

cell, we go through each inner-grid cell. If the inner-grid cell is

fully within the 𝜀 radius of 𝑝 , then we can use the summarized

statistics of the inner-grid cell. Else if the inner-grid cell only

overlaps, we must go through all points in that inner-grid cell.

4.3.3 Termination using the grid structure. To efficiently check

the synchronization criterion, Definition 4.2, we propose lever-

aging our grid structure. We split the criterion into two checks

to reduce the amount of work that must be performed in each

iteration. First, we check the first term of the criterion of whether

neighborhoods either fully intersect or not at all. If the first term

Algorithm 3 EGG-update(𝐷, 𝜀, 𝑔𝑟𝑖𝑑, 𝑝𝑟𝑒𝐺𝑟𝑖𝑑)
1: for 𝑝 ∈ 𝑖𝐺𝑟𝑖𝑑𝑃𝑜𝑖𝑛𝑡𝑠 - in parallel do
2: compute center outer cell ID 𝑐𝑂𝐼𝐷 of 𝑝

3: compute center inner cell index 𝑐𝐼 𝐼𝑑𝑥 of 𝑝

4: for ∀𝑜𝐼𝐷 ∈ 𝑝𝑟𝑒𝐺𝑟𝑖𝑑𝐶𝑒𝑙𝑙𝑠 [𝑐𝑂𝐼𝐷] do
5: for ∀𝑖𝐼𝑑𝑥 ∈ outer cell 𝑜𝐼𝐷 do
6: if inner cell at 𝑖𝐼𝑑𝑥 fully within 𝜀 radius of 𝑝 then
7: 𝑠𝑢𝑚𝑖 = 𝑠𝑢𝑚𝑖+cos(𝑝𝑖)×𝑖𝐺𝑟𝑖𝑑𝑆𝑖𝑛[𝑖𝐼𝑑𝑥]𝑖−sin(𝑝𝑖)×

𝑖𝐺𝑟𝑖𝑑𝐶𝑜𝑠 [𝑖𝐼𝑑𝑥]𝑖∀𝑖
8: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 + 𝑖𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 [𝑖𝐼𝑑𝑥]
9: else if inner cell at 𝑖𝐼𝑑𝑥 intersect 𝜀 radius of 𝑝 then
10: for 𝑞 ∈ inner cell at 𝑖𝐼𝑑𝑥 do
11: 𝑠𝑢𝑚𝑖 = 𝑠𝑢𝑚𝑖 + sin(𝑞𝑡

𝑖
− 𝑝𝑡

𝑖
)

12: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 + 1

13: 𝑝𝑡+1
𝑖

= 𝑝𝑡
𝑖
+ 1

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
× 𝑠𝑢𝑚𝑖∀𝑖

14: if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ≠ 𝑖𝐺𝑟𝑖𝑑𝑆𝑖𝑧𝑒𝑠 [𝑐𝐼 𝐼𝑑𝑥] then
15: 𝑟𝑐 = 0

is satisfied, we also check the second term: no new points can be

dragged into any neighborhood.

First term.We need to check if 𝑁𝜀/2 (𝑝) = 𝑁𝜀 (𝑝), naively this
could be done by going through all points𝑞 ∈ 𝑁𝜀 (𝑝) and checking
if 𝜀/2 ≥ |𝑝 − 𝑞 | for any point 𝑝 . However, looking at all points in

the neighborhood is to be avoided, as discussed before. Instead,

we aim to find a method that does not need to look at all points.

The core idea is to find a lower-bound of the size of 𝑁𝜀/2 (𝑝)
that can easily be computed. We propose to make the cell width

𝑐𝑤 ≤
√
(𝜀/2)2/𝑑 , such that the diagonal is less than 𝜀/2. The grid

cell 𝑔 containing 𝑝 is then fully within 𝑁𝜀/2 (𝑝) and we can use

|𝑔| as a lower-bound of |𝑁𝜀/2 (𝑝) | to avoid computing the exact

value by terminating if |𝑔| = |𝑁𝜀 (𝑝) |. This still determines the

termination criterion fully correctly since this lets the algorithm

run until all points within 𝑁𝜀/2 (𝑝) are also within 𝑔.

Second term. The second term is more expensive to check but

only needs to be checked when the first term is true. For all points

𝑝 we must go through all points in the surrounding grid cells to

check if there exists any points 𝑞1 within 𝜀 < | |𝑝 − 𝑞1 | | < 𝜀 + 𝛿 .
This is done in parallel across points 𝑝 . Then for each pair 𝑝, 𝑞1 in

parallel, we go through all points 𝑞2 in the surrounding grid cells

to check if the minimum bounding rectangle containing 𝑞1, 𝑞2
intersects the 𝜀 neighborhood of 𝑝 .

