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ABSTRACT

Streaming systems process large data sets in a single pass while
applying operations on the data. Quantiles are one such operation
used in streaming systems. Quantiles can outline the behaviour
and the cumulative distribution of a data set. We study five recent
quantile sketching algorithms designed for streaming settings:
KLL Sketch, Moments Sketch, DDSketch, UDDSketch, and Re-
qSketch. Key aspects of the sketching algorithms in terms of
speed, accuracy, and mergeability are examined. The accuracy of
these algorithms is evaluated in Apache Flink, a popular open
source streaming system, while the speed and mergeability is
evaluated in a separate Java implementation. Results show that
UDDSketch has the best relative-error accuracy guarantees, while
DDSketch and ReqSketch also achieve consistently high accuracy,
particularly with long-tailed data distributions. DDSketch has
the fastest query and insertion times, while Moments Sketch has
the fastest merge times. Our evaluations show that there is no
single algorithm that dominates overall performance and differ-
ent algorithms excel under the different accuracy and run-time
performance criteria considered in our study.

1 INTRODUCTION

Stream Processing Engines (SPEs) are expected to process large
numbers of events at high speeds and deliver results rapidly.
However, high volumes of events and complex queries can over-
whelm a streaming system leading to performance degradation.
Consequently, there exist a number of algorithms that strive to
answer queries quickly using efficient data structures [19, 34].
In particular, given a query type, there is a class of algorithms
known as sketches that are able to generate approximate results
for that query type based on a summary of the data [4, 36]. The
term sketch can generally be used to describe an algorithm that
creates the sketch or the data structure holding the relevant sum-
mary of the observed data. In a streaming system environment,
a sketch is created based on a single pass of the data, and allows
the SPE to answer a query with significantly less space compared
to the size of the ingested data stream.

Quantile computation is an important stream processing op-
eration that has many applications in domains such as network
monitoring [15], web server response time monitoring [32], finan-
cial stock market monitoring [28], database query optimization
[30], search engine log analysis, and mobile network health mon-
itoring [13]. Quantiles can be used more generally to describe the
cumulative distribution function and subsequently the probabil-
ity distribution function of a data set. This is particularly useful
when the parametric equations of the data are not known or are
difficult to find.
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It is well known that it is impossible to compute exact quan-
tiles in a single pass without storing all of the data [35]. Early
research showed that there is a lower bound of 1.5N comparisons
required to compute an exact quantile of a data set of size N [8].
Within SPEs, finding quantiles is a challenging problem since
these systems typically have limited memory, see the data only
once, and do not have precise knowledge of the size of the data.
In contrast, a storage system like a relational database can store
data, re-create summaries and make multiple passes of the data
[6] as and when desired.

Fortunately, many applications can work with inexact quan-
tiles and do not need to incur the high cost of computing exact
quantiles. There exists a class of sketching algorithms known as
quantile sketches! that is ideal for computation of approximate
quantiles in stream processing since they are able to process
a data set and hold a sketch summary for quantile estimation,
all in one pass. There are a number of quantile sketching algo-
rithms developed for finding inexact quantiles in high velocity
data streams [21, 23, 29, 30, 32, 40]. The most recent of these
include Moments Sketch [21], DDSketch [32], UDDSketch [9, 18],
KLL Sketch [26, 27, 40], and ReqSketch [14]. The respective pa-
pers highlight theoretical and empirical space improvements,
mergeability, insertion speed, and quantile computation speed
of these algorithms. Although these algorithms are suited for
use in streaming settings, they have not been evaluated on a
real streaming system. In this paper, we fill this void by con-
ducting a detailed, practical, implementation-based performance
evaluation and analysis of key quantile sketching algorithms.

The design of quantile sketching algorithms generally assumes
that all data within the period of interest are consumed and the
quantile is computed afterwards. However, this is not the case
with windowed operations within streaming systems due to the
network delay it takes for an event to come from the source
to the streaming system. Another contribution of this paper is
to analyze how the best performing quantile sketches fare in a
setting with and without late-arriving data as found in windowed
computations.

A key metric of our study is accuracy, which we evaluate uni-
formly by using the same criteria, data sets and implementation
in Apache Flink, an industrial-strength streaming system. We
also use uniform criteria and data sets to evaluate speed, space
requirements, and adaptability through a standalone implemen-
tation for performance isolation.

The key contributions of our paper can be summarized as
follows:

(1) We conduct a detailed performance evaluation of key quan-
tile sketching algorithms.

(2) We evaluate accuracy of these algorithms under uniform
experimental settings in Apache Flink, an industrial-strength
streaming system, with and without late-arriving data.

1We use the terms quantile sketches, sketching algorithms, and quantile sketching
algorithms interchangeably in the paper.
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Table 1: Example data set with corresponding rank and
quantile for each element

by 3 7 8 8 11 14 16 18 30 51

Rank(x) |1 2 3 4 5 6 7 8 9 10

Quantile '(x) [ .1 2 3 4 5 6 .7 8 9 1

(3) We provide a comparison of adaptability between algo-

rithms.

(4) We implement UDDSketch in Java to enable a uniform

experimental comparison.

The rest of this paper is organized as follows. In Sec. 2, we pro-
vide background on relevant stream processing concepts, quantile
computations, error measurements and statistical metrics. Sec. 3
describes the sketching algorithms evaluated in our study. Our
experimental results and analyses are presented in Sec. 4. Sec. 5
surveys work that includes past related studies as well as other
sketching algorithms to provide additional context on the se-
lection of algorithms studied in this paper. Sec. 6 concludes the

paper.

2 BACKGROUND

This section provides an overview of the basics of quantiles and
the types of commonly considered errors for quantile queries.
Additionally, a method of measuring the weight of the tail of a
distribution, kurtosis, is presented which can aid analysis. We
also discuss mergeability, a property of sketching algorithms that
is highly desirable in a distributed streaming setting. We also
discuss some key stream processing system concepts such as
window operations and late-arriving data.

2.1 Quantiles

Given a data set D of size N, the rank of an element, Rank(x), is
the index of that value in the sorted version of D. A g-quantile,
Xgq. is the item whose rank in sorted D is [gN] for 0 < ¢ < 1.
The rank of x can be interpreted as the number of elements less
than or equal to x. Similarly, the value of the g-quantile, x4, says
that approximately 100g percent of the data is smaller or equal to
xq- Quantile™* (x) returns the value of g such that the g-quantile
query is x. That is, Quantile™!(x) — ¢ and g-quantile — x.
Examples of Rank and an inverse g-quantile function are given
in Table 1.

2.2 Relative Error vs Rank Error

Rank and relative error are best understood with an example.
Consider a user interested in the 0.9 quantile? for the data set in
Table 1. The true 0.9-quantile of this data set is 30 but assume
some quantile sketch estimates the value of 18 for the 0.9-quantile
query. Formally, Rank error for a g-quantile which outputs an
estimate % is defined as:

|(Rank(xg) — Rank(xg)| B Rank(xq)
N _’ N

Essentially, the rank error of a g-quantile query is how far
Quantile™! (Xg) is from gq. In this case, X4 = 18 has a rank of 8 (i.e.

18 is the 8" index) but the true 0.9-quantile would have a rank
of 9, so the rank error is 0.9 — 8/10 = 0.1 or 10%. In contrast, the

2q quantiles can also be referred to as the g x 100%" percentile. The 0.9%” quantile
and the 90" percentile refer to the same value.
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relative error of the query is how far the estimated value X4 is
from the true value x4 of the quantile, divided by the true value.
Formally, the relative error can be written as:

|xq - Jeq|
Xq

The relative error for this instance becomes |30 — 18]/30 = 0.4
or 40%. This exercise shows that rank error and relative error
are not equal particularly when it comes to the tail end of the
distribution. Many applications such as those processing web
request latencies [32] handle data with long tails. Moreover, rela-
tive error is related to the absolute error of an estimate, and hence
represents a more intuitive error measure. Therefore, relative
error is used in our evaluations.

PDF - Gamma Distribution

Probability

0.95
Quantile

0.98

Figure 1: Probability distribution function for a data set
sampled from gamma distribution with a tail (kurtosis of

3)

Fig. 1 provides a probability density function (PDF) represen-
tation of a data set sampled from a gamma distribution with a tail
on the right hand side. The x-ticks represent where to find the
values of the O.Sth, 0.53”1, 0.95”‘, 0.98th quantiles. Consider if
one wanted to use the value at the 0.5t quantile to approximate
the 0.53t" quantile, and the 0.95" to approximate the 0.98th.
Visually, one can see that the values for the 0.5t" and 0.53th
quantiles are close together and so they may provide a reason-
able approximation for one another. In contrast, the values for
the 0.95!" and 0.98¢" quantile are noticeably farther apart and
may not be a good approximation for one another. In both cases,
there would be a 3% rank error but the relative error would be
higher when the 0.95th quantile approximates the 0.98" h quan-
tile. As seen in this example, the relative error provides a better
representation of the actual error of the estimate, regardless of
the distribution.

