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ABSTRACT

This paper studies algorithmic fairness when the protected at-

tribute is location. To handle protected attributes that are continu-

ous, such as age or income, the standard approach is to discretize

the domain into predefined groups, and compare algorithmic

outcomes across groups. However, applying this idea to location

raises concerns of gerrymandering and may introduce statistical

bias. Prior work addresses these concerns but only for regularly

spaced locations, while raising other issues, most notably its

inability to discern regions that are likely to exhibit spatial un-

fairness. Similar to established notions of algorithmic fairness,

we define spatial fairness as the statistical independence of out-

comes from location. This translates into requiring that for each

region of space, the distribution of outcomes is identical inside

and outside the region. To allow for localized discrepancies in the

distribution of outcomes, we compare how well two competing

hypotheses explain the observed outcomes. The null hypothe-

sis assumes spatial fairness, while the alternate allows different

distributions inside and outside regions. Their goodness of fit is

then assessed by a likelihood ratio test. If there is no significant

difference in how well the two hypotheses explain the observed

outcomes, we conclude that the algorithm is spatially fair.

1 INTRODUCTION

Algorithmic fairness refers to the notion that the algorithm (e.g.,

the machine, an ML model, an AI system) should not discrimi-

nate against individuals. Typically, discrimination is defined over

groups of people that are considered protected, such as race or

gender minorities. Abstractly, fairness requires that each pop-

ulation group, determined by a specific value to the protected

attribute (e.g., race, gender), is on average treated or affected by

the algorithm in the same manner. To make this requirement

concrete, one first needs to define a measure to appropriately

quantify the behavior, performance, etc. of the algorithm. Then,

algorithmic fairness is achieved when the measure is statistically

independent of the protected attribute. In practice, this mandates

that the measure is distributed equally among protected groups.

Fairness notions differ in how they define the measure. For ex-

ample, statistical parity considers the positive rate (how often

the algorithm assigns the positive/desirable class) as the measure,

whereas equal opportunity [5] considers the true positive rate

(how often the algorithm correctly assigns the positive/desirable

class).

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Motivation. In many cases, it is important to ensure that the

algorithm does not discriminate against individuals on the ba-

sis of their location (place of origin, home address, etc.). That

is, we consider location as the protected attribute and we want

the algorithm to exhibit spatial fairness. For example, consider

an algorithm that decides whether mortgage loan applications

are accepted or not.
1
It is desirable that its decisions do not dis-

criminate on the basis of the home address of the applicant. This

could be to avoid redlining, i.e., indirectly discriminating based

on ethnicity/race due to strong correlations between the home

address and certain ethnic/racial groups, or to avoid gentrification,

e.g., when applications in a poor urban area are systematically

rejected to attract wealthier people. As another example, con-

sider crime forecasting, where an algorithm predicts how likely

a crime is to occur in a particular area. It is desirable that the

algorithm is spatially fair in terms of its accuracy. That is, we

require the predicted crime rate to not differ greatly than the

observed crime rate in all areas. This could be to avoid under-

and over-policing, and the sense of injustice they are typically

associated with.

In cases like these, there is the common need for a principled

method to audit an algorithm for spatial fairness, i.e., examine its

outcomes and answer the question “is it fair?”. More importantly,

if this answer is negative, the method should credibly testify, i.e.,

provide as evidence a region that is most likely to suffer from

discrimination, and thus answer the question “where is it unfair?”.

Challenges. Unlike typical protected attributes, such as race

and gender, location is a continuous attribute. The group-based

definition of fairness does not apply, in a straightforward manner,

to continuous protected attributes. Rather, the standard approach

is to first discretize the continuous domain to create groups, e.g.,

age or income groups, and then compare the outcomes for each

group. The same idea can be applied to location, by defining

non-overlapping spatial partitions (e.g., city blocks, zipcodes,

districts), and computing the measure in each. This leads to a

partitioning-based definition, according to which an algorithm

is spatially fair if the measures per partition are equal.
2

However, this simple partitioning-based definition has two

drawbacks. Location is highly susceptible to gerrymandering

[7, 17], which is the act of purposefully defining a partitioning of

the space (via setting the partition boundaries, extents, shapes) so

that the partition measures appear non-discriminatory. Moreover,

conclusions drawn from comparing spatial aggregates highly

depend on the shape and scale of the partitions (the areal units),

1
In practice, an algorithm would compute a “credit score”, based on which a human

would take the decision. In that case, we would like these scores to be spatially fair.