4.3.4 Cluster gathering. Since the 𝜆-termination criterion does

not guarantee that the points have synchronized, some points

may be left out when gathering the clusters. We, therefore, pro-

pose a new method for gathering the clusters, gatherCluster,
that guarantees that all points are assigned to the correct clus-

ter. Recall that we only terminate when all neighbors are within

the center grid cell of the neighborhood. Theorem 4.7 states that

when we terminate, the neighborhoods contain all the points that

synchronize together. Thus, the center grid cell of each neighbor-

hood must contain the final cluster. Therefore, we can return all

non-empty grid cells as the clustering.

4.3.5 The full algorithm. The full overview of EGG-SynC is

described in Algorithm 4. While the points have not yet synchro-

nized, we construct the grid, compute the summarized statistics,

and update the points. We check if all points in the neighborhood

are within the center cell, and if so, we check if the surrounding

points can be dragged into the neighborhood. At last, when the

points have synchronized, we gather the clusters.

202

Algorithm 4 EGG-SynC(𝐷, 𝜀)
1: 𝑡 = 0, 𝑟𝑐 = 1

2: while 𝑟𝑐 ≠ 0 do
3: 𝑟𝑐 = 1

4: 𝑔𝑟𝑖𝑑 = constructGrid(𝐷𝑡 , 𝜀)
5: computeSinAndCosSums(𝑔𝑟𝑖𝑑, 𝐷𝑡 , 𝜀)
6: 𝑝𝑟𝑒𝐺𝑟𝑖𝑑 = preComputeNonEmptyCells(𝐷𝑡 , 𝜀, 𝑔𝑟𝑖𝑑)
7: EGG-update(𝐷, 𝜀, 𝑔𝑟𝑖𝑑, 𝑝𝑟𝑒𝐺𝑟𝑖𝑑)
8: 𝑡 = 𝑡 + 1

9: if 𝑟𝑐 = 1 then
10: Check second term of Def. 4.2, if not satisfied, set 𝑟𝑐 = 0.

11: 𝑔𝑟𝑖𝑑 = constructGrid(𝐷𝑡 , 𝜀)
12: return gatherCluster(𝐷𝑡 , 𝜀, 𝑔𝑟𝑖𝑑)

5 EXPERIMENTS
We perform the experimental evaluation on a workstation with

Intel Core i9 10940X 3.3GHz 14-Core, 258 GB RAM, and a GeForce

RTX 3090 with 24 GB dedicated RAM. All algorithms have been

implemented in C++ or CUDA, where all CUDA experiments are

run with a block size of 128. For repeatability, the source code is

provided at: https://au-dis.github.io/publications/EGG-SynC.

Methods. Our proposed algorithm is compared against the

original algorithm for clustering by synchronization, SynC [6],

and the more recent speedup FSynC [8]. For a fair comparison,

we have implemented both in C++ as well. In initial experiments,

our implementation of SynC provides approximately 4× speedup

compared to the Java implementation provided by the authors.

We have implemented straightforward SynC versions that are

GPU-parallel (GPU-SynC) and CPU-parallel using multiproces-

sors (MP-SynC). Both parallelizations distribute updates of all

points among threads. All runtime measurements for GPU algo-

rithms also include data transfer time to GPU memory. Böhm

et al. [6] employ a strategy for selecting the best 𝜀, as Chen et

al. [8], we do not include this in our experiments to make each

runtime on different 𝜀 values transparent.

Hyperparameters. SynC takes parameters 𝜀 and 𝜆; default

values in all experiments are 𝜀 = 0.05, and 𝜆 = 0.999. EGG-SynC

uses our new exact termination criterion and does therefore not

need the 𝜆 parameter to terminate. FSynC, on the other hand,

introduces an additional parameter, the maximum fanout 𝐵 for

the R-Tree; initial experiments suggest 𝐵 = 100 performs best.

Synthetic data.We use the synthetic dataset generator pro-

vided by Beer et al. [4] to control data distribution and size, which

produces Gaussian distributed clusters. The default parameters

for the generated data are 100, 000 points with 2 dimensions, each

dimension has values in the range −100 to 100. The points are

distributed among 5 Gaussian distributed clusters existing in the

full-dimensional space and with a standard deviation of 5.0.

