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ABSTRACT

Data compression has recently experienced a revival in the do-
main of in-memory column stores. In this field, a large corpus
of lightweight integer compression algorithms plays a dominant
role since all columns are typically encoded as sequences of
integer values. Unfortunately, there is no single-best integer com-
pression algorithm and the best algorithm depends on data and
hardware properties. For this reason, selecting the best-fitting
integer compression algorithm becomes more important and
is an interesting tuning knob for optimization. However, tradi-
tional selection strategies require a profound knowledge of the
(de-)compression algorithms for decision-making. This limits
the broad applicability of the selection strategies. To counteract
this, we propose a novel learned selection strategy by consider-
ing integer compression algorithms as independent black boxes.
This black-box approach ensures broad applicability and requires
machine learning-based methods to model the required knowl-
edge for decision-making. Most importantly, we show that a
local approach, where every algorithm is modeled individually,
plays a crucial role. Moreover, our learned selection strategy is
generalized by user-data-independence. Finally, we evaluate our
approach and compare our approach against existing selection
strategies to show the benefits of our learned selection strategy.

1 INTRODUCTION

Data compression has been a well-established query optimization
technique in database systems for decades [7, 16, 31]. Neverthe-
less, data compression has experienced a revival in the domain of
in-memory column stores [1, 2, 10] to optimize the execution of
analytical queries. In this field, lightweight integer compression
algorithms play an essential role since all columns are usually
encoded as sequences of integer values [5, 13, 35]. Based on
that encoding, the whole query processing is done on these inte-
ger sequences [1, 2, 5, 13, 35]. Moreover, with the help of some
lightweight computations for integer compression, the necessary
memory space can be reduced on the one hand [1, 2, 8]. On the
other hand, compressed integer values allow for improving the
processing performance (i) by increasing the effective bandwidth
to reduce the memory wall, (ii) by yielding a better utilization of
the cache hierarchy, and (iii) by enabling highly data-parallel pro-
cessing [1, 2, 8, 10, 24]. However, choosing the right compression
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algorithm is not trivial. Compression selection has many objec-
tives, like query memory consumption or query runtime, which
can be optimized. Most algorithms only achieve improvements
for one objective at a time, so a holistic selection has to look at
all combinations of algorithms, data properties, and objectives
to reach improved results. To show how complex this topic is,
we present an end-to-end experiment and discuss its impact on
selecting the right algorithm.

1.1 Motivational End-to-End Experiment

As mentioned before, the different objectives of query optimiza-
tion lead to high complexity in selecting the right algorithm for
a given data set. To back this assumption, we use a simple analyt-
ical query SELECT SUM(Y) FROM R WHERE X = c and measure
its end-to-end performance for different integer compression
algorithms within the analytical query engine MorphStore [10].
MorphStore uses an operator-at-a-time processing model with
on-the-fly de/recompression, i.e., operators decompress the in-
puts and recompress the outputs on the fly while processing un-
compressed data internally. Thus, the (de)compression runtimes
determine the query runtime difference between two alterna-
tive query plans with different compressed formats selected. All
compression algorithms are explained in detail in Section 4.1.
In our experiment, performance is differentiated into memory
footprint and query runtime. Figure 1 illustrates the difficulty
of finding the best integer compression algorithm for our exam-
ple query given different data inputs. Every bar in this figure
shows the performance for uncompressed data or a different
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Figure 1: The importance of choosing the right algorithms
for better end-to-end performance.
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combination of compression algorithms on the two input data
columns (first line in legend) and any intermediates (second line
in legend). We use two cases to model different data inputs and
properties, each using two out of three columns C1 to C3, with
different data distributions for the aggregated column Y and the
filtered column X. Case 1 uses column C3 with sorted values as
the aggregated column Y and case 2 uses column C1 with very
small values as the aggregated column Y. The filtered column
X in both cases is column C2, which contains enormous out-
liers in its data distribution. Whereas case 1 can always rely on
FOR-+dynamic bit packing (BP) for best results in both memory
footprint and runtime, the second case needs a finer distinction.
Here, FOR+dynamic BP is the best option for the memory foot-
print, but static BP is the best for query runtime. So, it is crucial
for query performance to choose the right algorithm or an algo-
rithm close to the performance objective optimum. Therefore,
a key feature of a selection strategy is the inclusion of general
knowledge about data distributions and their influence on the
algorithms to make a data-independent decision and generalize
over different inputs.