2
A note on terminology: a partitioning of the space consists of a set of non-

overlapping regions, called partitions, that collectively cover the space.
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(a) Spatially fair-by-design out-

comes distributed in Florida;

each outcome has 0.5 probabil-

ity of being positive.

(b) Spatially unfair-by-design

outcomes uniformly dis-

tributed; left half has twice

more positive outcomes than

right half.

Figure 1: Two spatial distributions each with 𝑛 = 10, 000

outcomes among which 𝑝 = 5, 000 are positive. Accord-

ing to [17], the fair-by-design distribution is less fair than

the unfair-by-design distribution (MeanVar of 0.0522 vs.

0.0431).

a well-known source of statistical bias termed the modifiable

areal unit problem (MAUP) [17].

A better partitioning-based measure of spatial fairness that

tries to address these two drawbacks is proposed in [17]. Briefly,

the idea is to superimpose a high-resolution grid over the space,

and consider all possible rectangular, grid-aligned partitionings

of the space. In each partitioning, the variance of the measure

in the partitions is computed. Then, the mean variance across

all partitionings, hereafter denoted as MeanVar, is computed.

Lower values of MeanVar suggest lower variance across the

partitions in all partitionings and hence more fairness.

Note that MeanVar is designed to assess the spatial fairness

of outcomes that are regularly distributed in space: in each cell

of the superimposed grid (or equivalently in each partition of

the partitioning with the highest resolution) there is roughly

the same number of outcomes. As a consequence, computing

MeanVar in the general case of outcomes arbitrarily distributed

in space leads to counter-intuitive results. Concretely, MeanVar

cannot reliably audit an algorithm for spatial fairness. To illustrate

this, consider the example presented in Figure 1. The algorithm

producing the SemiSynth dataset depicted on the left is spatially

fair by design as positive/desirable (resp. negative/undesirable)

outcomes are randomly assigned to each location with a prob-

ability of 0.5, and are indicated as green (resp. red) points. The

algorithm producing the Synth dataset depicted on the right is

spatially unfair by design, as the left half of the area contains

twice as many positive outcomes as the right half does. However,

if we assess spatial fairness according to [17], we find that the

unfair-by-design algorithm has a lower MeanVar of 0.0431 and

is thus considered more fair than the fair-by-design algorithm

with a higher MeanVar of 0.0522. This occurs because the spatial

distribution of outcomes in Figure 1(a) is non-regular, and thus

the number of outcomes within partitions varies greatly. Despite

the fact that the ratio of positives is on average the same in each

partition (by design), there exist several sparse partitions with

few outcomes that are predominantly positive or negative, and

which increase the variance of the measure. The example demon-

strates that it is impossible to set a threshold for MeanVar such

that it distinguishes a fair from an unfair algorithm. Therefore,

MeanVar cannot answer the “is it fair?” question.

(a) A suspicious region in Iowa

that makes the largest contribu-

tion to MeanVar.

(b) A region in California that

testifies for spatial unfairness

according to our framework (p-

value < 0.005).

Figure 2: Regions most likely to be unfair according to

different spatial fairness definitions for the LAR dataset

described in Section 4.1. Depicted are the the number of

observations (𝑛), the number of positive outcomes (𝑝), and

the local positive rate (𝜌); the overall positive rate is 0.62.

Even if MeanVar cannot discern fairness, one may wonder if

it can be utilized to identify suspicious regions, i.e., regions that

are likely to exhibit discrimination. The obvious way to search

for suspicious regions is to consider the partitions that contribute

the most to the MeanVar value. These are the partitions whose

measures are the farthest away from the partitioning mean and

thus take extreme values. For the reasons discussed before, these

partitions are likely to be sparse and predominantly positive or

negative. An example is given in Figure 2(a), where the depicted

partition with just five negative outcomes ties for the largest

contribution to MeanVar. On a first look, this appears to suggest

an area of discrimination. However, this result is not statistically

significant: it is not that uncommon to find a region that con-

tains at least five negatives and no positives by chance (refer

to [13]). Therefore, even though MeanVar can identify regions

with extreme measures, arguably it cannot meaningfully answer

the “where is it unfair?” question.