2.3 Kurtosis

Kurtosis can be used as a measure of how heavy or light the tail
of a distribution is compared to a normal distribution - the longer
the tail of a distribution, the larger the kurtosis. Our evaluation
uses the definition which removes excess kurtosis to make the
normal distribution have a kurtosis of 0 [1]. The kurtosis of the
distribution in Fig. 1 is 3, which implies it has a long tail relative
to a normal distribution.

2.4 Mergeability

Mergeability is the ability to merge 2 sketches into 1 sketch that
represents all of the data from both sketches. This should be
accomplished without any change to the error guarantees of the
merged sketch. Mergeability is essential in a distributed setting
where the partitioned data can be summarized locally so that



only the sketch summaries need to be merged across different
machines. Otherwise, moving all data to a central sketch can be
a significant bottleneck.

2.5 Window Operations

A key operation in streaming systems is to use windows to group
together events over some attribute and provide results period-
ically. SPEs will use windows to group events for processing
different queries like joins, aggregations, filters and quantiles.
There are time-based windows and sequence-based windows. A
10-second time-based window would group events generated in
the next 10 seconds, whereas a sequence-based window of length
10 would group the next 10 events.

Time-based windows can be further classified as fixed win-
dows, sliding windows or session windows [7]. A fixed window
with a length of 10 seconds would group events generated or
ingested from time t to +10 s and emit the results before starting
the next group from t + 10 to ¢ + 20 s. A sliding window of the
same length and a period of 1 s would create a group from time ¢
to t + 10 s, create another group from t + 1 sto t + 11 s, and so
on. A session window with a timeout of 10 s would start group-
ing events at time ¢ and keep collecting events until a period of
inactivity for 10 s, i.e., if the last event arrived at t + 23 s, events
would be grouped from ¢ to ¢ + 33 s.

Windows can group events by event generated time or in-
gestion time. Generated time alludes to the time an event was
created at the source, and ingestion time is the time that event
was received by the SPE. The delay between the time the event is
created at the source and the time it is received by the streaming
system is called network delay. This is a general term to encom-
pass delays, including the time required to travel from source to
destination, e.g., due to network latency. For example, if you are
querying for the median fare price of taxi rides between 1:00AM
and 1:02AM, you would like to use generated time since the time
the taxi ride event was ingested by the streaming system is irrel-
evant. Due to the popularity of such use cases, this paper groups
events using generated time and uses time-based fixed windows
in its streaming window operations.

2.6 Late-arriving Data

The design of quantile sketching algorithms generally assumes
that all data within the period of interest are consumed and
the quantile is computed afterwards. However, this is not the
case with windowed operations within streaming systems due
to the network delay it takes for an event to come from the
source to the streaming system. Events that fall within the scope
of a window, but come after the SPE has already processed the
window, are identified as late-arriving data. Late-arriving data can
be handled using different techniques depending on the context.
For the purpose of our study, we assume late-arriving events
will be dropped. These dropped events, if not included in the
computation of the window result, can consequently deteriorate
the accuracy of the result. This paper provides an analysis on
how quantile sketches fare with late-arriving data.

3 ALGORITHMS

We evaluate the following quantile sketches: KLL Sketch, Mo-
ments Sketch, DDSketch, UDDSketch, and ReqSketch. As dis-
cussed in Sec. 5.2, these five algorithms are amongst the strongest
in one or more aspects of quantile computations for streaming
data. KLL Sketch [26] extends Random to outperform many of
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the algorithms from Sec. 5.2 and has theoretical guarantees of
optimality in terms of additive rank error [29]. However, no di-
rect performance comparisons of KLL Sketch have been carried
out against the other four algorithms evaluated in our study. In
prior work, Moments Sketch has demonstrated superior merge
and insertion speeds, and stronger accuracy guarantees than
most other algorithms [21]. DDSketch [32] is a histogram-based
algorithm and the first relative-error sketch with strong accu-
racy guarantees. Based on DDSketch, UDDSketch improves the
algorithm to maintain the relative error guarantee over a fixed
number of bucket collapses [18]. ReqSketch [14] is a recently pro-
posed randomized algorithm that provides multiplicative rank
error guarantees. To the best of our knowledge, the only direct
performance-based comparison of ReqSketch is against t-digest
[16]. All five sketches are mergeable, have low memory usage,
and most of them represent different methods of maintaining
data and computing quantiles.

3.1 KLL Sketch

Karnin et al. introduced KLL Sketch [27] that builds upon the re-
vised version of the Random algorithm [30] [29]. Ivkin et al. [26]
made a number of improvements to accuracy and space complex-
ity of KLL Sketch and experimentally evaluated its performance.
Finally, Zhao et al. introduced a mechanism to allow deletions
[40].

The core structures behind KLL Sketch are compactors that
have incrementally increasing height, h, starting from 0. KLL
Sketch places elements into compactors and runs a compaction
algorithm when it becomes full. Compaction sorts the data, ran-
domly discards all even or odd elements, and moves the remain-
ing elements to the compactor at the next height. The weight
w of each element in the compactor, determined by the formula
w = 2" indicates the number of entries represented by that ele-
ment and also determines the size of the compactor. KLL sketch
uses a sampler to represent the bottom compactors of size 2 to
provide logically equivalent functionality with reduced space
complexity.

Consider a simplified example of a sketch with 2 compactors.
Assume the first compactor of height 0 has a maximum size of 10.
If the compactor initially contains the first 9 values from Table
1 and then receives the last value of 51, this would result in a
compaction. The compaction would discard all elements in odd
indices and move the remaining elements to the compactor at
the next height, and the elements have their weight implicitly
increased from 2° to 21.

To compute the g-quantile, values in each compactor at height
hare copiedw = 2h times, sorted, and the value at [gN] th index is
taken. The exact state of the KLL Sketch at this point is illustrated
in Table 2 (top 2 rows under Compactors). When merging two
sketches, it combines two compactors at the same height into
one and compacting any level containing more than kj, elements,
where kj, is based on the maximal height of the combined sketch.

KLL Sketch is one of the two algorithms in our study whose es-
timates of the query are actual values from the data set, with ReqS-
ketch being the other. Due to its randomized nature, KLL Sketch
will sometimes get the exact quantile value instead of an estimate
and have zero error. KLL Sketch achieves e rank error with high

probability 1 — § and space complexity O((1/¢€)+/log(1/€)).



Table 2: State of two compactors of KLL Sketch after con-
suming the example data from Table 1

Compactors
h=0 < no elements >
h=1 3 8 11 16 30
Query Calculation
3 3 8 8 11 11 16 16 30 30
Rank(x) 1 2 3 4 5 6 7 8 9 10
Quantile I(x) [ 1 2 3 4 5 6 7 8 9 1

3.2 Moments Sketch

Moments Sketch was introduced by Gan et al. [21] to improve the
merge time of sketches representing data sets with a high number
of unique elements. A minimum cardinality of 5 is required for
this sketch or its underlying algorithm will fail.

Min Xoin
Max X 04
Count N Estimate 2%
N ‘ p(x) to fit -502
1 Moment  Lx =y, observed é 01
N =%
2" Moment Zx*=up, data 0o —
X
k" Moment  Zx*=up,

Figure 2: Visual representation of Moments Sketch steps
(log moments are omitted for simplicity)

Moments Sketch holds the min, max, k moments and k log
moments of the data set where k is some small number usually
between 10 to 22. The n*" moment of a data point x is simply x"
and the log moment is log” (x). An arcsin transformation is rec-
ommended for large magnitude data since substantial exponents
of a number can cause overflow errors. Moments Sketch selects
the distribution p(x) that fits the data and also maximizes its
Shannon Entropy using the Method of Moments. The Method of
Moments constructs a distribution p(x) whose moments are the
same as the data set [24]. The resulting distribution p(x) can then
be used to estimate the g-quantile by solving for x in the equa-
tion g = fj}o p(x) dx. These steps are illustrated in Fig. 2. The
merge operation involves simply adding together only the stored
moments from the two sketches and recomputing the minimum
and maximum as needed. Moments Sketch does not provide any
rigorous error bound on a quantile query, and provides a bound
on only the average quantile error. The average quantile error
decreases as the number of moments held, k, increases.

3.3 DDSketch

DDSketch [31, 32] is a recently introduced histogram-based de-
terministic algorithm that provides relative error guarantees. The
motivation for DDSketch according to its authors is the dissat-
isfaction with the rank error guarantees provided by the other
algorithms.

In DDSketch, a bucket representing the histogram counts the
number of elements observed in the stream between (y~!, y*],
where y = (1 +a)/(1 — a) and «a is the maximum relative error.
A data element, x, is indexed to a bucket B; by log (x) = i. This
indexing method allows the histogram to handle a wide range of
values with a small number of buckets.