Real-world data.We study the same seven real-world datasets

as Chen 2018 [8] from the UCI repository [15]; data banknote
authentication (Bank) with 1, 372 points and 4 dimensions, Yeast
with 1, 484 points and 8 dimensions, Wilt with 4, 838 points and

5 dimensions, CCPP with 9, 568 points and 5 dimensions, Tamil-
nadu Electricity Board Hourly Readings (EB) with 45, 781 points

and 2 dimensions, Skin_NonSkin (Skin) with 245, 057 points and 3

dimensions, 3D_spatial_network (Roads) with 434, 874 points and

3 dimensions. In addition, we study higher-dimensional datasets,

namely, Eye State (EEG) with 10, 000 points and 14 dimensions,

Letter Recognition (Letter) with 20, 000 points and 16 dimensions,

both also from the UCI repository. All datasets are min/max-

normalized between 0 and 1.

5.1 Performance comparison
5.1.1 Scalability. We first investigate the runtime when scal-

ing the input size in the number of points and dimensions. In

Figure 3a, we see that EGG-SynC is about 2-3 orders of magnitude

faster than SynC, MP-SynC, and FSynC and almost a magnitude

faster than GPU-SynC. Moreover, the speedup provided by EGG-

SynC over SynC and GPU-SynC, see Figure 3b, keeps increasing

as the number of points increases. This can be attributed to our

summarized statistics strategy since the more points we have,

the higher the probability that points fall within the same cells

and can be effectively summarized by our algorithm. In Figure 3c,

we see that the runtime increases with the dimensionality for

all algorithms and that EGG-SynC has the largest speedup for

lower dimensions. We observe that all algorithms show a drop in

runtime for higher dimensional datasets. As the dimensionality

increases, points are more likely to be spread out, which in turn

likely leads to an increased number of smaller clusters instead

of a few large ones that require more synchronization, thus re-

ducing the number of iterations required. This is in line with the

effects of the curse of dimensionality [5]; when the number of

dimensions increases, the points are further apart and cover more

cells, meaning that speedup starts to converge at around 350×
speedup. In all cases, EGG-SynC provides a substantial speedup,

particularly for large datasets.

5.1.2 Distribution. Besides the size of the input data, data

distribution may also affect the runtime of clustering algorithms.

We, therefore, evaluate datasets with varying spread and number

of clusters. In Figure 3d, we see that EGG-SynC maintains sev-

eral orders of magnitude speedup compared to SynC and FSynC.

Furthermore, as the number of clusters increases, all three algo-

rithms become faster. This behavior is most apparent for FSynC

and EGG-SynC and can be attributed to their use of an index-

ing structure for the neighborhood queries. When increasing the

standard deviation of the generated clusters to study clusters with

a larger spread in Figure 3e, we similarly see several orders of

magnitude speedup for EGG-SynC compared to SynC and FSynC.

Furthermore, the runtime is lowest for all three algorithms when

the standard deviation is low. This makes sense since a smaller

cluster would imply fewer iterations until the points reach the

local synchronization.

5.1.3 Real-world data. We also evaluate the performance on

benchmark data from the UCI repository (Figure 4), where we

again see large speedups for the GPU-parallelized versions of

SynC. From the synthetic experiments, we expect EGG-SynC

to be faster than GPU-SynC for the larger dataset. This is true

for Roads but not for Skin. This can be explained by recalling

the example in Figure 1, where a smaller part connects bigger

parts of a cluster. Such a case would have a high cluster order

parameter and make SynC, FSynC, and GPU-SynC stop too early,

even though it could require many more iterations to cluster

correctly. This is exactly what happens for the Skin dataset in

this experiment (Figure 4): several clusters are approximated

incorrectly but found correctly by our method, at the cost of less

speedup. More concretely, GPU-SynC stops after 7 iterations,

whereas EGG-SynC continues for the 343 iterations needed to

find a correct clustering in this case.

203

0.0 0.5 1.0

size of dataset ×106

10−2

100

102

104

ti
m

e
in

se
co

n
d

s

(a) Increasing size of dataset

0.0 0.5 1.0

size of dataset ×106

5000

10000

15000

20000

25000

sp
ee

d
u

p
(b) Speedup as size increases

5 10 15 20

number of dimensions

10−2

100

102

104

ti
m

e
in

se
co

n
d

s

(c) Increasing dimensionality

5 10 15

number of clusters

10−2

100

102

104

ti
m

e
in

se
co

n
d

s

(d) Increasing number of clusters

10 20

standard deviation

10−2

100

102

104

ti
m

e
in

se
co

n
d

s

(e) Increasing standard deviation

0.0 0.2 0.4

neighborhood radius

10−2

100

102

104

ti
m

e
in

se
co

n
d

s

(f) Increasing neighborhood radius

0 2 4 6

iterations

0.00

0.02

0.04

0.06

ti
m

e
in

se
co

n
d

s

(g) Runtime per iteration.