Our Solution. In this work, we propose a practical definition for

spatial fairness that enables auditing and testifying, i.e., that can

answer both important questions regarding the algorithm, “is it

fair?” and if not “where is it unfair?”. The definition applies to

the most general case and does not assume regularly distributed

observations.

Recall that algorithmic fairness is when some measure quanti-

fying the behavior or performance of the algorithm is statistically

independent of the protected attribute. In our setting, location is

the protected attribute, so we naturally consider an algorithm to

be spatially fair, if the measure is independent of location. This

implies that for any region of the space, the distribution of the

measure inside and outside the region should be the same.

To operationalize this definition, there are several challenges.

The most complicating is how to determine the distribution of the

measure within a region. If the region covers many observations,

the observed (empirical) distribution of the measure is a good

proxy for the actual distribution. Otherwise, what we observe in

a sparse or small region might differ dramatically from what we

observe outside it. Note that this issue does not manifest itself

in categorical protected attributes (e.g., gender), simply because

the number of observations per protected group (e.g., number of

women and men) are typically very large.

To address this issue, instead of looking at the observed dis-

tribution, we want to express how likely it is to observe such

a distribution if the algorithm was fair. Intuitively, we should

expect to find a region with only four negative points clustered
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together even when the algorithm is fair. Conversely, we should

not expect to find a region that contains thirty negative points

alone — observing such a region should be a stronger indication

that the algorithm is not fair.

Inspired by the work in spatial scan statistics [6, 9, 16], we form

two hypotheses and seek to quantify which one is a better fit for

the data observed. The null hypothesis is that of spatial fairness,

i.e., there is a single distribution that controls how the measure

is distributed in the space, or mnemonically inside = outside.

The alternate hypothesis states that there is a difference in the

distribution inside and outside a region, or inside ≠ outside. Given

the observed data, we can determine the maximum likelihood

for each hypothesis, compute their ratio, and test whether this

likelihood ratio is statistically significant at a desired level.

The remainder of this paper is organized as follows. Section 2

reviews important concepts from algorithmic fairness and scan

statistics. Section 3 introduces our definition of fairness and the

auditing framework. Section 4 presents some results of our frame-

work on several datasets. Section 5 concludes this work.

2 RELATEDWORK

2.1 Algorithmic Fairness

Algorithmic fairness has seen various definitions [12]. One impor-

tant distinction [2] is between individual fairness definitions are

based on the premise that similar entities should be treated simi-

larly, and group fairness definitions group entities based on the

value of one or more protected attributes and ask that all groups

are treated similarly. In this work, we consider the definition of

the latter category. Note that fairness by unawareness, where

the protected attribute is not considered by the algorithm is not

sufficient in many cases, due to the presence of other attributes

that might be correlated with them.

Let 𝑋 denote a set of features that describe an individual, and

let 𝐴 denote the protected attribute(s); for ease of presentation

assume that 𝐴 is a binary valued attribute, where 𝐴 = 1 indicates

the protected group. For what follows we assume that the algo-

rithm is a binary classification model. Therefore, let 𝑌 denote the

actual class of the individual (the ground truth), with the positive

class 𝑌 = 1 denoting the desirable/favorable class. For example,

the positive class might correspond to the acceptance of a loan

application, the hiring of a candidate, the granting of parole, etc.

Moreover, let 𝑌 denote the predicted output of the algorithm;

note that although we do not explicitly show it, 𝑌 depends on 𝑋 .

Statistical approaches to group fairness can be distinguished

as [4]: base rates approaches that use only the output 𝑌 of the

algorithm, and accuracy approaches that use both the output

𝑌 of the algorithm and the ground truth 𝑌 . Base rate fairness

compares the probability 𝑃 (𝑌 = 1|𝐴 = 1) that one individual

receives the favorable outcomewhen they belong to the protected

group with the corresponding probability 𝑃 (𝑌 = 1|𝐴 = 0) that
one receives the favorable outcome when they belong to the non-

protected group. To compare the two, we may take their ratio

[3] or their difference [1]. When the probabilities of a favorable

outcome are equal for the two groups, we have a special type of

fairness termed statistical parity. Statistical parity preserves the

input ratio, that is, the demographics of the individuals receiving

a favorable outcome are the same as the demographics of the

underlying population. Statistical parity is a natural way to model

equity: members of each group have the same chance of receiving

the favorable output.

Accuracy-based fairness warrants that various types of clas-

sification errors (e.g., true positives, false positives) are equal

across groups. Depending on the type of classification errors con-

sidered, the achieved type of fairness takes different names [5].