DDSketch computes a quantile based on the number of ele-
ments in each bucket. Starting from bucket By, the number of
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values in each bucket is summed up in order until it reaches the
b'h bucket such that Z?:o Bi/N >= q, where B; is the number of
values in bucket i. When i = b, this means the g-quantile lies in
the i" bucket and the estimated quantile is 2¢!/(¢ + 1). Since
each bucket contains elements between (y*~1,y’] the maximum
Jz.q_yi—l
yifl

error for the g-quantile estimate %4 = 24 /(¢ +1) can be

i s
Xq
7

OI'Y

. In both cases, you can substitute the value for y and

find that the error is less than . These concepts are illustrated
in Fig. 3.

Frequency

2047
2048

1.1.0201.041 ¥ 589x107  6x107  6.13x 107

X

Figure 3: Visual representation of DDSketch with y = 1.0202
and a = 0.01

The number of buckets is usually not restricted since a small
number of buckets can represent a large range of numbers with
minimal space requirements. There is a variant of the algorithm
that limits the number of buckets that can be used. In that case, if
the sketch runs out of space due to a large data range, the buckets
holding lower values will be merged, which would violate the
accuracy guarantees of the lower quantiles. The merge operation
combines buckets from the two sketches with a common y by
adding the counts of buckets in the same range. It can also trigger
a range extension to align the bucket ranges of the two sketches
being merged. The DDSketch implementation [31] evaluated in
our study uses arrays to store bucket information.

3.4 UDDSketch

Uniform DDSketch or simply UDDSketch [18] was inspired by
the design of DDSketch and retains the histogram-based ap-
proach to estimating quantiles. The main difference between
UDDSketch and DDSketch lies in how bucket collapsing is done
when the current range of the sketch cannot support an element
being inserted into the sketch. As described in Sec. 3.3, the DDS-
ketch variant that restricts the number of buckets would collapse
the two lowest-indexed buckets in order to extend the range
of the sketch. UDDSketch collapses all of the adjacent pairs of
buckets instead of collapsing only the bucket pair with the lowest
indices. More formally, UDDSketch replaces each of the buckets
with indices i and i + 1, where i is odd and at least one bucket is
non-empty, with a new bucket of index [%] having the sum of
the count of the two buckets as its new count.

UDDSketch’s uniform bucket collapsing algorithm leads to a
uniform deterioration of the relative error guarantee in compari-
son to DDSketch (with a fixed number of buckets). UDDSketch’s
relative error guarantee o’ is given by a’ = 2a/(1+a?), allowing
the calculation of a deterministic error guarantee at any time
based on the initial relative error threshold a and the subsequent
number of bucket collapsing operations k. More importantly, this
allows us to reverse the deterministic error guarantee calcula-
tion to derive the initial relative error threshold for an estimated
number of bucket collapses k using ¢y = tanh(arctanh oy / 2k-1y,



where «y, is the required final relative error guarantee. Mirroring
the original C implementation, our implementation of UDDS-
ketch uses a map data structure as its bucket store.

UDDSketch’s merging algorithm [9] iterates through the buck-
ets of two sketches having a common y, combines those within
the same interval, and potentially performs a costly bucket col-
lapsing operation at the end. Bucket ranges of the two sketches
being merged align if they have the same y value since UDDS-
ketch collapses buckets uniformly.

3.5 ReqSketch

Relative Error Quantile Sketch or ReqSketch [14] is the most
recent of the algorithms considered in our study. Similarly to
KLL Sketch (Sec. 3.1), it retains a sample of the observed data in
a sequence of compactors known as relative-compactors. ReqS-
ketch inserts elements into a sketch starting from the relative-
compactor at height 0. A relative-compactor at height h main-
tains a buffer of capacity B and executes a compaction operation
whenever B is full, similar to KLL Sketch. ReqSketch considers
only the L largest sorted items (L < B/2) in the buffer and ran-
domly promotes the odd or even items to the compactor at height
h + 1 and discards the others from the considered L items, while
retaining all of the smallest B — L items in the buffer. Addition-
ally, the number of items that are considered for compaction
for a given relative-compactor changes based on the state of its
compaction schedule. A compaction schedule is maintained so
that larger items of a buffer are compacted more frequently and
smaller items are compacted less frequently. ReqSketch’s merge
operation concatenates compactors of the same level and any
exceeding its capacity are compacted similarly to KLL Sketch.
The merged compaction schedule state is obtained by taking the
bitwise OR of the schedule states of the two merging compactors.

RegSketch provides a space complexity of only O (log!-® (en) /€)
under practical assumptions while maintaining a multiplicative
error guarantee of |R(fnk(x) — Rank(x)| < eR(fnk(x) with high
probability. Note that the multiplicative error, defined by the
relation |Rc{nk(x) — Rank(x)| < eRc{nk(x), is also referred to as
the relative error [14]. However, it is distinct from the relative
error definition (Sec. 2.2) used in this study.

4 EVALUATION

The primary focus of this evaluation section will be on speed
and accuracy. In line with the practical and empirical focus of
this study, we also provide an analysis of data structure space
requirements in Sec. 4.3 to focus on the implementation aspect
of the sketches.

4.1 Data Sets

Our survey uses both synthetic and real-world data sets to evalu-
ate performance. For the synthetic data sets, we generate data
based on the Pareto and uniform distributions. The Pareto distri-
bution helps to understand how well the algorithms perform on
a distribution with a very long tail, as used in prior evaluations
[18, 32]. The Uniform distribution helps to understand how well
the algorithms perform on evenly spread out data.

Synthetic data is generally created using a function from a li-
brary that samples from a set distribution. Such a data set follows
a nearly perfect distribution and does not have a strong resem-
blance to real-world data. Many real-world data sets would lie
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between the evenly spread uniform distribution and the heavy-
tailed Pareto distribution in terms of skew. Using these two syn-
thetic data sets allows us to obtain a general understanding of
the behaviour of the algorithms across a range of data distri-
butions that otherwise would not be possible. Additionally, we
periodically sample the synthetic data generation parameters
from normal distributions to make the synthetic data set resem-
ble real-world data. The distribution parameters are updated
every millisecond, resulting in samples drawn from a slightly
modified distribution. The experiments were run with a Pareto
distribution whose shape parameter « and scale parameter Xp,
were determined using a normal distribution N (1, 0.05). For the
Uniform data set, the minimum is generated by an A(100, 25)
distribution, and the maximum is generated by an A(1000, 100)
distribution.

There are two real world data sets used for experimentation
in our survey. The first is NYT data set which contains the trip
fare information from the 2013 New York Taxi (NYT) data [12].
Second, the Power data set which contains global active power
measurements from the UCI Individual Household Electric Power
Consumption data [25]. The Power data set has been commonly
used in empirical evaluations of quantile sketches in previous
studies [18, 21, 32]. The PDFs of all the data sets can be seen in Fig.
4. We measure insertion and query times after consuming values
sampled from a Pareto distribution (¢ = 1 and X,;, = 1). The
sketches were populated from a uniform (U(30, 100)), binomial
(p = 0.2 and n = 100) and Zipf (20 elements and an exponent of
0.6) distribution when evaluating merge times. Lastly, we use a
synthetically generated data set from a uniform (U (30, 100)) and
a discrete binomial (p = 0.4 and n = 40) distribution to execute
the test of adaptability described in Sec. 4.5.7.

4.2 Methodology

We evaluate the KLL Sketch and ReqSketch implementations
from the Apache Data Sketches library [2]. The authors’ imple-
mentation was for DDSketch [31] and Moments Sketch [22]. We
provide an implementation of UDDSketch in Java since the au-
thors’ implementation is in C [18]. The parameters for DDSketch,
UDDSketch, KLL Sketch, and ReqSketch in the experiments are
chosen so they have a similar memory footprint and a rank or
relative accuracy closer to 1% (0.01). In the case of Moments
Sketch, the memory requirement is significantly less than that
of the other algorithms, and its parameter num_moments> does
not allow direct tuning of accuracy thresholds. We choose 0.01
or 1% as the target accuracy since this was the considered error
threshold in [32].

In our experiments, KLL Sketch’s max_compactor_size4 was
set to 350 and consequently the expected rank error is 0.97%. Re-
qSketch’s numfsections5 was set to 30, which is used to derive the
number of elements L considered for compaction and the buffer
size of a relative-compactor. We enable the high rank accuracy
(HRA) parameter when using ReqSketch, which will compact
from the smallest L elements of the buffer and not the largest L
elements as described in Sec. 3.5. This parameter is enabled be-
cause it significantly reduces the relative error when estimating
the more interesting upper quantiles. We use DDSketch with an

3For clarity, Moments Sketch’s parameter k representing the number of moments
is called num_moments.

4KLL Sketch’s parameter k representing the maximum size of the highest level
compactor is called max_compactor_size for clarity.

SReqSketch’s parameter k representing the number of sections considered for
compaction is called num_sections for clarity.
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unbounded dense store and the relative error parameter is set to
a = 0.01, resulting in y = 1.0202. For UDDSketch, the maximum
number of buckets was set to 1024 and the bucket collapsing
threshold num_collapses® was set to 12. This initially results in
o = 4.88x1077 and reaches the threshold of & = 0.01 after 11
bucket collapses. As noted in [21], we experienced numerical
stability issues with anything more than 15 moments. Therefore,
we keep 12 moments to ensure it is able to provide fairly accurate
estimates without leading to instability. Per [22], we apply a log
transformation to Pareto and Power data sets since these data
sets span over many orders of magnitude of data.