0.0 0.5 1.0

size of dataset ×106

20

40

60

80

100

m
em

o
ry

u
sa

g
e

(M
B

)

(h) Space usage.

SynC

MP-SynC

FSynC

GPU-SynC

EGG-SynC

Figure 3: Synthetic experiments

We demonstrate the impact of such cluster approximations

for Skin by varying neighborhood radius 𝜀, resulting in different

clustering results. As we can see in Figure 5, for other values of

𝜀, EGG-SynC is substantially faster than GPU-SynC when there

is no need to resolve slowly converging clusters.

The main take-away is thus that EGG-SynC is most often

substantially faster than GPU-SynC and especially SynC. In cases

where it is not, this is due to more iterations for a correct result. If

speed-up should be preferred to accuracy, a termination threshold

as in SynC or a maximum number of iterations could be used.

5.2 Hyperparameters
We study the sensitivity of the runtime of the algorithms w.r.t

different settings of hyperparameters. The only hyperparameter

to set for the three algorithms SynC, FSynC, GPU-SynC, and

EGG-SynC alike is the neighborhood radius 𝜀. Intuitively, a lower

𝜀 implies fewer points in the neighborhood and, therefore, a lower

runtime, especially for the algorithms that utilize a data structure

Bank Yeast Wilt CPP EB Skin Roads EEG Letter

10−1

101

103

ti
m

e
in

se
co

n
d
s

SynC

MP-SynC

FSynC

GPU-SynC

EGG-SynC

Figure 4: Real world datasets

to find the neighborhood without looking at all points. For EGG-

SynC, a lower 𝜀 implies that it has to iterate over fewer points, but

it also implies that each cell becomes smaller and, therefore, in

the beginning, the data points are spread across more non-empty

cells. In Figure 3f, EGG-SynC still provides substantial speed-up

204

0.0125 0.025 0.05 0.1 0.2 0.5

100

ti
m

e
in

se
co

n
d
s

GPU-SynC

EGG-SynC

Figure 5: Changing 𝜀 for the Skin dataset

for all values of 𝜀 compared to SynC and FSynC. At very low val-

ues, the speedup for FSynC compared to SynC increases slightly

and the speedup of EGG-SynC decreases slightly. However, for

all other values, the speedup of EGG-SynC compared to SynC

and FSynC remains several orders of magnitude.

5.3 Stage and iteration breakdown
To study how different stages of EGG-SynC contribute to the

overall runtime, we provide a breakdown of the runtime of each

stage of GPU-SynC and EGG-SynC, see Table 1. We see that as

the data size increases, the construction time of the grid structure

becomes minuscule, and the update of points strongly dominates

the runtime. More importantly, we see that compared to GPU-

SynC, both the update and the gathering of clusters are reduced

dramatically as an effect of using the efficiently constructed grid

structure. Thus, spending relatively little time on the construction

of the grid structure to speed up the update of points and the

gathering of clusters is clearly worth the effort.

In Figure 3g, we see that GPU-SynC’s iteration becomes slightly

more expensive as the iterations increase, and our EGG-SynC

spends less time. This is because our summarized statistics pro-

vide more benefits for dense data. Furthermore, thanks to our

effective statistics and data structure, our approach is much faster

than GPU-SynC, even though it terminates later when all points

have been correctly clustered according to clustering by synchro-

nization, Definition 4.1.

5.4 Space usage
In Section 4.2.4, we state that the space usage is linear in the size

of the dataset 𝑂 (𝑛 × 𝑑). We validate this in Figure 3h, where we

see that, indeed, the space increases linearly as the number of

data points increases. As expected, EGG-SynC uses a constant

factor of more space on the grid structure, which GPU-SynC does

not use, but the memory consumption is reasonable and provides

a clear runtime benefit.

6 CONCLUSION
In this paper, we propose a novel GPU-parallelized approach to

clustering by synchronization, named EGG-SynC. EGG-SynC in-

troduces the first exact termination criterion that guarantees that

the synchronization process is finished when the algorithm ter-

minates. EGG-SynC presents a strategy for summarizing the data

in a GPU-friendly grid structure and proposes a highly efficient

GPU-parallel algorithm for exact clustering by synchronization.

The experimental evaluation on synthetic and real-world data

shows substantial, 2 to 3 orders of magnitude, speedup over

existing algorithms for varying data and problem sizes as well as

hyperparameter settings.

