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ABSTRACT (i.e., number of messages sent within a round). These two ob-

Vertex-centric (VC) graph systems are at the core of large-scale
distributed graph processing. For such systems, a common usage
pattern is the concurrent processing of multiple tasks (multi-
processing for short), which aims to execute a large number of unit
tasks in parallel. In this paper, we point out that multi-processing
has not been sufficiently studied or evaluated in previous work;
hence, we fill this critical gap with three major contributions.
First, we examine the tradeoff between two important measures
in VC-systems: the number of communication rounds and mes-
sage congestion. We show that this tradeoft is crucial to system
performance; yet, existing approaches fail to achieve an optimal
tradeoft, leading to poor performance. Second, based on exten-
sive experimental evaluations on mainstream VC systems (e.g.,
Giraph, Pregel+, GraphD) and benchmark multi-processing tasks
(e.g., Batch Personalized PageRanks, Multiple Source Shortest
Paths), we present several important insights on the correlation
between system performance and configurations, which is valu-
able to practitioners in optimizing system performance. Third,
based on the insights drawn from our experimental evaluations,
we present a cost-based tuning framework that optimizes the
performance of a representative VC-system. This demonstrates
the usefulness of the insights.

1 INTRODUCTION

Vertex-centric graph processing systems (VC-systems in the fol-
lowing) are a major paradigm for distributed processing of mas-

sive graphs [28]. Well-known VC-systems include Google Pregel [27]

and Apache Giraph [5]. The latter has been proven successful
in building Facebook’s large data-processing platform [9]. In re-
cent years, several new VC-systems have been developed (e.g.,
Pregel+ [34], GraphD [36]), which achieve significantly improved
performance. The main idea of VC-systems is “think like a ver-
tex”, i.e., they adopt a local, vertex-oriented perspective of graph
processing. In particular, in the beginning, each vertex is only
aware of its immediate neighbors, which constitute the initial
local view of the vertex. The local view is iteratively updated by
executing a user-defined function over vertices of the input graph.
The function takes the messages sent from other vertices as input,
conducts a local computation, and sends the output packed as
messages to a user-specified set of vertices. The computation is
executed iteratively for a number of synchronous communica-
tion rounds until a user-defined convergence property is met. To
achieve high performance, it is critical to minimize the number
of communication rounds as well as per-round message congestion
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jectives, however, are often conflicting in practice. In particular,
fewer communication rounds often lead to increased per-round
message congestion, forming a round-congestion tradeoft.

The Problem: Multi-Processing in VC-systems. Previous
studies on VC-systems mostly focus on the optimization for a
single benchmark task, e.g., computing the results of a single-
source shortest path or a single-source personalized PageRank
query. However, in practice, multiple tasks are often bundled and
processed in parallel (e.g., [6, 19]), which we refer to as multi-
processing. Particularly, multi-processing is a collection of unit
tasks that can be independently computed. Multi-processing may
optionally involve an aggregation of the output of the unit tasks.
Multi-processing is common in distributed system settings. Ex-
amples include (i) batch Personalized PageRank (BPPR) [23, 24],
which involves the computation of multiple single-source person-
alized PageRanks, (ii) multi-source shortest path distance queries
(MSSP) [7], which evaluates multiple single-source shortest path
distance queries, and (iii) batch k-Hop Search (BKHS) [37, 38],
which collects the statistics of the k-hop neighbors from multiple
source nodes. These are fundamental graph-processing tasks that
have found a wide spectrum of applications. For example, BPPR
has been applied in Pinterest’s related Pins [20] and Twitter’s
Who-To-Follow service [13]; MSSP is useful in diameter estima-
tion [2]; BKHS has been applied in link information analysis in
Twitter social networks [37, 38].

Despite the practical importance of multi-processing in VC-
systems, to our knowledge this problem has largely been ne-
glected in existing work. As this experimental study demon-
strates, there is still significant room for improving the perfor-
mance of multi-processing in VC-systems, in the following as-
pects.

A. Inadequacy of Existing Optimization Strategies. At first glance,
a multi-processing task could be handled by simply applying
the respective algorithms and optimization strategies for its unit
tasks. The problem with this approach is that it overlooks the
round-congestion tradeoff, mentioned earlier. For a single task (e.g.,
computation of a single-source shortest path), little flexibility is
allowed to trade the number of rounds for message congestion
(i.e., the number of messages generated per round) or the other
way round. In contrast, multi-processing associates an intrinsic
tradeoff. Specifically, suppose we need to compute m queries,
then we have a large spectrum of round-congestion tradeoff, by
computing approximately m/x queries for x batches, where x
can be any integer from 1 to m. A larger x incurs less message
congestion, at the expense of involving more rounds (Note that
a batch may involve multiple rounds, and the number of rounds
is positively correlated with the number of batches). Therefore,
setting different x’s gives us a wide range of design choices that
either lean more towards small communication rounds or towards
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Figure 1: Rounds and message congestion tradeoff in multi-processing. The number of rounds is positively correlated with

the number of batches.

little message congestion. Three settings to achieve different
tradeoffs between rounds and message congestion for m = 4 are
shown in Figure 1.

Such a round-message tradeoff impacts the performance sig-
nificantly. Particularly, we observe that a suboptimal tradeoff
may overload the system while a suitable one leads to a highly ef-
ficient system. Unfortunately, previous studies pay little attention
to this crucial tradeoff. What can further confuse a practitioner
is that some relevant choices in existing literature give different
criteria for the tradeoff. For example, for a graph of n nodes, the
standard congested-clique model [10] proposes to constraint at
most O(log n) bits to be communicated between a pair of vertices
in a communication round, while other models (e.g., [32]) allow
O(log® n) bits-per-round communication between two vertices.
In graphs with n = 10°, log® n is about 430 times larger than
log n. Hence these different message congestion constraints im-
ply round-message tradeoffs that differ widely. To fill this gap,
we conduct a comprehensive set of experiments to evaluate the
factors that impact the optimal round-congestion tradeoffs. The
details will be given in Section 4.

B. Lack of General Optimization Strategies. Besides demonstrating
the inadequacy of existing optimization strategies, this exper-
imental study also sheds light on the potential of designing a
general strategy to determine a suitable tradeoff that works on a
variety of typical multi-processing tasks, which, to our knowl-
edge, has not been addressed in previous work. Specifically, for
the tuning framework to be general, it must not rely on specific
properties of the algorithms for the underlying tasks; instead,
the tuning should be performed based on monitoring the system
performance measurements, and the strategy should be robust
across different tasks. For example, our experimental results show
that a suitable round-congestion tradeoff depends on a number
of factors, which include the physical memory constraints of
the servers, system implementation and optimization strategies
(e.g., message mirroring in Pregel+, out-of-core mechanism in
GraphD), as well as the characteristics of batch tasks. These het-
erogeneous factors should be deeply understood to tune hyper-
parameters to optimize system performance for multi-processing
tasks.