1.2 State-of-the-Art and Shortcomings

The large number of proposed integer compression algorithms
in the literature and the insight that there is no single-best al-
gorithm highlight the complexity of finding the best algorithm
for every data input [2, 8, 9]. The best integer compression algo-
rithm depends on data as well as hardware properties [8, 9, 24].
However, as shown in [2, 10, 12, 20], analytical query processing
in in-memory column stores can be optimized if the best integer
compression is selected. To select the best-fitting compression
algorithm, an appropriate selection strategy is needed. For that,
three general approaches have been proposed: (1) rule-based
selection, (2) cost-based selection, and (3) ML-based selection.

Regarding rule-based techniques, Abadi et al. [2] have hand-
crafted a decision tree based on an empirical evaluation of a
small number of compression algorithms in 2006. One advantage
of this approach is that making a decision is very cheap as it
requires only a few steps through the tree. However, as the field
of lightweight compression has evolved significantly since then,
their decision tree does not cover (i) the diversity of the algorithm
landscape nowadays and (ii) the hardware dependency.

Damme et al. [9] have gone a step further by developing a
cost model for lightweight integer compression algorithms. This
cost model adopts a grey-box approach by explicitly modeling as
much knowledge about the algorithms as possible and implic-
itly capturing the impact of data and hardware characteristics
using a small number of calibration measurements for each algo-
rithm. While this approach is able to generalize to a wide range
of lightweight integer compression algorithms, a certain amount
of manual effort is required to embrace a new algorithm. Fur-
thermore, making a single decision with the cost model involves
much more calculations than traversing a decision tree.

A major shortcoming of both approaches is the manual effort
required to incorporate algorithms into the selection process. So,
a third category of selection strategies based on ML has been
proposed. ML-based selection strategies are a relatively new con-
tribution to the field of compression [4, 6, 20, 21]. They model the
general selection process as a black box. Data properties are put
into a learned model, e.g., neural networks, and the potentially
best algorithm is predicted by the model. These models produce
good-quality decisions fast. However, contrary to the other two
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types of strategies, these ML-based approaches do not explain
why an algorithm is picked and most of them are still rigid when
it comes to expanding the approach to new algorithms.

1.3 Our Contribution and Outline

To achieve a (user-)data-independent selection approach, our
main contribution within this paper is to introduce and eval-
uate a way to approach the integer compression algorithm se-
lection problem with a learned selection strategy. To eliminate
the manual effort, human engineering, and data dependency for
covering compression algorithms, our learned selection strategy
views compression algorithms as black boxes. This black-box
approach ensures broad applicability and generalization over
different data but requires machine learning-based methods to
model the required knowledge for decision-making. A super-
vised machine learning-based approach enables us to use the
advantage of training models once on a synthetic data set and
then apply them repeatedly to new unknown data with very little
overhead through their fast forward passes. The prerequisites
are split into two challenges for every machine learning-based
approach: feature engineering and data generation. In detail, our
contributions are as follows:

(1) We start by providing the necessary background on light-
weight integer compression and related work for selecting
a compression algorithm in Section 2.

Then, we present our machine learning-based learned se-
lection strategy, which is based on gradient boosting, in
detail in Section 3. In particular, we introduce the neces-
sary concepts for feature engineering and data generation
to provide an extensible, data-independent concept with
little human interaction for further algorithms.
Afterwards, we evaluate our novel strategy and compare
it to existing strategies in Section 4 by showing that a syn-
thetic data set can be generated once during training and
brings generalization and little overhead to the decision-
making.

(2

~
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Finally, we discuss our findings in Section 5 and conclude the
paper in Section 6.

2 RELATED WORK

The general idea of data compression is to invest some computa-
tional cycles to reduce the physical data size. This computational
effort can usually be amortized by an increased effective band-
width of data transfers to and from storage mediums. Thus, data
compression — in particular lossless methods — has been success-
fully applied in many areas, such as database systems [7, 16, 31].

Depending on the storage medium, different classes of lossless
compression methods can be distinguished. On the one hand,
classical heavyweight algorithms, such as Huffman [19], arith-
metic coding [38], variants of Lempel-Ziv [37, 41], and Snappy
[18] support arbitrary data but are relatively slow. Thus, they
are usually employed to amortize disk access latencies. On the
other hand, lightweight compression algorithms, which have been
developed especially for columnar data [2, 24], are much faster
while still achieving great compression rates. This combination
makes them suitable for in-memory columnar processing. To give
a comprehensive insight into the field of lightweight compression
as a foundation for this paper, we summarize those algorithms
and review existing selection strategies in this section.
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Figure 2: A global model selection strategy.