ACKNOWLEDGMENTS
This work is supported by Independent Research Fund Denmark.

A PROOF OF LEMMA 4.3
Proof. We prove by contradiction. Assuming that there exists

a point 𝑎 ∈ 𝑁𝜀 (𝑝) where 𝑏 ∈ 𝑁𝜀 (𝑎) but 𝑏 ∉ 𝑁𝜀 (𝑝). First notice
that∀𝑝 ∈ 𝐷, �𝑞 ∈ 𝐷 : 𝜀/2 ≤ ||𝑝−𝑞 | | ≤ 𝜀 implies that for all points

𝑝 𝑁𝜀 (𝑝) = 𝑁𝜀/2 (𝑝). Since 𝑎 ∈ 𝑁𝜀/2 (𝑝) ⇒ ||𝑝 − 𝑎 | | ≤ 𝜀/2 and

𝑏 ∈ 𝑁𝜀/2 (𝑎) ⇒ ||𝑎 − 𝑏 | | ≤ 𝜀/2 and using the triangle inequality,

we get | |𝑝 −𝑏 | | ≤ | |𝑝 −𝑎 | | + | |𝑎 −𝑏 | | ≤ 𝜀. However then it cannot

be true that 𝑏 ∉ 𝑁𝜀 (𝑝) since it would imply that | |𝑝 − 𝑏 | | > 𝜀.

Therefore, all points in 𝑁𝜀 (𝑝) must have the same neighbors. □

B PROOF OF LEMMA 4.4
Proof. Given Equation 5, we have:

|𝑝𝑡+1𝑖 − 𝑞𝑡+1𝑖 | =
����𝑝𝑡𝑖 + 1

|𝑁𝜀 (𝑝𝑡) |
(
cos(𝑝𝑡𝑖)𝑠 (𝑝, 𝑖) − sin(𝑝𝑡𝑖)𝑐 (𝑝, 𝑖)

)
−(𝑞𝑡𝑖 +

1

|𝑁𝜀 (𝑞𝑡) |
(cos(𝑞𝑡𝑖)𝑠 (𝑝, 𝑖) − sin(𝑞𝑡𝑖)𝑐 (𝑝, 𝑖)

))����
=

����𝑝𝑡𝑖 − 𝑞𝑡𝑖 + 1

|𝑁𝜀 (𝑝𝑡) |
×
((
cos(𝑝𝑡𝑖) − cos(𝑞𝑡𝑖)

)
𝑠 (𝑝, 𝑖)

−
(
sin(𝑝𝑡𝑖) − sin(𝑞𝑡𝑖)

)
𝑐 (𝑝, 𝑖)

) �� ,
where 𝑠 (𝑝, 𝑖) =

(∑
𝑦∈𝑁𝜀 (𝑝) sin(𝑦

𝑡
𝑖
)
)
, 𝑐 (𝑝, 𝑖) =

(∑
𝑦∈𝑁𝜀 (𝑝) cos(𝑦

𝑡
𝑖
)
)
.

For the SynC algorithm to work, Shao et al. [21] require that the

data is normalized between [0, 1]. This implies that

∑
𝑦∈𝑁𝜀 (𝑝) sin(𝑦

𝑡
𝑖
)

and

∑
𝑦∈𝑁𝜀 (𝑝) cos(𝑦

𝑡
𝑖
) are both always positive.We split the proof

into two cases, for 𝑝𝑡
𝑖
−𝑞𝑡

𝑖
≥ 0 and 𝑝𝑡

𝑖
−𝑞𝑡

𝑖
< 0. If 𝑝𝑡

𝑖
−𝑞𝑡

𝑖
≥ 0 then

cos(𝑝𝑡
𝑖
) − cos(𝑞𝑡

𝑖
) ≤ 0 and sin(𝑝𝑡

𝑖
) − sin(𝑞𝑡

𝑖
) ≥ 0 in the interval

between [0, 1], implying that |𝑝𝑡+1
𝑖

−𝑞𝑡+1
𝑖

| ≤ |𝑝𝑡
𝑖
−𝑞𝑡

𝑖
|. Similarly, if

𝑝𝑡
𝑖
−𝑞𝑡

𝑖
< 0 then cos(𝑝𝑡

𝑖
)−cos(𝑞𝑡

𝑖
) > 0 and sin(𝑝𝑡

𝑖
)−sin(𝑞𝑡

𝑖
) < 0 in

the interval between [0, 1], implying that |𝑝𝑡+1
𝑖

−𝑞𝑡+1
𝑖

| < |𝑝𝑡
𝑖
−𝑞𝑡

𝑖
|.