Contributions. We have conducted a set of experiments, across
seven common VC-systems (or system modes), three represen-
tative multi-processing tasks, and three machine clusters with
various workloads. By analyzing a broad set of experiment re-
sults, we provide a number of observations and insights that
are orthogonal to the findings in existing work (e.g., [3, 22]), as
follows.

e High-parallelism Can Be Fragile. Contrary to common be-
lief, in multi-processing, fewer communication rounds may lead
to worse performance. The pursuit of a minimal round complex-
ity alone may lead to significant system latency, as this is often
at the expense of a substantial system communication cost or
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memory consumption. This observation hints towards a some-
what surprising result that “high-parallelism is not always effec-
tive”. In particular, when a heavy batch workload is assigned to
a system with a relatively small cluster, enforcing a degree of
parallel-processing (and therefore a small number of rounds) is
sometimes suboptimal.

e One Tradeoff Does Not Fit All. There is no static round-
congestion tradeoff that fits all workload settings. This applies
to all combinations of VC-systems and batch tasks that we have
tested. The determination of the best round-congestion tradeoff is
closely related to the task workloads and system configurations.
Behind the dynamics of a suitable round-congestion tradeoff
often do we see a number of important factors that play crucial
roles. These factors include the physical memory constraints of
the servers, the programming languages (e.g., JAVA or C++) of the
VC-system, the characteristics of the multi-processing tasks, as
well as the system optimization strategies used (e.g., mirroring).
Our control experiments are carefully designed to identify the
impact of each factor in the round-congestion tradeoffs.

o Asynchronous VC-systems Can Be Suboptimal. Asynchro-
nous VC-systems, such as GraphLab [21], often performs better
than its synchronous counterpart in processing a single clas-
sic task. For multi-processing, however, our experiments show
that sometimes asynchronous VC-Systems can be inferior to the
synchronous version of GraphLab.

o Learning-based Approaches Can Help Achieve a Suitable
Tradeoff. Our experimental insights remove some impediments
in tuning VC-Systems. We propose a learning-based tuning frame-
work for optimizing multi-processing on Pregel+, as a showcase
for the usefulness of the insights. Given an algorithm A for the
unit task of the multi-processing tasks, our framework involves
a light-weight training process of A, and outputs an effective
concurrency scheme which divides the unit tasks into multiple
batches for performance optimization. Our experiments show
that the output scheme significantly outperforms the baselines.

2 PRELIMINARIES

2.1 Vertex-Centric Programming Model

In the vertex-centric programming model, the n vertices of a
given graph G are partitioned across the machines, and commu-
nicate with each other via message passing. Initially, the graph G
is loaded into the main memory of the cluster of machines. A user
needs to specify a function compute(v) for vertex v. The computa-
tion is performed in synchronous rounds. In each round, a vertex
v receives the messages (if any) that are sent to it in the previ-
ous round. The operations in the compute function are typically
based on these messages to update the vertex’s local information.
The output of compute is packed as messages, respectively sent
to some other vertices specified in the function. Usually, initially
each vertex knows only the IDs of its neighbors in G. Through
communications, a vertex may learn the IDs of other vertices



in the graph. Following existing works (e.g., [15, 32]), we focus
on two efficiency measures: (1) The number of communication
rounds taken during the program execution, and (2) message con-
gestion, which is the average number of messages sent within a
round 1.

2.2 VC-systems

Pregel. The Pregel system [27] is the implementation of the afore-
mentioned vertex-centric programming model inside Google.
Pregel is built upon GFS (Google File System) [12]. Besides al-
lowing each user to define the compute function, there is also
an interface for each user to vote to halt after the execution of
the function at each vertex. If a vertex is voted to halt, its state
is changed to inactive. When all vertices become inactive, the
computation terminates.

Giraph. Apache Giraph [5] started as an open-source imple-
mentation of Pregel [27], written in JAVA and built on top of
Apache Hadoop [14]. It utilizes Hadoop’s MapReduce implemen-
tation to process graphs. It has been widely adopted in indus-
try and deployed in-production. For example, Facebook built
its Graph Search Services based on Giraph, and contributed to
the improvement of the Giraph in the following aspects [9]: (i)
fine-grained parallelism with multithreading in each worker ma-
chine; (ii) optimized memory consumption by serializing the
edges and messages; (iii) split a message-heavy superstep into
several sub-steps for message reduction. Giraph has also inte-
grated an asynchronization mode, denoted by Griaph(async), to
partially reduce the synchronization cost across communication
rounds. The modules of Griaph(async) for message-receiving
and message-processing are decoupled into separate threads to
reduce resource contention.

Pregel+. Pregel+ [34] is another open-source vertex-centric com-
putation system. One major difference between Giraph and Pregel+
is that the latter is implemented in C++ using MPL Pregel+ also
introduces a new feature called mirroring, which is designed to
reduce communication costs and eliminate skew in communi-
cation. The main idea of mirroring is to construct copies (a.k.a.
mirrors) of each high-degree vertex and store them in different
machines (called workers). Mirrors act as proxies. Particularly,
a mirror is created for each high-degree vertex v on all other
workers that contain v’s neighbor(s). The adjacency list of v is
partitioned among its mirrors, where each mirror maintains the
sub-list of v’s neighbors in its local worker. When forwarding
a message from v to its neighbors, the mirror workers (i.e., the
workers that contain the mirrors) act as ’s proxies such that
v first forwards the messages to its mirror workers, who then
forward the messages to its neighbors. Since the mirroring mech-
anism can have significant impact on system performance, in
our experiments, we evaluate both the system with mirroring,
referred to as Pregel+(mirror) and without mirroring, referred
to as Pregel+.

GraphD. GraphD [36] is designed for out-of-core execution (i.e.,
when the server does not have sufficient main memory to store
the local graph or message buffers), implemented in C++. GraphD
adopts a distributed semi-streaming model. In each machine,
the main memory holds a portion of the vertex states, whereas
the disk is ready to receive the stream of edges and messages.
GraphD also uses multithreading to perform parallel computation
regarding the message generation and transmission.

! A message contains a constant number of integers.
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GraphLab. GraphLab [21] is a representative system that can be
tuned to have synchronous or asynchronous program execution.
We use GraphLab to refer to the default synchronous mode and
GraphLab(async) for the asynchronous mode. In asynchronous
systems, the vertex execution can happen whenever its input
resources are ready. GraphLab(async) introduces a graph-based
data model to capture both data and computational dependencies.
The dependencies determine the execution order of the vertex
execution. The design of GraphLab has inspired other system
designs such as [8].

In our experiments we test seven representative VC-system
settings, namely, Giraph, Giraph(async), Pregel+, Pregel+(mirror),
GraphD, GraphLab and GraphLab(async). As our purpose is to
discover multi-processing oriented principles and optimization
strategies, we select systems implemented in different program-
ming languages (e.g., Giraph vs. Pregel+), with different optimiza-
tion strategies on mirroring (e.g., Pregel+ vs. Pregel+(mirror)),
out-of-core execution (Pregel+ vs. GraphD), synchronization
mechanisms (GraphLab vs. GraphLab(async)). Finally, there are
also a few earlier VC-Systems, such as GPS [31]. As their pro-
gramming models are similar to Giraph and Pregel+, we omit
experiments on these systems.

2.3 Benchmark Tasks

A multi-processing job is defined on top of a unit task. Specifi-
cally, a multi-processing job composes multiple unit tasks which
are processed concurrently and independently. The unit task can
be any query required by the application, for example, a single-
source shortest path distance query. We consider three com-
mon unit tasks as benchmarks: personalized PageRank, single-
source shortest paths, and k-hop search. Their respective multi-
processing versions are described in the following, which we
treat as benchmark multi-processing tasks.