2.1 Lightweight Integer Compression

Lightweight compression algorithms usually focus on integer
sequences, which is a natural match for columnar data since it
is state-of-the-art to represent all values as integer keys from
a dictionary [3]. The unique properties of lightweight integer
compression algorithms result from their exploitation of specific
data characteristics, such as the data distribution, sort order, or
the number of distinct values in a column. A large variety of
lightweight integer compression algorithms has been proposed
and a recent study showed that there is no single best one [2, 8, 9].

All lightweight integer compression algorithms are more or
less cascades of one or more basic techniques, whereby five basic
techniques are known and heavily applied: run-length encoding
(RLE) [2, 32], frame-of-reference (FOR) [17, 42], delta coding
(DELTA) [24, 32], dictionary coding (DICT) (2, 3, 32, 42], and null
suppression (NS) [2, 24, 32]. The techniques can be described as
follows:

FOR, DELTA: represent each value as the difference between a
given reference value or its predecessor value.

RLE: tackles uninterrupted sequences of occurrences of the
same value, so-called runs, and each run is represented by
its value and run length.

DICT: supplants each value by its unique key given by a dictio-

nary.

is the most well-studied technique and its basic idea is the

omission of leading zeros in the bit representation of small

integers.

The goal of FOR, DELTA, and DICT is to represent the original
data as a sequence of small integers on the one hand, which is
then suited for the actual compression using NS. On the other
hand, the ability of these techniques to generalize is used to
tailor lightweight integer compression algorithms to different
data characteristics, as shown in [8, 9].

NS:

2.2 Selection Strategies

For this intelligent usage, a selection strategy is required to
choose reasonable compression algorithms for the base columns
and intermediate results [2, 10, 12, 20]. As already shown in [9],
the selection is non-trivial and depends on (i) data characteristics,
(ii) the hardware properties, and (iii) the objective. The objec-
tive means that the best algorithm concerning the compression
rate is not necessarily optimal regarding (de)compression speed.
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Figure 3: A local model selection strategy.

Selecting according to compression rate minimizes the overall
memory footprint, while selecting according to (de)compression
speed minimizes the query runtime.

Selection Objectives. Several objectives can be regarded for
defining the optimal selection outcome. From our experiment in
Section 1.1, we can derive that different objectives can be ben-
eficial for query optimization depending on the use case. The
two major goals are reduced query memory consumption and
query runtime. For integer compression in column stores, this
translates to the compression rate to optimize memory consump-
tion and compression or decompression runtimes to optimize the
overall query runtime. In detail, the five most important selection
objectives (SO) in our scenario are:

SO1:
SO2:
SO3:
S04:
SO5:

Regarding the runtimes, we need to distinguish different con-
texts in which compression and decompression are typically
executed. The classical case is the (de)compression of an en-
tire column, whereby the input is loaded from main memory
(RAM) and the output is stored in RAM again, assuming a suffi-
ciently large column. In that respect, objective SO2 represents
the compression of an entire column, e.g., during the initial com-
pression of the base data. Many column store systems keep the
data in compressed form during query processing as long as
possible [11, 23, 29, 42]. However, as soon as a query operator
cannot process the compressed data directly, the data is fully
decompressed before the remaining processing happens entirely
on uncompressed data. To cover that, we define the selection
objective SO3. Besides the (de)compression of an entire column,
more fine-grained approaches become important when smartly
integrating compression into the query execution. In [10], we
presented a novel holistic compression-enabled processing model
where all intermediate results are represented using a lightweight
compression algorithm. To enable that, we developed a morphing
wrapper inspired by the transient decompression concept [7].
Our morphing wrapper surrounds an operator internally pro-
cessing uncompressed data with a fine-grained decompression
of the inputs and recompression of the outputs. More precisely,
instead of materializing the output of the decompression in RAM,

compression rate,

runtime compression (ram2ram),
runtime decompression (ram2ram),
runtime decompression (ram2reg),
runtime compression (cache2ram).



we forward it immediately to the operator processing one vector
register (reg) at a time. This case is represented by selection ob-
jective SO4. On the output side, a small amount of an operator’s
output is buffered in a cache-resident buffer (cache) from where
it is forwarded to the recompression. This case is represented
by selection objective SO5. Since accessing registers or cache is
much faster than accessing RAM, the main difference between
S04, SO5 to SO2, SO3 is the different ratio between compute
and load/store cost.