The speed of the algorithms was measured for merge, insertion
and query times. Insertion time is an important metric since a
data set of size N will generate N insert operations for which
speedy insertions into the sketch is required to avoid system
bottlenecks in a streaming setting. Merge time was evaluated
to ensure that the algorithms can support distributed queries at
fast speeds. Lastly, query times indicate how quickly the result
can be obtained from the sketch once it has collected all the data.
The significance of this operation is application dependent — an
application that is querying for a quantile every few seconds will
demand faster query times than one that queries at a much slower
rate, e.g., every minute. All of the experiments measuring the
speed of the algorithms were run as single-threaded standalone
Java applications to achieve performance isolation.

Algorithm accuracy was tested through several different data
sets, as well as with and without late-arriving data. These were
run on the Apache Flink streaming system with tumbling win-
dow operations that consume data at 50, 000 events per second.
The windows were of size 20 seconds, thereby containing about
1 million elements each, which is the data size we use for the
experiments on kurtosis and adaptability. In a single run, the
experiment was run for 220 seconds for a given algorithm and
data set, and the results for the first tumbling window are dis-
carded and the average accuracy of the remaining 10 windows
is then computed to obtain the accuracy of a single run. All of
the experiment results provided in our study are averaged over
10 independent runs. Error bars on graphs represent 95% con-
fidence intervals around the means. All experiments were run
on a single server machine with 2x Intel E5-2620v2 CPUs (with
each processor containing 6 CPU cores/12 threads) and 32 GB of
RAM on Ubuntu 20.04.

The following quantiles were queried: 0.05, 0.25, 0.5 (median),
0.75,0.95,0.98, and 0.99. A range of quantile computations is ideal
since one quantile computation could produce vastly different
results from another [30]. There is a bias towards quantiles 0.9
and higher since those quantiles are typically of greater interest.

SUDDSketch’s parameter k representing the number of bucket collapses is called
num_collapses for clarity.
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Table 3: Final memory usage of each sketch (in KB) after
consuming 1 million data points of data set

REQ KLL UDDS DDS Moments
Pareto | 16.99 4.24 27.96 5.42 0.14
Uniform | 16.99 4.24 20.9 1.84 0.14
NYT 17 4.24 2253  2.15 0.14
Power 17 4.24 22,61 2.04 0.14

For example, a typical web request monitoring application can
indicate an increase in web response time from 2 to 20 seconds
for a 0.01 quantile difference at around the 0.99th quantile [32].
This can indicate a serious service disruption affecting a limited
number of users, and such insights can be derived only from
accurate estimation of upper quantiles. We group the results into
mid and upper quantiles, where mid consists of the quantiles 0.05,
0.25, 0.5, 0.75, 0.9 and upper are the 0.95!" and 0.98th quantiles.
The tail end of a distribution, where the 0.98" and sometimes the
0.95¢h quantiles reside, experience a larger spread and variation
for skewed data, which is why they are shown as a separate cate-
gory of their own. The accuracy for 0.99° h quantile is reported
separately since it is of interest in many practical use cases.

4.3 Data Structure Analysis

Quantile sketching algorithms do not need much memory be-
cause they aggregate data to create very small summaries of
them. This is evident by the observed memory usage in Table 3
for each of the algorithms with parameter values as described in
Sec. 4.2 and consuming 1 million entries from a given dataset. All
of the algorithms consume less than 0.03 MB in our experiments.
Additionally, we provide an analysis of the space requirements
by the numerical size of each of the sketches. This is possible
since implementations, e.g., using data structures and pointers,
of the five sketches do not add much data complexity.

DDsketch with an unbounded dense store would initially cre-
ate a count array of 64 buckets, and expand the array based on
the range of the values observed. Thus, the number of buckets
maintained by DDSketch is independent of the data size, and
depends on the distribution and the range of the data observed.
In most of our experiments, the final number of buckets created
remained below 1024 for a relative error threshold of 0.01. DDS-
ketch needed a maximum of about only 120 buckets for the Power
data set (Fig. 4d) whose range is [0, 11] and about 670 buckets
for the Pareto data set (Fig. 4a) with a range of approximately
[0,6 x 10°]. A sketch of 1024 buckets needs an array of only
1024 elements to maintain the bucket count and variables such



as index offset, minimum index, and maximum index to main-
tain state while still being able to accept values in the range of
[1,7.69 x 108] when a = 0.01. We also evaluated DDSketch with
a collapsing dense store of 1024 buckets for the same « value, but
did not observe any significant difference in space requirements
largely due to the fact that 1024 buckets can already support a
large range of values in practice.

In the case of UDDSketch, the actual space requirements are
higher than that of DDSketch because we used a map-based im-
plementation that maintained a map index, bucket index, and
a bucket count for each bucket. However, this implementation
of UDDSketch would still maintain less than 3100 numbers for
a bucket size of 1024. Note that similar to DDSketch, the ac-
tual number of buckets needed depends on the data distribu-
tion and range for UDDSketch. For example, we observed that
UDDSketch utilized 981 buckets after inserting 1 million data
points sampled from the Pareto distribution when o = 0.01 and
num_collapses = 12. KLL Sketch’s implementation has a total
sample size of 1048 across all compactors when max_compactor._size
= 350 for a stream size of 1 million data points. Similarly, ReqS-
ketch retained 4, 177 items for num_sections = 30 after inserting
1 million data points sampled from the Pareto distribution. The
Moments Sketch implementation [22] used in our experiments
keeps only standard moments and avoids maintaining log mo-
ments, resulting in a sketch summary that stores less than 20
numbers’ when num_moments = 12.

4.4 Speed

This section presents the experimental results obtained for the
evaluated run times of insertion, query, and merge operations
that affect a quantile sketch’s overall performance.

4.4.1 Insertion Speed. Fig. 5a shows the average run time
of adding a single element from a Pareto distribution to each
sketch. All of the considered algorithms lie within the same or-
der of magnitude and have insertion times of less than 0.2 pus.
The insertion time is independent of the current data size of
the sketch. Moments Sketch updates each of the num_moments
moments and potentially the minimum and maximum values
when an element is observed. DDSketch and UDDSketch both
simply derive the index for a bucket that a particular element
falls into and updates the bucket counter. However, we use DDS-
ketch with an unbounded store that does not collapse buckets,
while UDDSketch’s insert operation has the potential to trigger a
uniform bucket collapse. A uniform bucket collapse is a costly op-
eration which has a worst-case time complexity of O(m) where
m is the maximum number of buckets. DDSketch uses an opti-
mized array-based implementation to keep track of the buckets,
whereas UDDSketch’s unoptimized map-based implementation
can have higher access and update times. These factors result
in UDDSketch having the worst insertion time of all the con-
sidered algorithms. Both KLL Sketch and ReqSketch insertions
consist of appending the current element to the compactor at
height 0, which can potentially trigger one or more compaction
operations. However, ReqSketch compaction involves promoting
specific items of a compactor based on a compaction schedule,
and uses a list-based implementation as opposed to the optimized
array-based implementation used in KLL Sketch. This results in
higher insertion times for ReqSketch.

7 A double-precision floating point number would consume 8 bytes.
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4.4.2 Quantile Query Times. Fig. 5b shows the average run
time measurements for computing a quantile using each of the
different sketching algorithms as a function of the data size. We
conduct this experiment by filling each of the sketches up to
the specified data size from a pre-sampled Pareto distribution
and measuring the query time for estimating the quantiles as
specified in Sec. 4.2.

In Fig. 5b, we observe that Moments Sketch has the worst query
time in contrast to the merge time results, even though it is able
to maintain an average query time of less than 2 ms for most data
sizes. Quantile estimation in Moments Sketch involves solving
the unconstrained convex optimization problem [21] using the
maintained num_moments moments, which is independent of
the data size and is computation-intensive compared to other
sketches. This is reflected by the inconsistently varying and large
average query times of Moments Sketch for different data sizes.
The query time for both DDSketch and UDDSketch depends on
the number of non-empty buckets. The maximum number of
buckets that the universe of data can fill in DDSketch for our
pre-sampled Pareto distribution is realized at around 100 million,
and therefore the query time stabilizes thereafter. In the case of
UDDSketch, the number of buckets depends additionally on the
number of bucket collapses. We observed the number of buckets
to be 990 with 10 collapses for a sketch of size 1 million. This
changed to 641 buckets with 11 collapses for data sizes of 10
million or higher. Therefore, the higher number of buckets for a
data size of 1 million leads to a comparatively larger query time
for the smaller data size in the case of UDDSketch.

KLL Sketch populates and sorts the data so that it can perform
a binary search to find the approximate or actual value of the
relevant g-quantile. The maintenance of a fully packed shared
array that is sorted except at the zeroth level compactor leads
to fast data population times, and in turn faster query results.
ReqSketch iterates through the compactors to populate a sorted
auxiliary data structure and uses binary search to estimate a
given quantile. In contrast to KLL Sketch, the higher level com-
pactors are sorted at the time of populating the sorted sketch
data. Therefore, as larger data sizes result in a larger number of
samples being retained, which in turn results in a larger number
of compactors that need to be iterated through and sorted, the
query time also increases sub-linearly for ReqSketch.