Batch Personalized PageRank (BPPR). Given a graph G, the
Personalized PageRank (PPR) with respect to a node s is a classic
measure that measures the closeness of other nodes from s. It
is personalized as it is with respect to a query node. The Batch
Personalized PageRanks (BPPR) computes PPR(s) for each node
s € V, where V is the node set of G. Here, batch indicates multiple
PPR queries are processed together. Computing PPRs for any two
nodes are independent of each other, and each PPR is approxi-
mated by running a-decay random walks: with a probability «,
the random walk stops at the current node, and with the remain-
ing 1 — a probability, the random walk jumps to a neighbor of
the current node uniformly at random. The workload of BPPR is
represented by the number W of random walks that are required
to be conducted for each node v € V. In practice, a larger W leads
to a more accurate PPR approximation. The space complexity of
computing BPPR can achieve O(n?) instead of O(n), where n is
the number of graph vertices. Batch PPR has been used in several
important applications including Pinterest’s related Pins [20],
Twitters’ who-to-follow service [13] and Tencent’s user ranking
service [24].

Multiple Source Shortest Path Distance Queries (MSSP).
MSSP is a classic task in graph processing problems [6, 7, 16],
and has found applications in route planning and graph diameter
estimation. Given a graph G, the single-source shortest path
distance query (SSSP) computes for each node the shortest path
distances from a given node s to the other nodes. MSSP is a batch
version of SSSP, such that given a node set S, MSSP computes for



each node s € S the SSSP from s. The workload of the MSSP is
represented by the size of S.

Batch k-Hop Search (BKHS). Given a graph G, a set of source
nodes S and a constant k, the batch k-Hop Search (BKHS) task
computes for each node s € S, the set of nodes that are within
k-hops of s in G. The BKHS is widely applied in link analysis. For
example, the works [37, 38] analyze the link information in the
graph, and search two-hop neighbors within the ego-network
as the friend-recommendation candidates. The workload of the
BKHS is represented by the size of S.

2.4 Related Strategies

In this section we review existing strategies for round-congestion
tradeoffs, which include BPPA, and Congest. This section dis-
cusses why the existing strategies confining message bandwidth
in VC-systems may not be suitable for multi-processing.

BPPA. Yan et al. [35] propose conditions for defining a balanced
practical Pregel algorithm (BPPA): (i) linear space usage: each ver-
tex v uses O(d(v)) space, where d(v) is the degree of node v; (ii)
linear computation cost: the time complexity of the vertex func-
tion is linear to its vertex degree; (iii) linear communication cost:
at each round there are at most O(d(v)) messages received/sent
for each vertex; (iv) at most logarithmic rounds: at most O(log n)
rounds are allowed to finish the computation, where n is the
number of vertices in the input graph. Further, Yan et al. define
the Practical Pregel Algorithm (PPA) as a relaxation of BPPA, by
considering the average-per-vertex cost instead of every-vertex
cost. That is, PPA requires that on average each vertex v uses
O(d(v)) space, costs O(d(v)) in its local computation, as well as
sends/receives O(d(v)) messages. While the authors have shown
that it is possible to design PPAs for tasks such as computing List
Ranking and Connected Component, we find that chances are
lower to successfully design a PPA for a typical multi-processing
task. Consider a multi-processing task for a graph of n nodes that
requires every vertex to run log n a-decay random walks, which
is the key module to compute the batch Personalized PageRanks.
If for each vertex we compute random walks one after another,
we will need O(L - log n) rounds, where L is the maximum walk
length and logn is the number of random walks. Particularly,
in a PPA algorithm, each pair of nodes can only exchange O(1)
message per-round, which means each round can only handle
one random walk step of O(1) random walks. A walk of length-L
needs L rounds. We assume that there are log(n) walks starting
at each node and in total there are O(L log(n)) rounds. It can be
shown that with probability at least 1-1/n, the maximum walk
length is O(log% n) = O(log n), considering that « is a constant.
In total, this leads to O(log2 n) rounds, violating the condition
of logarithmic rounds. On the other hand, if we run log n walks
from each vertex concurrently, each node v would have to send
Q(logn - d(v)) messages even in the first round, violating the
condition of linear communication cost.

Congest. A number of theory papers [11, 17, 18, 29] assume
that each pair of vertices are allowed to communicate at most
O(logn) bits. With this constraint, they aim to minimize the
number of computation rounds. While these O(log n)-bit con-
straint is well known in theoretical computer science, it remains
open to examine the effectiveness of these models for processing
batch tasks in modern vertex-centric systems. Also, we note that
the tasks considered in these papers are not multi-processing
tasks. For example, they focus on the tasks such as computing
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the Maximum Independent Set [11, 17], Sorting [18] and Graph
Coloring [29].

3 IMPLEMENTATIONS

The vertex-centric algorithms we implemented in the VC-systems
fall into two categories: the Pregel-based and the mirror-mechanism-
based. In particular, Giraph, GraphD and the basic Pregel+ sys-
tems follow the Pregel-based algorithm, while the Pregel+(mirror)
system follows the mirror-mechanism-based algorithm.

Pregel (BPPR). We employ the standard Monto-Carlo method
for computing Personalized PageRank. We initialize W a-decay
random walks and after all walks terminate, we estimate the
PPR for each node u as the portion of the random walks that
stop at u. The implementation of this algorithm on the Pregel+
system is described as follows. Suppose each node is required to
generate W a-decay random walks. The computation is done by
simulating the W a-decay random walks. In the implementation,
each round corresponds to one random walk step. In the first
round, each of the W walks stops with « probability and with
the remaining 1 — a probability randomly selects a neighbor. A
message, which contains the source node ID of the walk, is sent
to that selected neighbor. For the subsequent rounds, each node
at the beginning receives the source IDs of some walks and the
process repeats. The process ends if every walk stops. Hence, a
larger W indicates more walks passing through a vertex, and vise
versa.

Pregel-Mirror (BPPR). The implementation of the BPPR in the
Pregel(mirror) system is substantially different from that on the
basic Pregel+, because Pregel(mirror) only supports the broadcast
interface. That is, whenever node v wants to send a message to
a neighboring node u, it has to also send this message to any
other neighbors. Under this mechanism, the implementation of
a random walk step has to send out more messages than neces-
sary. For example, consider a walk step from v; to vy, using the
broadcast interface, v1 has to send to all its neighbors a common
message, which is supposed to be sent only to v2. Also, the mes-
sage may need to contain the receiver ID so that every receiver
of the message can properly handle the message. To reduce the
message size, we employ a generalized random walk which is
similar to the forward push operation employed in [4]. Particu-
larly, when we disseminate 7 walks from node vy, each of v1’s
neighbors receives a common message, which indicates that the
number of random walks received at that particular neighbor is
%. This operation can be interpreted as that the random
walk is fractionalized according to the number of neighbors and
each walk fraction “jumps” to neighboring nodes. This opera-
tion over all nodes can be implemented in one round. Since this
generalization does not change the expected portion of random
walks that stop at a node, the estimation is still unbiased. It also
suits the broadcast interface better.

Pregel (MSSP). Computing multi-source shortest path distance
queries requires maintaining the shortest distances between node
s from the source set S and any other nodes. We let (u, v, d) denote
a message which indicates the existence of a length-d path from
source u to target . In the first round, for each source node s € S
and each neighbor v of s, s sends a message (s,v,d(s,v)) to v. In
each of the subsequent rounds, the messages received by node v
are aggregated such that if there are multiple messages that have
the same source and target, only the message with the smallest
length is retained. As such, the shortest path is always recorded.



For each retained message (u, v,d) and each neighbor w of v, a
message (u, w,d + d(v, w)) is sent from v to w, which indicates
that there is a path of length d(v, w) from u to w. The process
ends if in one round no shorter paths are found compared with
its last round of computation.