Selection Techniques. Any selection technique for integer
compression algorithms needs to predict the best-fitting algo-
rithm concerning the different objectives from a collection of
algorithms A given the data properties, hardware properties, and
algorithm properties. In this context, three selection techniques
have been proposed: (1) rule-based, (2) cost-based, and (3) Ma-
chine Learning (ML)-based selection techniques. Rule-based tech-
niques are typically modeled as a decision tree or graph guiding
through a number of questions to arrive at the suggested selection
solution. Abadi et al. [2] manually derived such a decision tree for
lightweight integer compression algorithms for a limited number
of algorithms. It uses data properties, workload characteristics,
and a set of rules to determine the best-fitting compression algo-
rithm. Contrarily to their simplicity, decision trees still need a
lot of preliminary research, i.e., feature engineering. Moreover,
Abadi et al. [2] only considered the compression rate objective
S01. Finally, a major drawback of their hand-crafted decision
tree is that it is unclear how to extend it to novel compression
algorithms and how to integrate the hardware dependency.

Cost-based selection techniques are based on a cost model
and provide a cost function estimating the cost of an alternative
solution. Then, the selection problem is solved by choosing the
alternative solution incurring the minimum cost according to the
cost function. Formally, a cost model is a function modeling an
abstraction from a data point x to a single cost value y for a given
algorithm a.

fa:x ywithxeR%,yeR (1)

For integer compression, the inputs x for a cost model are mani-
fold. For example, these can be bit width histograms, statistical
properties of the data, or specific properties of the algorithms.
Given a cost model, we can find the best algorithm by choos-
ing the one with the lowest costs. This requires calculating the
costs for all available algorithms A for a data point x and then
comparing them to each other.

@

argmin fz (x)
acA

There have been some cost-based attempts to select a light-
weight integer compression algorithm based on its estimated
compression rate [23, 28, 30], but these works do not consider our
runtime objectives SO2 to SO5. Damme et al. [9] have recently
presented a novel cost model for lightweight integer compres-
sion algorithms. This cost model adopts a grey-box approach by
explicitly modeling as much knowledge about the algorithms as
possible and implicitly capturing the impact of data and hardware
characteristics using a small number of calibration measurements
for each algorithm. While this approach can generalize to a wide
range of lightweight integer compression algorithms, a certain
amount of manual effort is required to embrace a new algorithm.
This still requires human engineering because more profound
knowledge about the new algorithm and its inner workings is
needed. Furthermore, making a single decision involves much
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more calculations than traversing a decision tree. Given the mul-
titude of available compression algorithms, scoring each of them
to select the best one can become very expensive.

ML-based techniques have been introduced as a third large
area of research for selection strategies. One common point for
most ML approaches is that they are modeled as classification
tasks and are not extendable with new algorithms. Additionally,
they are trained on one data set and tailored to work on that
particular use case. This reduces the generalization capabilities
of the ML models and makes them data-dependent.

Boissier and Jendruk [4] employ regression models to select a
suitable lightweight compression algorithm in Hyrise [12]. Un-
fortunately, crucial details of their approach are left unexplained
in their short paper. Besides that, Jin et al. [21] model the se-
lection problem as a classification task. During training, they
exhaustively determine the best algorithm for a set of training
data blocks. Then a test data block is assigned to the training data
block with the most similar data properties and the known best
algorithm for that training block is selected. A classification task
like this is rigid and cannot easily be expanded to new algorithms.

Another example for ML-supported selection is CodecDB [20].
CodecDB uses a learned global model classification approach
to find the best algorithm according to the compression rate.
However, this is the only objective that this model considers.
Other objectives that would be crucial for query performance,
like SO2 to SO5, are not modeled in the original paper, but for our
evaluation, we extended the model to be usable with all objectives.
The model is a neural network with 14 neurons in one hidden
layer and hyperparameters as described in [20].