For example, the case in which we ask that 𝑃 (𝑌 = 1|𝑌 = 1, 𝐴 = 1)
= 𝑃 (𝑌 = 1|𝑌 = 1, 𝐴 = 0) (i.e., the case of equal true positive rate
for the two groups) is called equal opportunity. Similarly, the case

in which both the true positive rate and the false positive rate

are equal for the two groups, is called equal odds.

These notions can be generalized under a common idea. Let𝑀

indicate the event/resource that is to be distributed fairly among

individuals. In the case of statistical parity, the resource is positive

rate and the event is𝑀 = 𝑌 . In equal opportunity, the resource is

true positive rate and thus the event is𝑀 = 𝑌 |𝑌 = 1. Equal odds

considers the true positive rate and the false positive rate, which

is modeled as 𝑀 = 𝑌 |𝑌 = 0. Then these fairness notion can be

expressed as the requirement that 𝑃 (𝑀 |𝐴 = 1) = 𝑃 (𝑀 |𝐴 = 0), or
equivalently that𝑀 is independent of 𝐴, i.e., 𝑃 (𝑀 |𝐴) = 𝑃 (𝑀).

More recently, there have been approaches that define fairness

from a causal perspective [8, 10, 11]. For example, we might

require that 𝐴 does not cause 𝑀 , rather than simply requiring

that𝑀 is independent of 𝐴.

2.2 Spatial Fairness

The problem of spatial fairness has received little attention. As

location is a continuous attribute, the standard approach is to

discretize locations and apply the standard definitions [15]. This

discretization approach may be susceptible to gerrymandering.

To avoid this, [17] considers all possible grid-based rectangular

partitionings of the space into regions. Given a partitioning, the

algorithm is considered fair if it exhibits roughly the same perfor-

mance in each region. This is quantified as the variance of some

performance metric𝑀 across partitions. The algorithm is (per-

fectly) fair with respect to a partitioning if there is zero variance.

The algorithm is (perfectly) fair if it is fair with respect to every

partitioning, among a predefined set. In essence, this definition

takes a brute-force approach to the problem: it applies the group-

based approach, which is susceptible to gerrymandering, to each

possible partition to eliminate the likelihood of gerrymandering.

[17] defines an unfairness measure as themean variance across

partitionings. This measure is then used as an additional optimiza-

tion goal in a learning process to produce classification models

that do not exhibit spatial unfairness in this sense. As discussed

in the previous section, and as we illustrate in Section 4, the defi-

nition in [17] has several shortcomings making it less meaningful

in real-life applications where the observations are not regularly

distributed in space.

2.3 Scan Statistics

Our notion of spatial fairness is inspired by the work in spatial

scan statistics. For a 1d domain like time, scan statistics answer

questions such as whether there exists an unusually high con-

centration of events in some time period. In the spatial case, scan

statistics answer similar questions, e.g., is there an unusually

high concentration of a particular virus variant in some spatial

area. Spatial scan statistics have been proposed for various un-

derlying spatial processes, such as Bernoulli and Poisson [9], and

multinomial distributions [6]. Our work is directly related to the

former type. Moreover, there is another line of work on detect-

ing mixture areas [14, 16], e.g., areas that contain a low or high

diversity of point categories.
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3 A SPATIAL FAIRNESS FRAMEWORK

We consider binary classification tasks concerning individuals.

Let 𝑋 denote a set of features that describe an individual. Among

them, location 𝐿 is considered the protected attribute. Let 𝑅 de-

note a spatial region, and let 𝑛(𝑅) denote the number of individu-

als whose location falls in the region. Moreover, let 𝑌 denote the

true class of the individual, with the positive class𝑌 = 1 denoting

the desirable class. Further, consider a classification model 𝑌 that

takes as input the features 𝑋 of an individual and predicts their

class 𝑌 (𝑋 ). A summary of the important notation is in Table 1.

In what follows, we define spatial fairness in terms of statis-

tical parity, i.e., we quantify the positive rate of the model; the

definitions can be adapted to the cases of equal opportunity and

equal odds by replacing 𝑌 with 𝑌 |𝑌 = 1 to account for the true

positive and 𝑌 |𝑌 = 0 for the false positive rates.

Let 𝜌 = 𝑃𝑟 (𝑌 = 1) denote the positive rate (𝑝𝑟 ) of the model,

i.e., the probability that the models predicts the positive class.