Pregel-Mirror (MSSP). The MSSP algorithm for basic Pregel+
can be slightly modified to work for the broadcast model. In
particular, the message (u, v, d) sent from u to each of its neigh-
bor v, can be broadcast with a message (u, d). This suffices to
implement the MSSP in Pregel+ with mirror mechanism.

Pregel (BKHS) and Pregel-Mirror (BKHS). The implemen-
tations of BKHS are similar to those of MSSP except for the
termination condition. In BKHS, the program stops after k + 1
communication rounds.

4 EVALUATING MULTI-PROCESSING

We evaluate how various factors affect the optimal round-congestio
tradeoff for multi-processing. These factors include the physical
memory cost, disk utilization 2 workload distinctions, graph data,
number of machines, memory size, as well as the implementation,
which can be categorized into three types:

o Workload characteristics that describe the inputs into the
VC-system such as the workload and graph data.

o Runtime system parameters that vary during task execution.
Examples include memory cost and disk utilization, which can
change continuously when the VC-system is running.

o Static system parameters, which include the number of ma-
chines, memory capacity per machine, and implementation. The
purpose of our experiments is to evaluate the relationship among
these three categories of factors and how they eventually affect
the optimal tradeoff.

Experiment Setup. Our evaluation is done on 1) seven represen-

n

tative VC-systems: Giraph, Giraph(async), Pregel+, Pregel+(mirror),

GraphD, GraphLab and GraphLab(async); 2) three benchmark
tasks: BPPR, MSSP and BKHS; 3) six widely used public graph
datasets, and 4) three clusters. A summary is given in Table 1.
Among the datasets, Web-St is a web graph published by Stan-
ford. DBLP is a co-author network published by DBLP. All the
other data are social graphs generated by different social network
services. These datasets are widely used to benchmark the perfor-
mance of graph algorithms and systems [19, 23, 24, 33]. All the
datasets can be downloaded from SNAP [1]. The three clusters
include an 8-machine local cluster (referred to as Galaxy-8), a
27-machine local cluster (referred to as Galaxy-27) and a 32-node
cloud-based cluster (referred to as Docker-32), where all nodes
are initialized with the same Docker image. Specifically, Galaxy-8
consists of 8 Linux machines, each with 16GB memory, 8 Intel(R)
Core(TM) i7-3770 CPUs @ 3.40GHz, and HDD disks. Galaxy-27
has the same setting with Galaxy-8, except that it connects 27
machines. Docker-32 consists of 32 Linux nodes, each with 16GB
memory and 15 virtual cores of Intel(R) Xeon(R) CPU E5-2637 v2
@ 3.50GHz, and SSD disks. We follow the default settings of each
VC-system regarding graph partitioning, which has been done
internally by each system. For example, GraphLab partitions the
graphs by edges and the cut along vertices. Pregel+ uses random
hash on vertices to partition the graphs.

2The percentage of the time the hard disk drive is performing at least one operation.
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Table 1: Experiment Settings (K=10%, M=10°, B=10°)
Name #Nodes | #Edges davg Source
‘Web-St 281.9K 2.3M 8.2 stanford.edu
2 DBLP 613.6K | 4.0M 65 dblp.com
E LiveJournal 4.0M 34.7M 8.7 livejournal.com
é" Orkut 3.1M 117.2M 36.9 orkut.com
Twitter 41.7M 1.5B 35.2 twitter.com
Friendster 65.6M 1.8B 46.1 snap.stanford.edu
2 Name # Machines Memory Type
% Galaxy-8 8 16GBX8 local
= Galaxy-27 27 16GBx27 local
O Docker-32 32 16GBx32 cloud
Name Synchronous Out-of-core
E Giraph yes no
o) Giraph(async artial no
Z Prr)eg(elz ) 5 yes no
@ T
KN Pregel+(mirror) yes no
> GraphD yes yes
GraphLab yes no
GraphLab(async) no no

Workloads and Evaluation Metrics. The workload for each
task has its own definition due to the distinctions of task proper-
ties. The workload for BPPR is defined as the number of random
walks starting at each node. In contrast, the workload for MSSP
or BKHS is the number of source nodes involved. To explore the
round-congestion tradeoff, the workload is divided into batches,
which are fed into the system sequentially with the workload
within the same batch concurrently processed. We name the
batching mechanism k-batch if the workload is divided into k
equal batches. In particular, the 1-batch mechanism is referred
to as Full-Parallelism as it requires all unit tasks to be processed
concurrently. We also evaluate the performance of processing
the workload divided into unequal batches. We report the run-
ning times of the multi-processing tasks. We mark a result as
overload when the task cannot be finished within 6000 seconds.
To avoid dense bars in a figure, we employ the doubling numbers,
ie., {1,2,4,8, 16}, for the numbers of batches. For all our results,
such settings are able to clearly plot the trends and narrow down
to small ranges where the exact optimal batch locates. In the fol-
lowing discussions, we refer to the optimal batch as the optimum
among the doubling batches (We include more results for batch
settings with finer granularity in our additional materials [25]).

4.1 Full-Parallelism Can be Suboptimal

Contrary to the common belief, our experiments show that opti-
mizing towards the smallest number of rounds (and hence Full-
Parallelism) does not necessarily lead to the best performance.
Figure 2 shows the execution times of running BPPR on the DBLP
dataset with Galaxy-8 under various batches/workload/algorithms.
We see that, for example, a system using Full-Parallelism typically
runs significantly slower than those based on other settings. This
contradicts a general intuition that fewer communication rounds
lead to higher performance for a VC-system. We emphasize that
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B (Workload,#Machines,System)=(6144,8,GraphD)
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Figure 2: Full- Parallehsm may “be sub- optlmal (DBLP,
Galaxy-8)
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this phenomenon is not unique as it is commonly observed re-
gardless of the use of out-of-core design (i.e., both Pregel+ and
GraphD, as shown in Figure 2), mirroring mechanism (i.e., both
Pregel+ and Pregel+(mirror), as shown in Figure 2), cluster sizes
(e.g., using different numbers of machines, as shown in Figure 3
(c), Figure 5 (c) and Figure 7 (c)), different implementation (e.g., Gi-
raph, Pregel+, and GraphD, as shown in Figure 3 (d) and Figure 5
(d)), different benchmark tasks (e.g., BPPR, MSSP and BKHS, as
shown in Figure 3 (a), Figure 5 (a) and Figure 7 (a)), different syn-
chronization mechanisms (e.g., Figure 3 (d)), or different datasets
(e.g., Web-St and DBLP as shown in Figure 3 (b) and Figure 5 (b)).

To our knowledge, the phenomenon mentioned above has not
been brought to light before. Meanwhile, it has a crucial impact
on VC-system optimization. For example, there exist cases that
the system is overloaded when Full-Parallelism is applied (as
shown in Figure 3 (c) 1-batch). In the following experiments, we
aim to identify reasons for the phenomenon. By revealing the
factors that impact the optimal round-congestion tradeoff, we
provide new insights for system optimization.