Our analysis shows that of the considered sketches, the ones
that utilize a summary to estimate quantiles have query times in-
dependent of data size and dependent on the distribution of data,
while sketches that retain a sample for estimation are generally
dependent on the data size.

4.4.3 Merge Times. Fig. 5c shows the average time to merge
two sketches when merging 100 and 1000 sketches for each of the
algorithms. Each individual sketch consumed 1 million events
sampled from either a uniform, binomial or Zipf distribution
before being merged. Overall, the merge times are relatively low
when considering that each of the sketches represent 1 million
data points. One of the contributing factors for merge time is the
actual size of the sketch, and the low memory footprint of all
the algorithms leads to a comparatively small time of less than 1
ms (1000us) for merging two sketches. This is reflected in how
the merge times roughly correlate with the space requirements
of each of the algorithms. The other contributing factor that
differentiates merge times is the particular algorithm used for
merging, and how effectively it uses the structural characteristics
of the sketch to perform a merge operation.



N e KLL ANNN Moments YoZZ) DDS Bl -+- UDDS ®RR -»*- REQ

20001 107 ]

) g )

2 2 1500 2

g g g 103

- e :

5 v £ 10001 2

E v < = 100 7

o \/ o o I

£ % E 500 £

£

N 04

10

100
Number of entries (millions)

-
=)
o
o
-

(a) Average insertion time of an element for
10M, 100M, 1B insertions

Number of entries (millions)

(b) Quantile computation time against num-
ber of entries processed by sketch

100 100 1000

Number of sketches

(c) Average time (log scale) to merge two
sketches

Figure 5: Algorithm Operation Speed Evaluation

Moments Sketch’s merge operation only needs to add together
the 12 moments from the two sketches and recompute the mini-
mum and maximum as needed, which allows it to have the fastest
merge time by at least an order of magnitude. DDSketch’s merg-
ing algorithm combines buckets from the two sketches by adding
the counts of buckets in the same range. It can also trigger a range
extension to align the bucket ranges of the two sketches being
merged. The combining of a few hundred buckets and potentially
adjusting bucket ranges is the reason for its slower performance
compared to Moments Sketch. The average merge times of Mo-
ments Sketch and DDSketch are numerically smaller leading to
higher variance. The difference in average merge times between
100 and 1000 sketches, even though noticeable, is not significant
as indicated by the overlapping error bars. UDDSketch’s merging
algorithm [9] has to iterate through the buckets of each sketch
to combine counts, and potentially perform a costly bucket col-
lapsing operation at the end. Its map based implementation can
have higher overheads when iterating over the data compared to
an array-based bucket store such as that of DDSketch, leading to
significantly worse merge times.

KLL Sketch has to combine compactors at the same height,
and perform compaction if the size exceeds the new capacity
limit of the combined sketch. The process of combining and
potentially executing multiple compaction operations results in
significant processing time and explains why KLL Sketch has
a relatively high merge time. ReqSketch has a more involved
compaction procedure compared to KLL Sketch, where the index
of the elements being promoted on compaction changes each
time based on the compaction schedule. This results in higher
compaction times, and in turn higher merge times than KLL
Sketch. Overall, sketches such as KLL Sketch and ReqSketch that
retain a sample of the observed data have higher merge times in
general compared to the sketches that maintain a summary of the
data, such as Moments Sketch and DDSketch, with UDDSketch
being the only algorithm that bucks this trend.

4.5 Accuracy

We present results for the important metric of estimation accu-
racy of the sketching algorithms in this section.

4.5.1 Pareto Data Set. Fig. 6a shows the accuracy of the five
sketches processing the extremely long-tailed Pareto distribution
from Fig. 4a. KLL Sketch’s accuracy suffers in the upper quantiles
due to highly scattered data at the tail, particularly for the 0.99% h
quantile. Recall that KLL Sketch’s compaction algorithm sorts
and randomly discards either odd or even elements, promoting
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the remaining items to the next level. Therefore, it outputs the
next closest available element as an approximation if the exact
value was discarded during compaction. For example, if the actual
value of the 0.99t" quantile was discarded during compaction,
depending on the actual rank of the retained samples, KLL Sketch
may output the value of the 0.991?" quantile. A data set derived
from a heavy-tailed distribution such as Pareto would have a
larger difference between values of neighboring ranks if sam-
pled from the tail, which would result in a large relative error
even though the rank error is minimal. Conversely, the 0.5th
and 0.501%% quantiles may actually be good approximations for
one another even when the data is from a heavy-tailed distribu-
tion, since the difference in value between neighboring ranks is
much smaller in the non-tail region (Fig. 1 visually illustrates
this concept).

RegSketch discards elements from its buffers when its capacity
is exceeded. However, the elements that are discarded are selected
from the B/2 smallest items in the buffer (of size B) when high
rank accuracy is enabled. Therefore, ReqSketch performs well
for the upper quantiles because there is higher probability for
the larger values to have been retained by the sketch. It performs
reasonably well even for the lower quantiles since similar lower
values would be sampled with higher probability for the Pareto
distribution, leading to accurate approximations even when the
actual value has not been retained by the sketch. DDSketch and
UDDSketch achieve high accuracy since their bucket ranges are
derived based on the relative accuracy thresholds specified. Mo-
ments Sketch also performs well since the data is sampled from
a probability distribution, which it can accurately approximate
using the method of moments.

4.5.2  Uniform Data Set. All algorithms were able to achieve
an average relative error below the threshold of 0.01 for the Uni-
form data set as shown in Fig. 6b. Even with the added parameter
randomization, the uniform distribution is predictable and has a
kurtosis close to 0. Therefore, all of the considered algorithms
provide accurate estimates most of the time. ReqSketch’s and
DDSketch’s mid-quantile relative error for the Uniform data set
is higher than that of the Pareto data set. This is because the
density of the Pareto distribution is much higher for the lower
and mid quantile ranges, resulting in many similar values being
sampled in that quantile range compared to the uniform distri-
bution. The extremely high accuracy of ReqSketch in estimating
the upper quantiles of the uniform distribution is due to a com-
bination of higher retention of larger values by the sketch and
better approximations for upper quantiles (when the actual value
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Figure 6: Accuracy evaluations of each algorithm against data sets

is not available) due to the uniformity of the variance. The main
takeaway from Fig. 6b is that all five algorithms perform very
well against uniformly varying data in general.

4.5.3 NYT Data Set. Fig. 6¢c shows the accuracy for this real-
world data set used in our evaluation. Moments Sketch computes
quantiles from an estimated probability distribution, which intro-
duces a quantile estimation error whenever the real world dataset
deviates from the estimated distribution given that a limited num-
ber of moments and a limited grid size is used in its estimate. Even
for the NYT data set, UDDSketch has the best accuracy overall
since there is a theoretical guarantee on the relative error [18]
for a given number of bucket collapses. DDSketch also provides
the same theoretical guarantee when the unbounded version of
the algorithm is used [32], which is reflected in its consistent
average error for both mid and upper quantiles.

The NYT data set has a high number of frequently occurring
data points in comparison to other data sets. The top 10 most
frequently occurring data points in the Power data account for
about approximately 4.5% of the total 2 million data points. The
Uniform and Pareto data sets would have even fewer frequently
occurring data points. In contrast, the top 10 most frequently
occurring data points in NYT data set account for approximately
31.2% of the total 14.7 million data points. For algorithms that
retain a sample of the observed data such as KLL Sketch and
ReqSketch, this would mean that its compactors contain rep-
resentations of a small number of elements which occur many
times. On all of the runs, the estimates for the 0.25 quantiles were
precise, consisting of 6.5, 7.5, 8.0, and 9.0, with each value re-
peated over 200, 000 times in the data set. As a result, KLL Sketch
would have a high probability of keeping the exact element for
the 0.25 quantile even after multiple compactions. KLL Sketch
achieves a similarly high accuracy for 0.05 and 0.5 quantiles, but
its mid quantile accuracy gets affected by the errors in other
quantiles that do not come from an area of the distribution where
there are many repeating values close together. ReqSketch also
benefits from the repeated values similar to KLL Sketch. However,
since ReqSketch is biased towards discarding smaller values and
retaining larger values when high rank accuracy is enabled, a
higher accuracy is achieved by ReqSketch for upper quantiles and
the 0.99'" quantile, while the difference in mid quantile accuracy
is not statistically significant when compared to KLL Sketch.