Restricting focus to a particular spatial region 𝑅, we define the

local positive rate as 𝜌 (𝑅) = 𝑃𝑟 (𝑌 = 1|𝐿 ∈ 𝑅), which is the 𝑝𝑟

taking into account only individuals within the region 𝑅.

We now formulate an idealized notion of spatial statistical

parity, by requiring that every local positive rate is equal to the

positive rate of the model, i.e., 𝜌 (𝑅) = 𝜌 for all 𝑅; equivalently, all

local positive rates should be equal. This definition is impractical

as it can only be satisfied by trivial classifiers that predict either 0

or 1. Thus, we must relax the definition to allow the local positive

rates to differ from each other and the overall 𝑝𝑟 . The question is

to what extent they can differ before we declare the model to be

spatially unfair. To answer this, we define a statistical test, based

on the Bernoulli spatial scan statistic [9], that decides whether

the positive rate is homogeneous across the space.

First, observe that we can interpret a positive rate 𝜌 as the prob-

ability that the model assigns an individual to the positive class;

i.e., a Bernoulli trial with success probability 𝜌 . Now, consider the

group of people within a region 𝑅. The number of positive labels

the model assigns follows the Binomial distribution with 𝑛(𝑅)
trials and success probability 𝜌 , denoted as 𝑝 (𝑅) ∼ 𝐵(𝑛(𝑅), 𝜌).

We now define two hypotheses and use a statistical test to de-

termine which explains the observed data better. The discussion

that follows is based on the multinomial spatial scan statistic;

an important difference is that we do not care for the direction

of change of the statistic inside and outside a region. The null

hypothesis H0 states that in every region 𝑅 the number of posi-

tive labels, 𝑝 (𝑅), follows the Binomial distribution 𝐵(𝑛(𝑅), 𝜌0),
where 𝑅, 𝜌0 are the parameters of the null hypothesis. The alter-

native hypothesis H1 states that there is a region 𝑅 such that

𝑝 (𝑅) follows 𝐵(𝑛(𝑅), 𝜌0), while the number of positive labels

outside 𝑅 follows a Binomial with a different success probability

𝜌1 ≠ 𝜌0, i.e., 𝐵(𝑁 −𝑛(𝑅), 𝜌1). The alternate hypothesis has three
parameters 𝑅, 𝜌0, 𝜌1.

To quantify which hypothesis explains the observed data bet-

ter, we derive their maximum likelihoods, and compute the like-

lihood ratio. Let us first consider the null hypothesis. The like-

lihood of H0 is given by 𝐿0 (𝑅, 𝜌0) = 𝜌
𝑝 (𝑅)
0

(1 − 𝜌0)𝑛 (𝑅)−𝑝 (𝑅) ,
where 𝑛(𝑅) (resp. 𝑝 (𝑅)) denotes the number of individuals (resp.

with positive labels) in a region 𝑅. For any region 𝑅, observe

that the maximum likelihood is when 𝜌0 = 𝑝 (𝑅)/𝑛(𝑅). Across
all regions, the likelihood takes the maximum value when 𝑅 is

the entire space. Therefore, the maximum likelihood value of the

null hypothesis is 𝐿𝑚𝑎𝑥
0

= 𝜌𝑃 (1 − 𝜌)𝑁−𝑃
.

Table 1: Important Notation

Symbol Meaning

𝑋 features of an individual

𝐿 location of an individual

𝑌 actual outcome/class

𝑌 model prediction

𝑁 number of individuals

𝑃 num. of indiv. predicted to be in the positive class

𝜌 = 𝑁
𝑃

model’s positive rate

𝑅 a spatial region

𝑛 (𝑅) number of individuals in 𝑅

𝑝 (𝑅) num. of indiv. in 𝑅 predicted to be in the pos. class

𝜌 (𝑅) = 𝑛 (𝑅)
𝑝 (𝑅) model’s local positive rate in 𝑅

Consider now the alternative hypothesis. Its likelihood is the

product of two binomials, one for inside and one for outside the

region 𝑅, each having a different success probability:

𝐿1 (𝑅, 𝜌0, 𝜌1) = 𝜌
𝑝 (𝑅)
0

(1 − 𝜌0)𝑛 (𝑅)−𝑝 (𝑅)𝜌𝑃−𝑝 (𝑅)
1

(1 − 𝜌1)𝑁−𝑛 (𝑅)−(𝑃−𝑝 (𝑅) )