4.2 Workload vs. Optimal Batches

Figure 4 shows the results of running BPPR on DBLP with Pregel+
deployed on Galaxy-8. The results show that a larger workload
often favors more batches. In particular, with workload 1024
(random walks per node), Full-Parallelism achieves the best per-
formance. In contrast, a workload of 12288 (random walks per
node) favors the 4-batch setting, and a workload in-between
(i.e., 10240) reaches its best performance with the 2-batch setting.
Hence, these results suggest that a higher amount of workload
tends to require more batches to reach the optimal performance.
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To further investigate the results, Figure 6 shows the detailed
statistics for Figure 4, i.e., the number of per-round messages
sent with various workloads and batching settings. With light
workload (e.g., 1024), the number of messages delivered per round
is relatively small (63.7M for 1-batch). This number becomes
roughly ten times larger (633.2M) if the workload increases by ten
times (10240). However, the running time goes up super-linearly
from 173.3s to 6641.5s, meaning a certain congestion threshold is
met while increasing the workload. Once this happens, the cost
due to the heavy congestion starts to dominate the overall cost.
As an evidence, we observe that when we divide the workload
into two batches, an increase of workload from 1024 to 10240
will roughly increase ten times both message congestion and
running time. Hence, when we divide the workload into two
batches, the congestion per-round is then reduced, and the system
is protected from hitting the congestion threshold. To further
verify our idea, we increase the workload 12 times from 1024 to
12288. We observe that the running time for 2-batches rises more
than 12 times (from 178.3s to 2826.6s), indicating that dividing the
workload into two batches cannot prevent hitting the threshold
at this high workload, and the number of batches needs to be
even higher for an optimal setting.

4.3 Memory vs. Optimal Batches

The relationship between workload and optimal batching scheme
is built under the constraint on the memory cost. Particularly,
a VC-system can be memory-bound, i.e., the optimal number of
batches is determined by the run-time memory consumption.

For example, Figure 3 (c) shows the results of performing BPPR
on relatively small number of machines (i.e., 2, 4, 8). The green
bar indicates that Full-Parallelism overloads the system by the
excessive messages transmitted between machines. The reason
is that excessive messages cause the memory consumption to
exceed the machine’s physical memory capacity, thereby either
triggering the virtual memory mechanism which leads to high
latency, or causing a system failure due to overload. We refer to
the state when the system uses up the memory as the memory-
bound state. A similar conclusion can be drawn for a larger cluster
(i.e., 27 machines), as shown in Figure 5 (c).

General Tradeoffs. We then consider how to tune the number
of batches for a desirable memory cost so as to optimize the sys-
tem performance. Table 2 shows the results of the memory cost
and computation cost by varying workloads, number of batches
and machines. With more machines/less workloads, the average
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Table 2: (workload, #batches, costs per machine)

Workload | Batches Memor?'/Time/Network Ove.ruse Time
4 machines 8 machines
1 4.3GB/6.3min/2.2min| 2.1GB/3.4min/1.2min
1024 2 3.6GB/6.7min/2.2min | 1.8GB/3.6min/0.9min
4 3.0GB/7.4min/1.8min| 1.6GB/3.9min/0.6min
1 15.0GB/30min/9min | 7.6GB/13min/5min
4096 2 12.1GB/24min/9min | 5.8GB/13min/5min
4 9.6GB/25min/9min | 4.7GB/14min/5min
1 Overflow/Overload/— 15.1GB/Overload/—
12288 2 Overflow/Overload/— 15.1GB/51min/15min
4 15.1GB/Overload/— | 12.4GB/39min/15min

memory used in each machine decreases. In the meantime, using
more batches reduces the memory cost. For example, when we in-
crease the workload from 1024 to 12288 (i.e., 12 times larger), the
average memory consumption increases from 3.0GB to 15.1GB
(for 4 machines, 4 batches). Also, for a particular workload 4096,
the average memory consumption drops from 15.0GB to 9.6GB
when we increase the number of batches from 1 to 4. Interestingly,
the optimal batch setting happens when the amount of memory
used per machine is close to the machine’ usable memory capacity
(= 14GB). The remaining memory has to be allocated for boot-
strapping the operating system and necessary applications. For
example, for workload 4096 with 4 machines, using 15.0GB mem-
ory (i.e., with 1-batch) exceeds the usable memory capacity and
9.6GB memory (i.e., with 4-batch) is much smaller than the usable
memory. Hence, the performance of 1-batch and 4-batch settings
are not as good as 2-batch, which uses about 12.1GB memory. In
addition, we also evaluated the network overuse time, which is
the duration of the time when the maximum network bandwidth
is met. Our results show that the variation of the average overuse
time is insignificant compared with the changes of the overall
running time. With more batches, the network overuse time
sometimes decreases while the overall time increases. This hints
that the memory consumption is a more important factor than
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network overuse, regarding the performance of multi-processing
in memory-bound systems. To conclude, our observations imply
the following optimization strategy with respect to the memory
constraint.

Optimization strategy (memory-bound). We aim at
the minimum number of batches that does not let a ma-
chine use up its usable physical memory.

4.4 Disk Utilization vs. Optimal Batches

The out-of-core VC-systems are not subject to the memory con-
straints as they can explicitly control the maximum memory
being used. However, they can be disk-bound. The disk utiliza-
tion, i.e., the percentage of CPU time when the disk is performing
I/O operations, measures how busy the disks are while data are
streaming to the disks. A VC-system may require a large number
of I/Os and thus the disk utilization becomes a major concern
in choosing the optimal number of batches. If the disk band-
width is close to fully occupied (i.e., close to 100% utilization),
the messages will be streamed to the disk queue until more disk
resources are available, causing significant delays. The GraphD

Table 3: #Batches v.s. Disk Utilization v.s. Network (27 Ma-
chines with Workload 2048 in GraphD)

Overuse Time Max Disk | I/O Queue | Total
#Batches re . X

Network | I/O | Utilization Length Time
1 94s 176s > 100% 20256 285s
2 98s 38s > 100% 3981 236s
4(OPT) 84s 0s 27% 19 201s
8 668 0s 27% 20 220s
16 44s 0s 24% 24 260s
32 8s 0s 27% 30 337s
64 8s Os 27% 39 429s
128 6s 0s 26% 61 632s
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Figure 7: Performance and monetary costs in the cloud (Docker-32). The default dataset, task and system are DBLP, BPPR

and Pregel+ unless otherwise specified.

system, for example, writes excessive messages whose total size
is greater than a predefined memory budget, thereby gaining the
benefit when the messages cannot be entirely stored in memory.
A side-effect of this mechanism is that the disk I/Os become the
performance bottleneck, and the system runs into a disk-bound
state if the disks are fully used. Given a particular workload, the
number of per-round disk I/Os increases when fewer batches
(i.e., fewer rounds) are considered. Along the round-congestion
tradeoff, there is a state where the disk utilization is 100%. Our
experiments show that further optimizing the communication
rounds after running into the disk-bound state will significantly
worsen the system performance. To illustrate, Table 3 shows disk
utilization statistics under various numbers of batches for a work-
load of 2048. The overuse time (I/O) is the duration when the disk
utilization is 100% and the I/O queue length describes the average
number of messages waiting to be streamed to the disk. Our first
observation is that when only a small number of batches are used,
the disk utilization can be up to 100%. For example, both 1-batch
and 2-batch result in 100% disk utilization. When we increase the
number of batches, the disk utilization starts to drop and then
stays relatively stable. For example, the disk utilization first drops
to 27% for 4-batch and then remains stable even if we further
increase the number of batches to 128. One crucial observation is
that the total cost can be significantly reduced if the disk utiliza-
tion drops from 100% to some value below 100%, implying that
disk utilization equaling 100% is an indicator when we should
stop further optimizing the communication rounds. Also, if we
further increase the number of batches, the running time can
increase because of the round-synchronization overheads. We
also tested the overuse time (network), the duration when the
maximum network bandwidth is met. With the increase of the
batches, the overuse time drops because less messages per-batch
are generated and sent among machines. While this can par-
tially impact the performance, we conjecture that the dominating
factor owes to the disk bottleneck. To explain, when switching
from 1-batch to 4-batch, the network overuse duration remains
relatively stable, while the I/O overuse duration significantly
drops from 176s to 0s. The combination effect ultimately makes
4-batch the optimal setting. In a nutshell, we have the following
optimization suggestions for disk-bound systems.
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Optimization strategy (disk-bound). For out-of-core
VC-systems, we minimize the number of batches until
per-batch parallelization incurs %100 disk utilization.