4.5.4 Power Data Set. The real-world Power data set has a
bimodal shape as seen in Fig. 4, for which Moments Sketch is
not able to accurately estimate a probability distribution. The
mid quantiles are between the humps, which is where Moments
Sketch sees an increase in error. The distribution becomes more
predictable towards the tail end, which is why the error drops
down slightly in the upper quantiles and more profoundly in the
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0.99t" quantile for Moments Sketch. UDDSketch and DDSketch
both exceed the relative error guarantee thresholds and perform
extremely well in terms of accuracy for all evaluated quantiles.
KLL Sketch performs relatively well for mid quantiles where the
number of repeated data elements would be high for the power
data set, but performs poorly for quantiles that lie on the long
tail of the distribution, as was the case for Pareto and NYT data
sets. ReqSketch has the best accuracy out of all the algorithms
for estimating the upper and 0.99 quantiles and a comparatively
worse accuracy for the mid quantiles for the power data set due
to its high rank accuracy setting (as discussed in Sec. 4.2).

4.5.5 Overall Accuracy. UDDSketch consistently gives the
best relative error across all data sets. However, it sets an expo-
nentially smaller initial relative error threshold in anticipation
of future bucket collapses. If the specified number of bucket
collapses are not met, the actual relative error threshold ends
up being much lower than the desired relative error threshold.
UDDSketch maintained sketches at 0.005, 0.0006, 0.0025, and
0.0025 relative error thresholds for the Pareto, Uniform, NYT, and
Power data sets respectively. This is the reason for UDDSketch’s
accuracy exceeding the specified threshold when compared to
DDSketch. Even though DDSketch’s results are reported for an
unbounded bucket store, the error difference was 0.14% on av-
erage for mid quantiles and 0.07% for the upper quantiles when
compared to DDSketch with a collapsing dense store of 1024
buckets.

Moments Sketch is able to provide estimates below the 0.01
relative error threshold for both mid and upper quantiles when
the data set is synthetic but not for the two real-world data sets.
Since Moments Sketch is estimating a probability distribution,
any data points that deviate from the expected distribution in a
real-world data set introduce quantile estimation errors. Addi-
tionally, the accuracy can be increased at the cost of increased
query time by increasing the grid size parameter for the moments
solver. We used the default parameters (per [22]) across all our
experiments.

KLL Sketch performs comparatively well in terms of accuracy
when the data distribution is close to uniform or when the quan-
tile estimates are from a region where the probability density
is higher in the data distribution. This is due to the sampling
approach that randomly discards either the odd or even sorted
elements from a level when compaction occurs in KLL Sketch. In
ReqSketch, the sampling approach can be biased towards lower
or higher valued elements based on the HRA parameter, which
allows us to obtain very accurate upper-quantile estimates by
sacrificing lower-quantile accuracy and vice versa.

4.5.6 Kurtosis. Fig. 7 shows how the accuracy at the 0.98%

quantile varies as the kurtosis of the data increases. It shows a
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general decrease in accuracy for algorithms that depend on the
data distribution as the 98# quantile becomes more difficult to
estimate accurately for such algorithms when there is increased
positive skew. The first data point along the x-axis in Fig. 7 is
the uniform distribution which does not have a tail, meaning
the probability of occurrence of events around the 0.98!" quan-
tile is as good as around any other point such as the median.
Hence, the low error across all algorithms for the uniform data
set. As previously mentioned, DDSketch’s relative error is not
affected by the data distribution and therefore the algorithm is
able to maintain a stable error under 0.01 x 1072 for all data sets.
UDDSketch is able to similarly maintain a stable error as long
as the number of bucket collapses do not exceed the threshold
num_collapses. Conforming to the trend that was observed in
Sec. 4.5, it becomes difficult for Moments Sketch to estimate the
value for real-world datasets that deviate from a probability dis-
tribution that can be easily approximated. However, it provides
reasonably accurate estimates for synthetic data sets, even when
the kurtosis is high. ReqSketch and KLL Sketch are able to esti-
mate the 0.98th-quantile precisely since the actual value of 57.3
for the quantile is repeated more than 4, 000 times in a sample of 1
million data points from the NYT dataset, significantly increasing
the probability of that value being retained. ReqSketch performs
better than KLL Sketch for the Pareto data set due to the biased
sampling of ReqSketch that allows it to retain more values from
its long tail.

4.5.7 Adaptability. This experiment is based on a similar ex-
periment [40] and measures the accuracy of the algorithms on a
data set whose distribution changes halfway through. The first
half is one million data points of a discrete binomial distribution
with parameters n = 30 and p = 0.4, and subsequently 1 million
data points from a uniform distribution with minimum of 30 and
maximum of 100. Fig. 8a shows the distribution of data which is
essentially fragmented into 2 sections for the 2 distributions.

The results of the adaptability experiment are shown in Fig.
8b. The results are insignificant for most of the algorithms except
at the 0.5/ quantile where there is a jump in error for most of
the algorithms. This is because the 0.5t quantile lies at the exact
end of the binomial section as seen in Fig. 8a. It is difficult to
definitively point to the cause of the estimation error in Moments
Sketch by back-tracing its multiple approximation techniques
from the limited information retained by the algorithm. How-
ever, we surmise that its lack of accuracy in estimating data sets
with small number of discrete values [21] combined with the fact
the estimated PDF using moments would not be able to account
for the sudden change in the distribution, would lead to higher
estimation errors around the 0.5/" quantile. Due to compaction
and the large weights assigned to the element representing the
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0.5'" quantile, both KLL Sketch and ReqSketch discard the value
at 0.5!" quantile with high probability. Instead, they output a
retained element from the beginning of the uniform section or
a preceding value from the binomial section as an approxima-
tion. The significant jump from the largest binomial value to the
smallest uniform value therefore results in a large relative error
for KLL Sketch and ReqSketch. DDSketch and UDDSketch are
not affected by the data distribution, hence their accuracy at the
0.5th quantile remains stable.

4.6 Late-Arriving Data

Late-arriving data is common in streaming windowed operations
because network delays can cause events to arrive after the win-
dow has already run its query [19, 20, 37]. Hence, we ran the same
experiments as in Sec. 4.5 but with late-arriving data dropped
by the stream processing engine. We emulate late arrivals by
applying an offset from an exponential distribution with 150 ms
as the mean network delay to the timestamp at event generation.
With this mean being from an exponential distribution, the tail
is long and a large majority of events have a considerably high
latency, allowing us to understand the accuracy behaviour of
the algorithms with a high number of dropped late-arrivers. We
observed about a 2% loss of events from a single window on aver-
age when events were generated with these tail-latency inducing
settings. However, a sketch with an accurate summary of the
data is not affected significantly by missing a small percentage of
data. Overall, the error was slightly higher for the late-arriving
data experiments when compared against the results of Fig. 6.
However, the core analysis remains the same as in Sec. 4.5.

4.7 Sensitivity Analysis of Accuracy on
Window Size

We ran the accuracy experiments on Flink for different window
sizes of 55, 10 s, and 20 s to understand if the window size has
an impact on accuracy. Overall, we observed that the average
relative error was consistent for synthetic data sets, but had some
variation within real-world data sets. For the NYT and Power
data sets, Moments Sketch’s average relative error decreased by
0.0018 overall when the window size increased from 5 s to 20 s,
while it increased by 0.0007 and 0.0014 on average for KLL Sketch
and ReqSketch respectively. Moments Sketch can approximate
the distribution better for larger window sizes since the shape of
the observed data is more likely to become smoother and match
the correct probability distribution for a given grid of the sketch.
For KLL Sketch and ReqSketch, larger window sizes result in a
higher number of compactions, increasing the probability of the



Table 4: Each algorithm is evaluated on different characteristics relative to the other algorithms

l Characteristic ‘ KLL Sketch ‘ Moments ‘ DDSketch ‘ UDDSketch ‘ ReqSketch (HRA) ‘
Sketching approach Sampling Summary | Summary Summary Sampling
High Tail Accuracy Non-Skewed | Synthetic All All All
High Non-Tail Accuracy All Synthetic All All All
Insertion Speed Medium Medium High Low Low
Query Speed High Low High High Medium
Merge Speed Medium High Medium Low Low
Adaptability Inconsistent Low High High Inconsistent

actual and nearby values of a given quantile to be discarded. The
average relative error for DDSketch and UDDSketch were fairly
consistent across window sizes and did not show any overall
trend. We report the accuracy for 20 s windows with 1 million
data points since this represents the distribution of all of the
considered data sets robustly.

4.8 Summary of Results

DDSketch and UDDSketch are deterministic algorithms that pro-
vide relative error guarantees irrespective of the data distribu-
tion of the stream. Their accuracy can be affected by the data
range instead. However, both can handle data values up to 6.13 x
1017 using just 2048 contiguous positive-indexed buckets while
guaranteeing a relative error of 0.01. DDSketch’s superior insert,
query, and merge times would make it an ideal choice if overall
runtime performance is a concern, while UDDSketch can pro-
vide better accuracy. Both the algorithms have high adaptability.
Moment’s sketch, while having weak accuracy in the face of
real-world data, has superior merge times. KLL Sketch provides
reasonable runtime performance, and is suitable when the data
is not skewed. However, its accuracy falls when processing data
distributions with large spread in values. This is because KLL
Sketch is a randomized algorithm that retains a sample of the
observed data, and the element from the sample that is returned
as an estimate will have a larger error when the data spread
is higher. ReqSketch’s selective compaction procedure allows it
to have extremely accurate upper or lower quantile estimates,
making it an ideal candidate when a relevant subset of the quan-
tiles needs to be estimated, given that its comparatively weaker
runtime speeds are not a concern.