First, we maximize the likelihood for a given 𝑅. Recall that H1

requires that 𝜌0 ≠ 𝜌1. If the observed positive rate inside the

region, 𝑝 (𝑅)/𝑛(𝑅), is different from that outside the region, (𝑃 −
𝑝 (𝑅))/(𝑁 − 𝑛(𝑅)), then the likelihood takes its maximum value

when 𝜌0 and 𝜌1 take the values of the observed positive rates

inside and outside the region, respectively. Otherwise, it cannot

exceed the likelihood when 𝜌0 = 𝜌1 = 𝜌 . Concretely, we have:

𝐿𝑚𝑎𝑥
1

(𝑅) =
{
𝐿1 (𝑅, 𝑝 (𝑅)𝑛 (𝑅) ,

𝑃−𝑝 (𝑅)
𝑁−𝑛 (𝑅) ) if

𝑝 (𝑅)
𝑛 (𝑅) ≠

𝑃−𝑝 (𝑅)
𝑁−𝑛 (𝑅) ,

𝐿𝑚𝑎𝑥
0

otherwise.

(1)

We refer to the value in Eq. 1 as the spatial unfairness likelihood,

and denote it as SUL. The next step is to identify the region that

maximizes Eq. 1. This is achieved by going over a predetermined

set of regions R. Let 𝑅∗ ∈ R be the region that maximizes Eq. 1.

We compute the likelihood ratio test statistic of the alternative

over the null hypothesis as 𝜏 =
𝐿𝑚𝑎𝑥
1

(𝑅∗ )
𝐿𝑚𝑎𝑥
0

. Note, that in practice,

we compute and determine the difference of log-likelihoods.

To determine how significant the test statistic 𝜏 value is, we

need to perform a Monte Carlo simulation to determine its distri-

bution, as also performed in [9, 16]. Specifically, the simulation

goes as follows. We create alternate worlds assuming that the

𝑁 individuals are located as in our data, but their label is deter-

mined by a Bernoulli trial with success probability 𝜌 . For each

alternate world, we compute the 𝜏 statistic. Suppose we simulate

𝑤 − 1 worlds, and the 𝜏 statistic of the real world ranks at the

𝑘-th highest position among all worlds. Then, the 𝑝-value of the

real world’s statistic is 𝑘/𝑤 .

We declare an algorithm as spatially fair if the 𝑝-value of

the aforementioned likelihood ratio test statistic is below some

predefined significance level 𝛼 . In this case, the observed data

are just as likely to be generated under the spatial fairness null

hypothesis as under the alternate hypothesis. Otherwise, we have

to reject the spatial fairness hypothesis. In this case, we may offer

evidence that support the hypothesis that the algorithm is unfair.

Providing evidence is the identification process. We consider all

examined regions that have a statistically significant likelihood

ratio, and we rank them in decreasing order of their likelihood

ratio. We then return the top-𝑘 regions as evidence.

The computational complexity of our auditing framework is

𝑂 (𝑀 · 𝑁 ·𝑄), where 𝑁 is the number of regions to scan, 𝑄 the

average cost of a spatial range-count query, and 𝑀 − 1 is the

number of Monte Carlo simulations.
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4 EXPERIMENTS

Our experimental study investigates two research questions. R1.

In a setting compatible with prior work [17], does our spatial

fairness definition present more meaningful results compared

to prior work? R2. Does our method identify regions that can

be considered as potentially exhibiting spatial unfairness? Sec-

tion 4.1 describes the dataset used, while Sections 4.2 and 4.3

answer the two research questions.

The code and datasets are available in GitHub.
3

4.1 Datasets

In our experiments, we use two real, one semi-synthetic, and one

synthetic datasets. The first real dataset concerns about mort-

gage loan applications. Thanks to the Home Mortgage Disclosure

Act, financial institutions in the US are required to publicly dis-

close information about mortgages. We download the modified

loan/application register (LAR) records
4
for Bank of America for

the year 2021. The dataset contains information about over 300

thousand applications, including whether they were denied and

the census tract of the applicant, which is a geographic region

roughly corresponding to cities and towns. We preprocess the

dataset to keep records for loan applications approved or denied.