We can therefore conclude that |𝑝𝑡+1
𝑖

− 𝑞𝑡+1
𝑖

| ≤ |𝑝𝑡
𝑖
− 𝑞𝑡

𝑖
|. □

C PROOF OF LEMMA 4.5
Proof. Since

sin(𝑦−sin(𝑦))
sin(𝑥−sin(𝑥)) >

sin(𝑦)
sin(𝑥) implies

sin(𝑥)
sin(𝑥−sin(𝑥)) >

sin(𝑦)
sin(𝑦−sin(𝑦)) , and for 0 < 𝑥 ≤ 1,

𝑑
𝑑𝑥

(
sin(𝑥)

sin(𝑥−sin(𝑥))

)
= csc(𝑥 −

sin(𝑥)) (cos(𝑥) + sin(𝑥) (cos(𝑥) − 1) cot(𝑥 − sin(𝑥))) < 0, which

implies that
sin(𝑥)

sin(𝑥−sin(𝑥)) is decreasing as 𝑥 increases within the

interval of concern, and, furthermore, that
sin(𝑦−sin(𝑦))
sin(𝑥−sin(𝑥)) >

sin(𝑦)
sin(𝑥) .
□

D PROOF OF LEMMA 4.6
Proof. By Lemma 4.3 all neighbors share a neighborhood

when the synchronization criterion is met, and by Lemma 4.4

all points in a shared neighborhood move closer to each other,

implying that they stay in the neighborhood. A neighborhood

can then only expand, if points drag each other into another

neighborhood using Equation 1. When all points are within 𝜀/2
distance of their neighbors, this can only happen when two or

more points 𝑞1, 𝑞2, . . . are outside 𝜀 radius of a point 𝑝 , but within

each other 𝜀/2 neighborhoods, as illustrated in Figure 6. This

implies that there is a distance from the neighborhood where

there can exist points 𝑞1, 𝑞2, . . . that can potentially be dragged

205

size of dataset Method Allocating Build structure Update Extra check Clustering Free Memory

256000

GPU-SynC 0.003808 0.000000 1.123219 0.000000 0.228805 0.000000

EGG-SynC 0.000977 0.006878 0.316819 0.007083 0.000461 0.000000

512000

GPU-SynC 0.002676 0.000000 4.663134 0.000000 0.869475 0.000000

EGG-SynC 0.001469 0.022316 1.088505 0.000403 0.001016 0.000000

1024000

GPU-SynC 0.004343 0.000000 14.145755 0.000000 3.361058 0.000000

EGG-SynC 0.002172 0.026141 2.723254 0.000763 0.002334 0.000000

Table 1: Break down of stages.

 /2

 /2

𝛿1

q2q1

p

Figure 6: Example of two points 𝑞1, 𝑞2 dragging each other
into a third point’s 𝑝 neighborhood.

into the neighborhood. If the location of the points was updated

in a straight line, we could compute the extra distance 𝛿1 as:

𝜀2 =(𝜀 − 𝛿1)2 + (𝜀/4)2

=⇒ (𝜀 − 𝛿1) =
√
𝜀2 − (𝜀/4)2 = 𝜀

√
15/16

=⇒ 𝛿1 =𝜀 − 𝜀
√
15/16. (7)

However, since the update function, Equation 1, does not update

the location of points in a straight line, we need to check a slightly

larger extra distance 𝛿 = 𝛿1 + 𝛿2. Since, for each dimension, the

points are updated with the average sin of the difference to all

other points in the neighborhood, and since sin is not a linear

function, the update deviates 𝛿2 from a straight line. We overes-

timate the deviation 𝛿2 by considering the worst-case location

and infinitely many points located at this location, i.e., when the

points are the furthest apart, the distance along one dimension

is as short as possible, and the other is as long as possible. When

all points are within 𝜀/2 distances of their neighbors, a point can
at most be updated with sin(𝜀/2) along each dimension. This

implies that the deviation 𝛿2 cannot exceed 𝛿2 = 𝜀/2 − sin(𝜀/2),
due to Pythagorean theorem, illustrated in Figure 7. Furthermore,

since the deviation from a straight line changes between itera-

tions, in a subsequent iteration, the deviation could potentially

intersect the 𝜀 neighborhood of point 𝑝 if the slope tilts more

towards 𝑝 . Figure 7 illustrates updating such points at locations

𝑞1, 𝑞2, in two iterations. All information related to the first it-

eration is colored blue, and the second is colored red. In the

first iteration, the point locations differ by 𝑑1 = 𝑞2,1 − 𝑞1,1 and
𝑑2 = 𝑞2,2 − 𝑞1,2 and the points at location 𝑞1 are updated along