Table 4 represents a summary of our evaluations. Each algo-
rithm is evaluated on a range of characteristics, based on how
well it performed relative to the other algorithms. We classify
the Sketching Approach of each algorithm as Summary or Sam-
pling depending on whether it utilizes a statistical summary or
retains samples to estimate quantiles. High Tail Accuracy indi-
cates whether the algorithm was able achieve good tail accuracy
on all data sets or only on data sets with specific characteristics.
High Non-tail Accuracy has a similar definition. Tail accuracy
considers the upper end of the distribution that includes the
popularly queried 95t and 98t" percentiles. Non-tail accuracy
considers the other end of the distribution. Insertion, Query and
Merge Speed were evaluated as having a Low, Medium, or High
value by making an overall comparison. Space requirements are
not included in our comparison since the space requirement is
extremely small compared to the actual data size for all of the
algorithms. Adaptability is evaluated to be Low or High based
on the results from Sec. 4.5.7, and marked as Inconsistent when
having good adaptability overall except for the 50° h percentile.
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5 RELATED WORK

This section examines prior work under two criteria. Sec. 5.1
examines prior studies of quantile streaming sketch evaluations
and Sec. 5.2 examines quantile sketches that are related to the
ones we evaluate.

5.1 Related Studies

An experimental study published by Luo et al. [29] is the work
most related to this paper. Their study extends their earlier work
by introducing GKArray [29], an improved implementation over
GKAdaptive [39], which is a variant of the earlier GK algorithm
[23]. This study predates all of the five algorithms we consider,
and hence does not have a comparison of the more recent quantile
sketches that provide better performance and accuracy covered
in this paper. Additionally, we evaluate the accuracy of the algo-
rithms on Apache Flink, an industrial-strength streaming system,
using real-world data. Our study demonstrates the feasibility of
using these sketches without significant re-engineering in a mod-
ern, multi-threaded streaming environment. It also evaluates the
impact on accuracy in the face of late-arriving data, a common
scenario in many stream processing deployments.

Luo et al’s study [29] classifies sketching algorithms as cash
register algorithms and turnstile algorithms. Cash register al-
gorithms allow elements to only be inserted into the sketch,
whereas turnstile algorithms allow both insertions and deletions.
Turnstile algorithms require more space to achieve accuracy com-
parable to cash register algorithms, and have worse performance
[29]. We evaluate only cash register algorithms and do not con-
sider turnstile algorithms since the main criteria for selecting an
algorithm to evaluate were accuracy and performance.

Chen and Zhan [11] survey some quantile sketches and ana-
lyze their behaviour with a focus on space complexity, update
time, and accuracy. Their study does not include an experimen-
tal analysis and most of the algorithms considered predate the
ones evaluated in our study. Another recent study by Mitchell
et al. [33] conducts in-depth experiments and provides an em-
pirical analysis of how different lightweight moment estimators
affect accuracy and sketch time of quantile approximations us-
ing Moments Sketch [21]. However, their evaluations compare
only against KLL Sketch [27] and includes two-pass estimators,
which makes it difficult to compare against results obtained in a
streaming setting,.

Studies introducing or improving a sketching algorithm gen-
erally provide performance comparisons against other quantile
sketches, but with each study relying on a platform or an im-
plementation different to that of the other. This leads to discrep-
ancies when comparing performance. For example, Moments
Sketch was implemented in Java while the implementations of
KLL Sketch [26] [40] used Python. Similarly, the comparison



between UDDSketch and DDSketch was implemented in C [18]
while the comparison of DDSketch and Moments Sketch was
done through Java implementations [32]. Other gaps include dif-
ferences in testing methods such as how KLL Sketch was tested
for adaptability by changing the distribution of the data [40];
this experiment was not performed in other papers. Our study
uses uniform experimental settings to evaluate the key metrics
of accuracy, speed, space requirements, and adaptability.

5.2 Related Sketching Algorithms

This section examines prior work on quantile streaming [5, 10,
29, 30] algorithms aside from the five algorithms that we have
described and evaluated. Thus, this section provides context for
why KLL Sketch, ReqSketch, Moments Sketch, DDSketch, and
UDDSketch are the algorithms chosen in our evaluation.

5.2.1 Random. This algorithm’s roots trace back to a sketch-
ing algorithm by Manku et al. [30]. It maintains a reservoir sam-
ple of all the events seen in the stream. A buffer maintains the
elements that are sampled. The buffer is collapsed by simply
discarding half of the elements when the buffer is full. The col-
lapse function increases the weight of the remaining elements
by a factor of 2. Conceptually, a query is answered by copying
each element w times and then sorting to compute the quantile.
Associating the weight w to the element is sufficient without
keeping multiple copies. This method provides an e-approximate
g-quantile with high probability 1 — § where € is the rank error.
This algorithm, with subsequent upgrades, was one of the best
performing algorithms (per [29]). Random’s space and accuracy
guarantees were further improved in KLL Sketch [27] [26] that
we evaluate.

5.2.2 Histograms. Histograms are a useful and intuitive way
to summarize and approximate a data set’s distribution function
[5]. The HDR histogram is a modern histogram with fast insertion
speeds, mergeability property and strong relative accuracy claims
[38]. The HDR histogram performed comparably to DDSketch
on accuracy and insertion speed but performed worse on merge
speed and total sketch size [32]. Masson et al. [32] show that
DDSketch is comparable or superior to the HDR histogram across
different performance categories; thus, we do not evaluate HDR
histogram in our study.

5.2.3 Dyadic Count Sketch. Dyadic Count Sketch (DCS) was
evaluated to be the best turnstile algorithm [29]. DCS maintains
log(u) dyadic levels in increasing order where the ith level has
u/2! intervals of size 2, where u is the universe of possible el-
ements in data set D. Count-Sketches [10] on each level track
the number of elements in each interval. Knowing how many
elements fall into each interval allows the algorithm to estimate
a g-quantile query. A comparison of KLL Sketch against DCS
showed KLL outperforms DCS in terms of memory usage, speed
and accuracy [40]. Due to its larger memory footprint requiring
prior knowledge of size, and being outperformed by KLL Sketch,
DCS is not included in our evaluation.

5.24 t-digest. t-digest [17] clusters elements based on their
value to form a set of weighted centroids. Each cluster keeps
track of the number of elements consumed and their mean. t-
digest’s scale function k determines the size of each cluster, and
allows a particular range of quantiles to have smaller clusters with
higher accuracy while sacrificing accuracy of the larger clusters.
t-digest does not provide a theoretical bound on its estimation
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error and its merging algorithm can weaken the accuracy of the
original sketches. Even though t-digest had comparable accuracy
for practical data sets when evaluated against ReqSketch [16]
and KLL Sketch [3], its accuracy was shown to be worse against
Moments Sketch [21]. Its update time is comparatively slower
than KLL Sketch [3] and ReqSketch [16]. Additionally, given that
t-digest cannot provide consistent accuracy guarantees across all
quantiles, it did not warrant inclusion in our experiments.

6 CONCLUSION

Five recent quantile sketching algorithms, KLL Sketch, Moments
Sketch, DDSketch, UDDSketch, and ReqSketch were evaluated
and analyzed experimentally for speed and accuracy through im-
plementations in Java and Apache Flink. The evaluations found
consistent accuracy with DDSketch and UDDSketch due to their
relative error gurantees. Moments Sketch has relatively weak ac-
curacy against real-world data since it always relies on estimated
probably distributions to compute a quantile. Since KLL Sketch
relies on retaining a sample of the data and discarding the rest, it
has high relative error when the data set is skewed or when it
does not contain repeated values. ReqSketch mitigates this issue
by sampling more selectively to favour either higher or lower
ranked elements through its compaction algorithm, providing
extremely accurate estimates for the upper or lower quantiles.
All of the considered algorithms show consistent accuracy in the
face of missing data due to late-arrivals. However, UDDSketch
and DDSketch are the only algorithms that have consistent accu-
racy when the data distribution is drastically varying as shown
in Sec. 4.5.7.

In terms of performance, DDSketch, UDDSketch, and KLL
Sketch have the fastest query times while Moments Sketch’s
merge times are at least an order of magnitude faster than the
other algorithms. In terms of insertion speed, DDSketch is the
fastest algorithm while UDDSketch is the slowest. However, all
of the algorithms are comparably fast with an average insertion
time that is well below a microsecond.

Our evaluations suggest that DDSketch is an algorithm suit-
able for almost any application with very good runtime perfor-
mance. UDDSketch provides better accuracy, but with worse
runtime performance. However, KLL Sketch and ReqSketch can
provide the exact value for a quantile query due its sampling-
based nature, and their sample size can be increased to increase
accuracy. If highly accurate estimates are required for upper or
lower quantiles, ReqSketch is ideal, while KLL Sketch can pro-
vide better performance at the cost of accuracy. Moments Sketch
would be a suitable candidate if the dominant factor in selecting
an algorithm is its merge time.