Further, we use the Gazetteer files provided by the US Census

Bureau
5
to associate each census tract with the coordinates of

its center. In the end, we obtain a dataset, denoted as LAR, with
206,418 applications, among which 127,286 were granted (i.e.,

0.62 positive rate), geographically distributed along 50,647 loca-

tions (refer to [13] for a depiction). We use LAR to audit spatial

fairness when the measure of interest is the positive rate, i.e., in

the statistical parity sense. That is we want to investigate if all

areas have the same chance of being granted a mortgage loan.

The overall positive rate is 0.62.

The second real dataset is about crime incidents in the city

of Los Angeles from 2010–2019
6
. The data contains several at-

tributes including an approximate location of the incident. We

consider the incident code, which we binarize into serious and

non-serious crimes, as the label. We train a random forest clas-

sifier to predict the “seriousness” of the incident; the positive

class is the serious crimes, while the negative the non-serious.

As features, we select 7 attributes: time, code of police precinct,

victim’s age, sex and descent, the type of the incident location,

and the weapon used. After removing entries with missing val-

ues, there are 711,852 incidents split into train/test sets with a

70%:30% ratio. We collect the predictions and the true labels for

the incidents in the test set, and construct our dataset, denoted

as Crime. The accuracy of the model is 0.78. We use Crime to
audit spatial fairness where the measure of interest is the true

positive rate. That is, in the equality of opportunity sense, we

want to investigate if the algorithm’s accuracy for serious crimes

is independent of location. Therefore, to apply the framework of

[17] and ours, we retain the predictions for the true positive la-

bels, which results in 61,266 entries, and the overall true positive

rate is 0.58 (refer to [13] for a depiction).

The semi-synthetic dataset, denoted as SemiSynth and de-

picted in Figure 1(a), contains 10,000 outcomes for locations that

are randomly selected in Florida from the LAR dataset. The posi-

tive and negative are randomly assigned to each location with a

3
https://github.com/dsachar/AuditSpatialFairness

4
https://ffiec.cfpb.gov/data-publication/modified-lar/2021

5
https://www.census.gov/geographies/reference-files/time-series/geo/

gazetteer-files.2021.html

6
https://data.lacity.org/Public-Safety/Crime-Data-from-2010-to-2019/63jg-8b9z

probability of 0.5. Hence, SemiSynth is spatially fair by design.

The measure of interest is positive rate.

The synthetic dataset, denoted as Synth and depicted in Fig-

ure 1(b), contains 10,000 outcomes for locations selected uni-

formly at random within a rectangular area. The area is split into

two halves, each containing 5,000 outcomes. However, the left

half has twice as many positive outcomes as the right half does.

Therefore, the positive rate in the left half is about 0.67, while in

the right half is 0.33.

4.2 Results on Partitionings

In the first round of experiments, we consider a setting appro-

priate for the MeanVar measure of spatial unfairness proposed

in [17]. Therefore, we consider rectangular partitionings of the

space. To compare our methodology with MeanVar, we restrict

our methodology to only audit for fairness the partitions that

belong to the partitionings.

Is it Fair?The first experiment is to test whether the twomethods

can correctly audit for fairness, i.e., answer the “is it fair” question.

For this we use the SemiSynth and Synth datasets that we have

designed to be fair and unfair, respectively. We construct 100

rectangular partitionings, where the number of horizontal and

vertical splits of the space is randomly selected between 10 to 40.

As discussed in the context of Figure 1, MeanVar is 0.0522 for

the fair-by-design SemiSynth and 0.0431 for the unfair-by-design

Synth; recall that lower MeanVar values suggest more fairness.

Therefore, MeanVar fails to discern fairness. In contrast, our

method finds that SemiSynth is fair while Synth is unfair at the

0.005 statistical significance level.

Where is it Unfair? In the second set of experiments, we par-

tition the space into a regular grid of various granularities, and

investigate whether the methods can meaningfully identify par-

titions that potentially exhibit spatial unfairness. For MeanVar,

we identify the partitions that make the largest contribution to

the MeanVar value. As discussed, in Section 1, these are the

partitions with extreme measures that differ greatly from the

partitioning mean. We rank partitions according to their con-

tribution to MeanVar. For our method, we fix the statistical

significance level at 0.005, and identify all partitions that exhibit

spatial unfairness at that significance level. We rank partitions

according to their SUL value (Eq. 1).