the slope
sin(𝑑2)
sin(𝑑1) diverging slightly from the straight dashed line

between the two locations. How far the points are updated along

this slope depends on the fraction of points 𝛼 that are located

at 𝑞1 compared to 𝑞2. If there is only one point at each location,

then 𝛼 = 0.5 and the points will end up close to the middle as

in the illustration; else, they will end up close to the location

with the most points. After the update, the points at 𝑞1 move

d'1 =
d1 -sin(d1)

d1 =
q2,1 -q1,1 ≤

d2=q2,2-q1,2≤

d'2=d2-sin(d2)

sin(d2)

sin(d1)

sin(d1)

sin(d2)

q1

q2

δ2

sin(d'2)

sin(d'1)

Figure 7: Deviation from straight line when updating
points 𝑞1, 𝑞2 for two consecutive iterations.

to 𝑞′
1, 𝑗

= 𝑞1, 𝑗 + 𝛼 sin(𝑞2, 𝑗 − 𝑞1, 𝑗)∀𝑖 ∈ [0, 𝑑 − 1] and the points

at 𝑞2 move to 𝑞2, 𝑗 = 𝑞2, 𝑗 + (1 − 𝛼) sin(𝑞1, 𝑗 − 𝑞2, 𝑗)∀𝑖 ∈ [0, 𝑑 − 1].
Making the different between the points at the two locations

𝑑 ′
1
= (𝑞1,1 + 𝛼 sin(𝑞2,1 − 𝑞1,1)) − (𝑞2,1 + (1 − 𝛼) sin(𝑞1,1 − 𝑞2,1)),

𝑑 ′
2
= (𝑞1,2 + 𝛼 sin(𝑞2,2 − 𝑞1,2)) − (𝑞2,2 + (1 − 𝛼) sin(𝑞1,2 − 𝑞2,2))

along the two dimensions. The slope the update follow for the

subsequent iteration is therefore

sin(𝑑′
2
)

sin(𝑑′
1
) . Notice that the behavior

is mirrored on the straight dashed line, and it does not matter

which side of the line point 𝑝 is located. We prove this in the

2-dimensional case, but it can similarly be expanded to higher-

dimensions. Furthermore, how the points are located in rela-

tion to each other can be mirrored such that 0 < 𝑑1 ≤ 1,

0 < 𝑑2 ≤ 1, 𝑑1 < 𝑑2, and the points 𝑝 is below the dashed

line; the other cases can be proven analogously. To prove that

the updates in the subsequent iterations do not bring the points

at 𝑞1, 𝑞2 close to 𝑝 we must show that the slope increases in

the subsequent iterations
sin(𝑑2)
sin(𝑑1) <

sin(𝑑′
2
)

sin(𝑑′
1
) . We first simplify

𝑑 ′
𝑗
= (𝑞2, 𝑗 +𝛼 sin(𝑞1, 𝑗 −𝑞2, 𝑗)) − (𝑞1, 𝑗 + (1−𝛼) sin(𝑞2, 𝑗 −𝑞1, 𝑗)) =

𝑑 𝑗 − 𝛼 sin(𝑑 𝑗) − (1 − 𝛼) sin(𝑑 𝑗)) = 𝑑 𝑗 − sin(𝑑 𝑗), implying that

sin(𝑑2)
sin(𝑑1) <

sin(𝑑′
2
)

sin(𝑑′
1
) =

sin(𝑑2−sin(𝑑2))
sin(𝑑1−sin(𝑑1)) . By Lemma 4.5, this is true, and

the points can, therefore, not move into the 𝜀 neighborhood in

subsequent iterations either. This makes the total extra distance

𝛿 = 𝛿1 + 𝛿2 = 𝜀 − 𝜀
√
15/16 + 𝜀/2 − sin(𝜀/2). Furthermore, if there

exists a point 𝑞 within this border, but the minimum bounding

rectangle of the points in its neighborhood does not intersect the

𝜀 neighborhood of 𝑝 , then there cannot exist two points in 𝑁𝜀 (𝑞)
that could drag each other into the neighborhood of 𝑝 . □

206

REFERENCES
[1] Guilherme Andrade, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Renato

Ferreira, and Leonardo Rocha. 2013. G-dbscan: A gpu accelerated algorithm

for density-based clustering. Procedia Computer Science 18 (2013), 369–378.
[2] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999.