4.5 Large Graphs on Docker-32 and Galaxy-27

Our next set of experiments focuses on evaluating the billion-
edge Twitter graph on Docker-32 and Galaxy-27. Figure 8 reports
the running times for the various tasks (BPPR, MSSP, BKHS)
and workloads on Twitter in Docker-32. We observe that Full-
Parallelism is optimal for BPPR when processing a relatively small
workload. This is because even when we set a small workload, the
number of messages generated is still large as it is proportional
to the number of graph nodes. A further investigation on the un-
derlying statistics reveals the impact of the residual memory cost,
i.e., the memory cost to hold the intermediate results computed
by the previous batches. Such residual memory cost significantly
impacts the optimal batches especially when the graph is large.
For example, conducting BPPR on the Twitter graph incurs a
large residual memory cost due to the huge intermediate results
whose size is proportional to the number of nodes and per-batch
workload. At the beginning of the h-th batch (for h > 2), the
highest memory cost is the residual memory cost from the previ-
ous batch plus the memory used for holding the messages at the
current round. Such a high memory cost overloads the system.
Using only one round (i.e., Full-Parallelism), interestingly, can
avoid the high cost because the peaks of residual memory and
memory holding the messages happen at different times (the
maximum residual memory is generated at the end of a round,
and the maximum memory cost for sending messages is at the
beginning of a round). Similar behavior is observed in Galaxy-27
(see Figure 5 (c)).

Note that if the residual memory is small compared with the
memory cost by messages, then our previous discussion still
applies. For example, when performing MSSP in the Twitter
dataset, the memory cost for intermediate results can be small
since it is mostly affected by the workload (i.e., the number of
source nodes). In this case, we again observe that Full-Parallelism
can be suboptimal, as shown in Figure 8 (the middle bars).
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4.6 Reducing Monetary Cost in the Cloud

We demonstrate that such a batch scheme optimization gives
significant economic benefits in the cloud. In the Docker cloud,
the monetary cost is positively correlated to the running time.
The cost per-unit-time is determined by collectively considering
the disk cost, memory cost, and CPU cost. We report the monetary
cost in Figure 7, where the cost below each setting in the x-axis
sums up the credit-costs corresponding to each experiment based
on that setting. In the caption of the figure, we also show the
optimum cost, which is the best possible total cost if we can
optimize each workload setting individually. When the system
is overloaded, we set a monetary cost with respect to the cut-
off running time (i.e., 6000 seconds). As this is a lower bound,
and in practice the cost would be significantly higher than that,
their costs would be marked starting with ‘>’. The results show
that an ill-setting can waste a lot of resources (longer running
time) while incurring much higher monetary cost. For example,
in Figure 7 (b), 1-batch setting or 16-batch setting would incur
unpredictable cost, which is significantly larger than 150 credits,
where the optimal credit cost is only 94. This shows evidence
that optimizing the batch scheme immediately implies a cloud
budget optimization.

4.7 Unequal Batches Can Be Beneficial

Previously, we assumed equal batches for an easier exploration of
the general round-congestion tradeoff under the complex system
environment. Here we further investigate the impact of unequal
batches on the system performance. We test the BPPR task on
Galaxy-8 and Galaxy-27, and divide a fixed workload W into
two batches W; and Ws, with varying Wi — W5. For the round-
congestion tradeoff to be effective, the total workloads (W; +
W) are set to be 12800 and 40960 for Galaxy-8 and Galaxy-27,
respectively. The results are shown in Figure 9, where the left
and right figures are for Galaxy-8 and Galaxy-27, respectively.
In each figure, two bars are grouped together where the left bar
reports the total running time for each setting, and the right bar
stacks the running times of executing workload W; and workload
W, separately.

As shown in Figure 9 (a), with the increase of the A(= W; —W,)
from —10240 to 10240, the overall performance (left bar in each
group) achieves the optimum around A = 2560. A higher cost is
incurred with a larger |A| value. This is because a heavier batch
leads to a higher cost, as evidenced by the trends indicated in the
right bars in each figure.

One interesting observation is that the overall running time
can be much more significant than the accumulated running
time of executing W; and W, alone. This also leads to an obser-
vation that the optimal performance happens when W; > W,
instead of Wi = Ws. For example, in Figure 9 (a) left bar, setting
A = 2560 gives the best overall performance. The reason is that
combining the two batches into a single task requires to store
the intermediate random walk results of the first batch for later
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use, whereas treating them separately means no intermediate
results between them. The additional memory cost to store the
intermediate results, called residual memory, indicates that less
idle memory is available for the second batch. Therefore, giving
a higher workload in the first batch balances the memory con-
sumption in two batches, leading to a better performance than
equally dividing the workload.

4.8 Asynchronous VC-systems Can Be Worse

One trend in improving VC-systems is to incorporate asynchro-
nous communication protocols among machines to replace the
synchronization barrier at the end of each communication round.
VC-systems with such asynchronous protocols are called asyn-
chronous VC-systems. One representative system is GraphLab,
which can be tuned to be asynchronous or synchronous. We
denote the two modes by GraphLab(sync) and GraphLab(async),
respectively. Being asynchronous, GraphLab(async) can have
its vertex function executed immediately as long as some input
resources are ready.

While it is widely acknowledged that GraphLab(async) is bet-
ter than or comparable to GraphLab(sync) in handling many
classic tasks such as PageRank computation, we find that the
opposite sometimes can be true for multi-processing. Our results
with various machine and workload settings are shown in Ta-
ble 4, where we compare GraphLab(sync) and GraphLab(async)
on a classic task (i.e., PageRank) and a multi-processing task
(i.e., BPPR) for the DBLP dataset. PageRank is a global metric of
node importance, and its computation workload is similar to a
Personalized PageRank query that takes a single source as input.
Hence, PageRank computation is in general lighter than BPPR.
For the PageRank computation, GraphLab(async) is better than
GraphLab(sync), and the benefit gains with the number of ma-
chines. This is because the synchronization cost increases with
the number of machines, but the cost is largely eliminated in
GraphLab(async). However, such a benefit has not been observed
for BPPR. For example, in a 16-machine cluster, GraphLab(async)
is about 2.5 (~ 9.6/3.9) times better than GraphLab(sync) in com-
puting PageRank, whereas GraphLab(async) is 2.8 (~ 245/88)
times worse in computing BPPR with a workload of 512.