Acknowledgements This project was supported with funding
from the Natural Sciences and Engineering Research Council
of Canada (NSERC), Canada Foundation for Innovation (CFI)
and Ontario Research Fund (ORF). We thank the anonymous
reviewers for their constructive feedback.

REFERENCES

[n.d.]. 1.3.5.11. Measures of Skewness and Kurtosis. https://www.itL.nist.gov/
div898/handbook/eda/section3/eda35b.htm

2020. Apache Data Sketches. https://datasketches.apache.org/. Accessed:
2021-11-25.

2020. DataSketches | KLL sketch vs t-digest. https://datasketches.apache.org/
docs/QuantilesStudies/KlISketchVsTDigest.html

2020. DataSketches | Sketch Origins. https://datasketches.apache.org/docs/
Background/SketchOrigins.html



(5]

(6

=

[10]

[11]

[12

[13]

[14]

[15]

[16]

[17]

(18

[19

[20

Jayadev Acharya, Ilias Diakonikolas, Chinmay Hegde, Jerry Zheng Li, and
Ludwig Schmidt. 2015. Fast and Near-Optimal Algorithms for Approximating
Distributions by Histograms. In Proceedings of the 34th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (Melbourne, Victoria,
Australia) (PODS ’15). Association for Computing Machinery, New York, NY,
USA, 249-263. https://doi.org/10.1145/2745754.2745772

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel
Madden, and Ion Stoica. 2013. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In Proceedings of the 8th ACM
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys
’13). Association for Computing Machinery, New York, NY, USA, 29-42. https:
//doi.org/10.1145/2465351.2465355

Tyler Akidau. 2015. Streaming 101: The world beyond batch. https://www.
oreilly.com/radar/the-world-beyond-batch-streaming-101/

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, Robert En-
dre Tarjan, et al. 1973. Time bounds for selection. J. Comput. Syst. Sci. 7, 4
(1973), 448-461

Massimo Cafaro, Catiuscia Melle, Italo Epicoco, and Marco Pulimeno. 2021.
Data stream fusion for accurate quantile tracking and analysis. arXiv preprint
arXiv:2101.06758 (2021).

Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Fre-
quent Items in Data Streams. In Automata, Languages and Programming, Peter
Widmayer, Stephan Eidenbenz, Francisco Triguero, Rafael Morales, Ricardo
Conejo, and Matthew Hennessy (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 693-703.

Zhiwei Chen and Aogian Zhang. 2020. A Survey of Approximate Quantile
Computation on Large-Scale Data. IEEE Access 8 (2020), 34585-34597. https:
//doi.org/10.1109/ACCESS.2020.2974919

NYC Taxi and Limousine Commission. 2014. NYC Taxi Trip Data 2013
(FOIA/FOIL). https://archive.org/details/nycTaxiTripData2013

Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. 2011.
Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Founda-
tions and Trends® in Databases 4, 1-3 (2011), 1-294. https://doi.org/10.1561/
1900000004

Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Vesely.
2021. Relative Error Streaming Quantiles. In Proceedings of the 40th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. ACM,
Virtual Event China, 96-108. https://doi.org/10.1145/3452021.3458323

G. Cormode, Korn, and Muthukrishnan. 2004. Holistic UDAFs at streaming
speeds. In SIGMOD. ACM, 35-46.

Graham Cormode, Abhinav Mishra, Joseph Ross, and Pavel Vesely. 2021. The-
ory meets Practice at the Median: A Worst Case Comparison of Relative
Error Quantile Algorithms. In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining. ACM, Virtual Event Singapore,
2722-2731. https://doi.org/10.1145/3447548.3467152

Ted Dunning and Otmar Ertl. 2019. Computing Extremely Accurate Quantiles
Using t-Digests. arXiv:1902.04023 [cs, stat] (Feb. 2019). http://arxiv.org/abs/
1902.04023 arXiv: 1902.04023.

Italo Epicoco, Catiuscia Melle, Massimo Cafaro, Marco Pulimeno, and Giuseppe
Morleo. 2020. UDDSketch: Accurate Tracking of Quantiles in Data Streams.
IEEE Access 8 (2020), 147604-147617. https://doi.org/10.1109/ACCESS.2020.
3015599

O. Farhat, H. Bindra, and K. Daudjee. 2020. Leaving Stragglers at the Window:
Low-Latency Stream Sampling with Accuracy Guarantees. In Proceedings of
the 14th ACM International Conference on Distributed and Event-Based Systems
(Montreal, Quebec, Canada) (DEBS "20). Association for Computing Machinery,
New York, NY, USA, 15-26. https://doi.org/10.1145/3401025.3401732

Omar Farhat, Khuzaima Daudjee, and Leonardo Querzoni. 2021. Klink:
Progress-Aware Scheduling for Streaming Data Systems. Association for Com-
puting Machinery, New York, NY, USA, 485-498. https://doi.org/10.1145/

436

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]
[36]

(371

[38]

[39]

[40]

3448016.3452794

Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.
Moment-Based Quantile Sketches for Efficient High Cardinality Aggregation
Queries. Proc. VLDB Endow. 11, 11, 1647-1660. https://doi.org/10.14778/
3236187.3236212

Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2019.
Moments Sketch.  https://github.com/stanford-futuredata/momentsketch
original-date: 2018-09-04T16:50:51Z.

M. Greenwald and Sanjeev Khanna. 2001. Space-efficient online computation
of quantile summaries. ACM SIGMOD Record 30, 2 (2001), 58—66.

Alastair R Hall et al. 2005. Generalized method of moments. Oxford university
press.

Georges Hebrail and Alice Berard. 2012. UCI Machine Learning Repository:
Individual household electric power consumption Data Set. https://archive.
ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
Nikita Ivkin, Edo Liberty, Kevin Lang, Zohar Karnin, and Vladimir Braverman.
2019. Streaming quantiles algorithms with small space and update time. arXiv
preprint arXiv:1907.00236 (2019).

Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal Quantile Ap-
proximation in Streams. In 2016 IEEE 57th Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE, New Brunswick, NJ, USA, 71-78.

https://doi.org/10.1109/FOCS.2016.17
X. Lin, J. Xu, Q. Zhang, Hongjun Lu, Jeffrey Xu Yu, X. Zhou, and Y. Yuan. 2006.

Approximate processing of massive continuous quantile queries over high-
speed data streams. IEEE Transactions on Knowledge and Data Engineering 18,
5 (2006), 683-698. https://doi.org/10.1109/TKDE.2006.73

G. Luo, L. Wang, K. Yi, and G. Cormode. 2016. Quantiles over data streams:
experimental comparisons, new analyses, and further improvements. The
VLDB Journal 25, 4 (2016), 449-472.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1999.
Random sampling techniques for space efficient online computation of order
statistics of large datasets. ACM SIGMOD Record 28, 2 (1999), 251-262.
Charles Masson. 2021. DDSketch. https://github.com/DataDog/sketches-java
original-date: 2019-05-28T13:04:50Z.

Charles Masson, Jee E. Rim, and Homin K. Lee. 2019. DDSketch: A Fast and
Fully-Mergeable Quantile Sketch with Relative-Error Guarantees. Proc. VLDB
Endow. 12, 12 (aug 2019), 2195-2205. https://doi.org/10.14778/3352063.3352135
Rory Mitchell, Eibe Frank, and Geoffrey Holmes. 2021. An Empirical Study
of Moment Estimators for Quantile Approximation. ACM Transactions on
Database Systems 46, 1 (April 2021), 1-21. https://doi.org/10.1145/3442337
Barzan Mozafari and Carlo Zaniolo. 2010. Optimal load shedding with aggre-
gates and mining queries. In 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010). IEEE, 76-88.

J Ian Munro and Mike S Paterson. 1980. Selection and sorting with limited
storage. Theoretical computer science 12, 3 (1980), 315-323.

Lee Rhodes. 2015. Data Sketches. https://yahooeng.tumblr.com/post/135390948446/data-

sketches (2015).

Nicolo Rivetti, Nikos Zacheilas, Avigdor Gal, and Vana Kalogeraki. 2018. Prob-
abilistic Management of Late Arrival of Events. In Proceedings of the 12th ACM
International Conference on Distributed and Event-Based Systems (Hamilton,
New Zealand) (DEBS ’18). Association for Computing Machinery, New York,
NY, USA, 52-63. https://doi.org/10.1145/3210284.3210293

Gil Tene. [n.d.]. HDR Histogram.  https://github.com/HdrHistogram/
HdrHistogram

Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. 2013. Quantiles over data
streams: an experimental study. In Proceedings of the 2013 international confer-
ence on Management of data - SIGMOD ’13. ACM Press, New York, New York,
USA, 737. https://doi.org/10.1145/2463676.2465312

Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El
Abbadi. 2021. KLL+approximate quantile sketches over dynamic datasets.
Proceedings of the VLDB Endowment 14, 7 (2021), 1215-1227.