OPTICS: Ordering points to identify the clustering structure. ACM Sigmod
record 28, 2 (1999), 49–60.

[3] Anna Beer, Ekaterina Allerborn, Valentin Hartmann, and Thomas Seidl. 2021.

KISS-A fast kNN-based Importance Score for Subspaces.. In EDBT. 391–396.
[4] Anna Beer, Nadine Sarah Schüler, and Thomas Seidl. 2019. A Generator for

Subspace Clusters.. In LWDA. 69–73.
[5] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.

When is “nearest neighbor” meaningful?. In International conference on data-
base theory. Springer, 217–235.

[6] Christian Böhm, Claudia Plant, Junming Shao, and Qinli Yang. 2010. Clustering

by synchronization. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining. 583–592.

[7] Lei Chen, Jing Zhang, Li-Jun Cai, Ting-Qin He, and Tao Meng. 2016. Parallel

Synchronization-Inspired Partitioning Clustering. Journal of Computational
and Theoretical Nanoscience 13, 11 (2016), 8709–8729.

[8] Xinquan Chen. 2018. Fast synchronization clustering algorithms based on

spatial index structures. Expert Systems with Applications 94 (2018), 276–290.
[9] Yewang Chen, Xiaoliang Hu, Wentao Fan, Lianlian Shen, Zheng Zhang, Xin

Liu, Jixiang Du, Haibo Li, Yi Chen, and Hailin Li. 2020. Fast density peak

clustering for large scale data based on kNN. Knowledge-Based Systems 187
(2020), 104824.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A

density-based algorithm for discovering clusters in large spatial databases

with noise.. In Kdd, Vol. 96. 226–231.
[11] Reza Farivar, Daniel Rebolledo, Ellick Chan, and Roy H Campbell. 2008. A

Parallel Implementation of K-Means Clustering on GPUs.. In Pdpta, Vol. 13.
212–312.

[12] Alexander Hinneburg, Daniel A Keim, et al. 1998. An efficient approach to

clustering in large multimedia databases with noise. In KDD, Vol. 98. 58–65.
[13] Jakob Rødsgaard Jørgensen, Katrine Scheel, and Ira Assent. 2021. GPU-INSCY:

A GPU-Parallel Algorithm and Tree Structure for Efficient Density-based

Subspace Clustering.. In EDBT. 25–36.
[14] Danilo Melo, Sávyo Toledo, Fernando Mourão, Rafael Sachetto, Guilherme

Andrade, Renato Ferreira, Srinivasan Parthasarathy, and Leonardo Rocha.

2016. Hierarchical density-based clustering based on GPU accelerated data

indexing strategy. Procedia computer science 80 (2016), 951–961.
[15] David J Newman, SCLB Hettich, Cason L Blake, and Christopher J Merz. 1998.

UCI repository of machine learning databases, 1998.

[16] Sandra Obermeier, Anna Beer, Florian Wahl, and Thomas Seidl. 2021. Cluster

Flow-an Advanced Concept for Ensemble-Enabling, Interactive Clustering.

BTW 2021 (2021).
[17] Alex Rodriguez and Alessandro Laio. 2014. Clustering by fast search and find

of density peaks. science 344, 6191 (2014), 1492–1496.
[18] Junming Shao, Christian Böhm, Qinli Yang, and Claudia Plant. 2010. Syn-

chronization based outlier detection. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 245–260.

[19] Junming Shao, Xiao He, Christian Böhm, Qinli Yang, and Claudia Plant. 2012.

Synchronization-inspired partitioning and hierarchical clustering. IEEE Trans-
actions on Knowledge and Data Engineering 25, 4 (2012), 893–905.

[20] Junming Shao, Yue Tan, Lianli Gao, Qinli Yang, Claudia Plant, and Ira Assent.

2019. Synchronization-based clustering on evolving data stream. Information
Sciences 501 (2019), 573–587.

[21] Junming Shao, Xinzuo Wang, Qinli Yang, Claudia Plant, and Christian Böhm.

2017. Synchronization-based scalable subspace clustering of high-dimensional

data. Knowledge and information systems 52, 1 (2017), 83–111.
[22] Wenhao Ying, Fu-Lai Chung, and Shitong Wang. 2013. Scaling up

synchronization-inspired partitioning clustering. IEEE Transactions on Knowl-
edge and Data Engineering 26, 8 (2013), 2045–2057.

[23] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1997. BIRCH: A new

data clustering algorithm and its applications. Data mining and knowledge
discovery 1, 2 (1997), 141–182.

207