We first examine spatial fairness in terms of positive rate

(i.e., statistical parity) and use the LAR dataset. Intuitively, we

want to identify partitions where the algorithm assigns the posi-

tive/desirable class differently from the global mean. We consider

a partitioning of high resolution 100×50. Our framework declares

the outcomes as spatially unfair and identifies 59 statistically sig-

nificant partitions depicted in Figure 3(a). The partition that has

the highest SUL value is displayed in Figure 2(b), and concerns a

region in northern California that covers almost 8,000 outcomes,

among which 84% are positive. Our framework identifies mostly

dense regions that have statistically significant different local

positive rates compared to the global. In contrast, we display the

top-50 partitions according to MeanVar in Figure 3(b). It is easy

to observe that they are all very sparse partitions that contain

only negative outcomes. The largest of them with 5 outcomes is

displayed in Figure 2(a).

Comparing the results of highest MeanVar and SUL in Fig-

ure 2, we find that the partition in California has a non-extreme

local positive of 0.84, compared to 0 for the partition in Iowa,

whereas the former has amuch higher and significant log-likelihood
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(a) Spatial Fairness: the 59 statistically significant unfair partitions

(b) MeanVar-Based Fairness: top-50 partitions of highest Mean-

Var

Figure 3: LAR: Results for a high-resolution partitioning

of 100 × 50.

difference of about 1000 compared to 0.96 for the latter (in this

experiment log-likelihood differences beyond 9.6 are significant

at the 0.005 level). As expected, MeanVar identifies partitions

with extreme measures, whereas SUL identifies partitions that

have abnormal (in the statistical likelihood sense) measures.

We now examine spatial fairness in terms of true positive rate

(i.e., equal opportunity) and use the Crime dataset. Intuitively,
we want to identify partitions where the prediction accuracy is

different from the overall prediction accuracy of the algorithm.

We consider a partitioning of low resolution 20 × 20. Our frame-

work declares the outcomes as spatially unfair and identifies 5

statistically significant partitions depicted in Figure 4(a). One of

the partitions with the highest SUL value is located in Hollywood,

and covers almost 3,000 outcomes, where only 51% of them are

predicted to be serious crimes. Contrasting this to the global true

positive rate of 0.58, we see that the algorithm tends to classify

incidents as non-serious in this area, more so than in other areas.

In contrast, we display the top-5 partitions according to Mean-

Var in Figure 4(b). All of them concern very sparse areas with a

single false positive, and are thus not interesting for the auditor.

4.3 Results for Unrestricted Regions

In this set of experiments, we only study our framework and can

thus examine arbitrarily sized regions. Specifically, we consider

square regions with 20 different side lengths ranging from 0.1

up to 2 degrees (roughly 10 to 200 kilometers). The centers of

square regions are placed in 100 locations defined as the centers

of a k-means clustering of the observation locations. In total, we

scan 2,000 square regions. Their centers and their smallest and

largest shape are depicted in [13].

Applying our framework at a significance level of 0.005, we

identify 700 unfair regions. As these regions intersect each other,

we select a set of non-overlapping regions. We examine centers in

sequence, and for each center we keep the region with the high-

est value of the statistic. Fig 5 displays the 28 non-overlapping

regions. The important observation is that our framework identi-

fies regions of varying area size and observation size. For example

an area near Tampa, FL is the smallest radius of 0.1 degrees with

(a) Spatial Fairness: the 5 statistically significant unfair partitions

(b)MeanVar-Based Fairness: top-5 partitions of highestMeanVar

Figure 4: Crime: Results for a partitioning of 20 × 20.

Figure 5: LAR: The 28 non-overlapping unfair regions

the largest number, 473, of observations, while a nearby area

centered in Orlando, FL is the largest, with a radius of 1 degrees,

and 4,783 observations.

In conclusion, the regions returned as evidence from our

methodology that the algorithm is unfair are non-trivial (espe-

cially, compared to those discovered by MeanVar), and can be

used from the auditor to further investigate whether the observed

unfairness is justified or not.

5 CONCLUSION

This paper introduces a generally applicable definition of spatial

fairness. It includes a concrete framework to audit an algorithm

for spatial fairness, and the ability to identify regions that are

very likely to be spatially unfair with statistical significance. The

intuition is that for any region, the distribution of outcomes

inside and outside the region should be similarly distributed. The

statistical test examines if the spatial fairness assumption is more

likely than the alternative that allows for regions with different

outcome distributions inside and outside.
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