There could be several reasons for the contrasting behavior
in computing PageRank and BPPR. First, in processing BPPR the
synchronization overhead becomes relatively minor compared
with the network cost. For example, processing BPPR incurs mes-
sages up to 6.4GB as shown in Table 4. This is partly because
the network overhead incurred is significantly higher when the
workload is heavier. We further observe that GraphLab(async)
can incur more messages than GraphLab(sync) in a high-load
situation. To explain, at each round, PageRank simply requires
every vertex to distribute some portion of the PageRank value to
its neighbors. BPPR, in contrast, requires each vertex to extend
random walks whose number is proportional to the workload
setting. As a result, the performance for BPPR is dominated by
the workload-related cost. Hence, the benefit of removing syn-
chronization barrier diminishes in a high-load situation, possibly
leading to inferior performance of the asynchronous VC-system.
Furthermore, GraphLab(sync) has the advantage of combining
and reducing the sizes of multiple messages. When random walks
with the same source need to move to the same neighbor, they
are combined into one message by editing the number of walks
within the message. This explains the relatively smaller message
size and lower cost of GraphLab(sync) in a high-load situation.
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Table 4: Asynchronous GraphLab v.s. Synchronous VC-Systmes (seconds/bytes-per-machine).
Machine PageRank Batch Personalized PageRank GraphLab (Workload)
GraphLab(sync)  GraphLab(async) | sync(8)  async(8) | sync(32) async(32) | sync(128) async(128) | sync (512) async(512)
1 12.9s/33M 9.1s/33M 33s/41M  35s/41M | 86s/41M  91s/41M | 277s/41IM  283s/41M | 974s/0.7G  994s/41M
2 11.6s/151M 7.7s/32M 33s/0.4G  33s/0.7G | 62s/0.8G  70s/1.7G 148s/1.7G  179s/2.4G | 457s/3.8G  581s/5.3G
4 10.5s/125M 5.6s/28M 32s/0.4G  24s/0.6G | 49s/0.7G  46s/1.4G 91s/1.3G 114s/1.9G | 242s/2.8G  339s/4.3G
8 10.3s/97M 4.0s/22M 275/0.3G  19s/0.5G | 40s/0.5G  33s/1.0G 64s/0.8G 77s/1.4G 140s/1.7G  241s/3.4G
16 9.65/62M 3.9s/22M 28s/0.2G  25s/0.7G | 34s/0.3G  33s/1.3G 455/0.5G 54s/1.1G 88s/1.0G 2455/6.4G

Another reason is about locking. GraphLab(async) maintains
a large thread pool, where each thread will apply the Gather-
Apply-Scatter (GAS) computing model to an assigned vertex. In
GraphLab(sync), they are called fibers (by default 1,000 fibers
per machine), and a distributed lock is applied to ensure that no
two neighbor vertexes are triggered at the same time. Compared
to PageRank, the active period for each vertex lasts longer for
BPPR, especially when the workload is high. The distributed
locking mechanism results in higher overhead when the number
of machines increases, which further explains that for BPPR the
benefit of GraphLab(sync) is more significant compared with
GraphLab(async) when the number of machines increases from
2 to 16 (i.e. the number of fibers increases from 2, 000 to 16, 000).

4.9 Further Discussions

While this paper uses VC-systems with default settings, it should
not hinder a further exploration of other possible settings. We
discuss several possible alternative settings.

Alternative Graph Partitioning. The default setting of graph
partition in a VC-system is to partition the nodes/edges into
different machines, leading to communication among machines.
We can also set up a whole graph access mode, by deploying a
VC-system respectively in each machine. As such, the whole
graph can be accessed within each machine while the workload
is partitioned equally across machines. For BPPR, each machine
outputs the estimated BPPR results based on a subset of ran-
dom walks. These values have to be aggregated to generate the
final estimated BPPR results that correspond to the whole set
of random walks. The whole graph access mode largely avoids
communication among machines. The downside is that the graph
occupies more memory in each machine than the default setting,
making the machine easier to use up its main memory. Figure 10
shows the comparison of such setting using the same experimen-
tal environment as Figure 5 (c). Each bar is divided into two parts,
where the upper part indicates the cost of the final aggregation.
It shows that the whole graph access mode more easily overloads
the machine if the workload is not properly divided. For example,
with 1-batch and 2-batch settings, the performance of the system
for a higher workload (e.g., 34560) is still unsatisfactory. The
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performance can be significantly improved when 4-batch scheme
is applied. It even beats the performance with the default setting.
Hence, a satisfactory performance can be achieved with a proper
batch setting.

6000 (Workload, #Machines,System)

B (10240,8,Pregel+) M (20480,16,Pregel+) £ (34560,27,Pregel+)

5000 N B®algorithm Jaggregation

il

#batches

4000

3000

time (s)

2000

1000

Figure 10: Graph is replicated to each machine, on which
Pregel+ is built. Same setting as Figure 5 (c).

Alternative System Settings. The scale-out solution (using dis-
tributed computation) and scale-up solution (using one strong
machine) are two possible ways to scale the computing. There
are suitable application scenarios for both solutions [30]. For ex-
ample, Salihoglu et al. [30] highlight that complex graph compu-
tations usually require the scale-out solution. In our study, multi-
processing (e.g, BPPR) entails such high computation complexity
due to the concurrency of many unit-tasks (e.g., PPR queries). In
distributed graph processing, VC-Systems stand out and the ones
we evaluated in the paper are the representatives. Meanwhile,
there is increasing availability of strong machines which can
provide shared memory and allow better cache optimizations,
though a strong machine is usually expensive. Hence, it can be
up to each user to determine whether to go for a scale-up or
scale-out solution depending on their budgets and existing facili-
ties. As future work, whether multi-processing can be efficiently
handled with a scale-up solution is worth further exploration.

Alternative Workload Settings. It is also natural to set the unit
task for BPPR as a PPR query and the workload as the number
of queries. In other words, a batch contains a subset of source
nodes for PPR queries. Due to space limitations, we put some
relevant experimental results in our additional materials [25].
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Figure 11: Correlations of different factors in a typical
synchronous VC-system.

4.10 Summary

Traditional synchronous VC-systems could have larger room for
optimizing multi-processing compared with asynchronous VC-
systems. How to optimize the synchronous VC-systems is sum-
marized in Figure 11. In general, the system state (i.e., memory-
bound/disk-bound) is holistically affected by many factors. The
memory-bound/disk-bound state is determined by run-time sys-
tem parameters (e.g., disk utilization, memory cost) that depend
on the message congestion in VC-systems, which are further
influenced by the static system parameters (e.g., number of ma-
chines) and workloads. Other static system parameters, such
as disk sizes or memory sizes, affect the system states such that
more disk/memory resources keep away the disk-bound/memory-
bound state. This holistic system view draws to the main design
intuition as follows.

One Design Does Not Fit All. Figure 11 summarizes how a
number of factors influence the optimal round-congestion trade-
off in a typical synchronous VC-system. We divide the cases into
out-of-core systems (e.g., GraphD) and non-out-of-core systems
(e.g., Pregel+). The former is illustrated in the left part of the
figure: Following the black arrow, a workload increase brings
in heavier message congestion, thereby leading to higher disk
utilization and ultimately running the system into a disk-bound
state. Similarly, the right part of the figure describes the case
for non-out-of-core systems: An increase of the workload will
eventually lead to a memory-bound state. As such, all the factors
collectively determine the optimal batching strategy, resulting in
an optimal round-congestion tradeoff. The optimal batch strat-
egy depends on the given workload and the system settings such
as the number of machines and the physical memory size in a
machine, thus demonstrating one configuration does not fit all
scenarios.

Practical Guidelines. Practitioners can use two steps to tune a
typical VC-system. The first step is to gauge a suitable workload
that will not overload the system. This can be monitored via a
trial-and-error process using a binary search for the workload. In
each trial, the overload situation can be detected by checking the
memory consumption or disk utilization in the master machine.
The second step is to ensure that later batches should have smaller
workloads, as concluded from Figure 9. Another way of using our
insights for tuning is to first collect statistics from light workloads,
which are then used to automatically pick the suitable workload
in each batch. We conduct a case study to demonstrate this in
Section 5.

5 CASE STUDY: TUNING PREGEL+

We show one possible approach that applies our experimental
insights in tuning VC-Systems for more efficient multi-processing.
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We select Pregel+ as the representative system throughout the
section. It is important to note that we do not argue the method
presented here is the only way to utilize our findings; instead, we
aim to explore the potential of using our experimental insights
for tuning systems. We give more case studies in our additional
materials [25].

Given workload W (e.g., performing W a-decay random walks
from each vertex in BPPR), we aim to learn an optimized batch
execution strategy S* = {Wi,...,W;} where X1<;<;, W; = W
and t is the number of batches which is also unknown. More
specifically, processing with Strategy S means to process work-
loads batch-by-batch, where the i-th batch requires to process a
workload of W; concurrently and different batches are processed
sequentially. We note that the intermediate results of the i-th
batch have to be stored for final result aggregation. For exam-
ple, the intermediate random walk results computed in earlier
batches are important to compute the final PPR values.

Machine Overloading. A machine is overloaded if at least p
percent of its physical memory is occupied, where p is the over-
loading parameter tuned by the users. A machine cluster is over-
loaded if at least one of its machines is overloaded. Based on our
findings in Section 4, W; can be the maximum workload that
does not overload any machine. For modeling purposes, we let
M (W, j) be the memory consumption of machine j if it performs
a workload Wj. Also, we let M*(Wp) be the maximum memory
cost incurred at any machine for workload Wj.

Residual Memory. As discussed in Section 4.5, the residual mem-
ory directly affects the runtime memory consumption; hence,
it impacts the selection of S* as well. In BPPR, particularly, we
need to store the ending nodes of every random walk computed
in each batch. We note that the number of random walks can be
much larger than the number of nodes, because it is the prod-
uct of the workload of the batch and the number of nodes. The
storage of ending nodes incurs the residual memory cost, and we
use a function M; (W) to denote the maximum residual memory
caused by processing a workload of Wy. Therefore, in round j,

the residual memory can be expressed by My (leisj Wl)
Objectives. As we discussed in Section 4, selecting a suitable S

depends on the maximum run-time memory cost. Motivated by
this, we aim to find S = {Wy, ..., Wy| Zle W; = W}, such that

M Z Wi |+ M*(Wjs1) < pMVO < j <t -1

1<i<j

1)

As both M* and M} are positively correlated with the work-
load, we can model them as exponential functions.

M*(Wo) = WPt +c1, Mj(Wo) = aa WP + ¢z @)

Exponential functions are used because of their expressiveness.
The degree of the correlation between the running time and
workload can be controlled by the value by (b2). For example, by >
1 indicates that M(W,) grows faster than that of the workload;
the reverse is true if by < 1. Combining Equations 1, 2 gives us
the following objectives that for any 0 < j < ¢t — 1, we have

by
Wi

1<i<j

p-M=>az- teztar- W)+ (3)

Training. To evaluate the parameter set # = {ay, az, b1, ba, c1, c2},
we introduce a training phase, which runs a few light-weight
workloads on the cluster to collect statistics. Correspondingly, we
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Figure 12: The impact of tuning Pregel+ with our findings (On DBLP dataset).

regard the procedure of running the real task as the evaluation
phase. The training is affordable because it is done only once,
and the training is configured to be significantly faster than the
evaluation phase.

Particularly, we conduct training on the task with workload 2"
(1 < r < h) where W > 2" (the condition ensures the training
cost is minor). Through the training we collect h sets of runtime
statistics, including the maximum memory {y,|1 < r < h} and
the maximum residual memory {y;|1 < r < h}. We estimate
the exponential function parameters by the standard Levenberg-
Marquardt algorithm (LMA) [26]. LMA aims to find the parame-
ters (ai, b1, c1) and (ag, by, c2) to minimize the sum of the devia-
tions for a given set of (2, y,) and (2", y;) pairs:

h
arg min Y (yr - f (2", a1,b1,¢1))?

aybr.c1 r=1
h

arg min Y, (yi - f (2", az, bz, c2))

az.by.cz2 r=1

where f (x,a,b,¢) = ax? + ¢c. LMA uses linearization to approxi-

mate the gradient as follows:

f(xi,a+0a,b+8p,c+8:) = f (xi,a,b,c)

df (xi,a,b,c) df (xi,a,b,c) df(xi,a,b,c)
d d 12

7 R
We can thus rewrite the object function with the approximation
to solve (a, b, c). In practice, (a, b, ¢) will be initialized randomly
and updated in a gradient-decent manner until they converge or
maximum trials are reached.

©

Computing W;. We compute W; (1 < j < t) iteratively based
on the evaluated . Setting j = 0 in Equation 1 gives M*(W;) <
p - M. As the system is expected to process as many tasks as
possible before system overloading, we compute W; by solving
M*(Wp) = p - M. In general, when we have Wy, ..., W; such that
Y1<j<i Wj < W, we can compute M*(W;41) by Equation 5.

M*(Wis1) = pM = M| > W ®)
1<j<i
Further, by Equation 2, we have
by i
Wist :((pM—az( Z WJ-) +02—C1)/a1) (6)
15j<i

Evaluation. We test BPPR and MSSP tasks for the DBLP dataset
in Pregel+. We deployed the system on Galaxy-8. We test various
workloads, and label the batch scheme computed by Equation 6 as
Optimized. We mainly compare the Optimized scheme with Full-
Parallelism. Figure 12 shows the results of performing tasks in
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DBLP in Pregel+, where (a), (b), (c) respectively report the BPPR
results for 2, 4 and 8 machines, and (d), (e), (f) report the MSSP
results for 2, 4 and 8 machines. The Optimized scheme is very
stable with respect to the workload and the number of machines,
whereas Full-Parallelism easily goes to very high cost when work-
load increases, both for BPPR and MSSP tasks. This means an
auto-tuning framework is beneficial to system performance. We
further investigate the optimum batch strategy output by the
Equation 6, and found that the workload in each batch properly
matches the desirable workload that avoids the overloading cases.
Particularly, the workload of a later batch is typically smaller than
an earlier batch because there is a higher residual memory cost
at the beginning of later batches, and therefore less memory cost
is allowed for performing the task within a batch. For example,
performing a workload of 5120 for BPPR task with four machines
leads to a workload division of [2747, 1388, 644, 266, 75], which
shows the workload in a batch decreases in monotone. Such
batching scheme precisely reflects the design of the Optimized
scheme, leading to low running times with various workloads. In
contrast, if we use the typical Full-Parallelism, the system will be
overloaded by excessive memory used, leading to a significant
latency.

6 CONCLUSION

This paper presents an experimental study on the VC-systems,
with the purpose to evaluate the multi-processing tasks. We high-
light the importance striking a suitable round-congestion tradeoff
in VC-systems, which has not been well studied in this context
before. We have some interesting findings that can particularly
guide the practitioners in system optimizations. These results
include a detailed analysis of what are the main factors that im-
pact the VC-system performance from the perspective of doing
an optimized round-congestion tradeoff. Furthermore, we also
present a case study on designing a tuning framework for Pregel+
using our experimental insights. The tuning model showcases
the usefulness of our experimental insights.
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