Furthermore, LEA [6] is an ML-based compression selection
approach for column-stores. LEA trains models to predict the
best column data representation for optimized query execution.
LEA also uses synthetic data, like our generators, for training.
However, like CodecDB, LEA currently only focuses on the data
compression rate and also relies on cardinality estimates, which
can negatively influence the optimizer due to their high estima-
tion errors. Additionally, it uses sampling from the input data
during the forward pass, which might slow down its application
during runtime.

Modern hardware has also become the focus of compression
acceleration. Especially the transfer of computations to the GPU
seems promising [14]. In this work, faster compression is reached
by using a compression planner to gain a speedup for GPU-
based compression. In contrast, we propose a hardware-agnostic
approach. Mainly, we use machines for data collection and model
training with no co-located additional hardware, i.e., GPUs. Even
our ML models can be trained very fast on a CPU and do not
require a GPU, unlike other neural network approaches.

2.3 Lessons Learned

A large corpus of integer compression algorithms has been pro-
posed [2, 24, 27, 33, 34, 36, 40] and no single-best algorithm ex-
ists [8, 9]. The best integer compression algorithm depends on
data and hardware properties as well as on the objective [2, 8,
9, 24]. The selection of the best-fitting algorithm is essential to
enable the smart use of lightweight integer compression in in-
memory column stores. With all shortcomings of the available
selection strategies discussed above, we argue that a learned se-
lection strategy with a collection of smaller models trained on
data-independent synthetic data offers a high-potential alterna-
tive. We see advantages in machine learning (ML) characteristics
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because it requires less knowledge and effort for cost model
engineering. With ML models, we are able to transform the high-
quality grey-box approach by Damme et al. [9] to be adaptive to a
more extensive collection of algorithms with a smaller overhead
for deriving algorithm properties. Additionally, we can combine
the expressive nature of the analytical cost model with the light-
weight computation of decision trees by Abadi et al. [2] for a
better and faster algorithm selection. We achieve all this without
losing sight of the other challenges by solving them accordingly.

3 LEARNED SELECTION STRATEGY

As an alternative to existing selection strategies, we want to ex-
amine the potential of local ML models for a learned selection
strategy. In general, ML opens up the possibility of generating
more lightweight cost estimators more quickly with higher qual-
ity. So, it seems natural to model the cost functions for integer
compression with a collection of ML models. Given the nature of
such a cost model, a mapping from data properties to a continu-
ous target variable, the modeling is called a supervised regression
problem. However, an ML model must follow the same general
process for selection strategies.

We deliberately decided not to establish the cost model as a
classification problem as other ML selection strategies do [4, 21].
From the data properties, these classification models are global
models predicting a vector with probability distributions over a
set of target classes, i.e., the algorithms. The class or algorithm
with the highest probability is then chosen as the best. Our pri-
mary concern is that the number of classes per global model is
fixed. So, if we add a new algorithm, we need to rebuild and train
the whole ML model from scratch. This process is depicted in
Figure 2. With regression and a collection of local models, we can
build a model for each objective and algorithm making the selec-
tion strategy expandable. Any new algorithm just adds a limited
number of models—one for every objective and algorithm—with
a small training effort. This is necessary because new compres-
sion algorithms are introduced or updated very often due to
their iterative implementation process. Therefore, we support an
ever-changing pool of algorithms within a system. A collection of
|A] - lobjectives| models is called a selection strategy design. This
approach also makes the decision process partially explainable.
Given a pool of algorithms, one can identify the predicted cost of
every single model and draw conclusions similarly to traditional
approaches. The local model approach for a selection strategy de-
sign is shown in Figure 3. Local models have been proven to work
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in other areas of database optimization, like learned indexes [22]
or cardinality estimation [26, 39].

Given the properties of ML models, we require some changes
to the general selection strategy engineering process. Altogether,
we can establish the basic process for a selection strategy, as
defined in Equations (1) and (2). An overview of this process is
depicted in Figure 4. Given the data and algorithms, a cost model
calculates the costs for all sample and algorithm combinations.
Then, we choose the algorithm with the lowest costs for each
sample separately. The algorithms and their behavior are seen
as predefined knowledge that is often complex and deeply incor-
porated into the cost model by preliminary human input. The
adapted process for an ML approach can be found in Figure 5.
For ML-based approaches, the complex integration of algorithms
is not necessary anymore. Instead, we defined two new steps:
data generation and feature engineering:

e Data generation is used to sample representative exam-
ple data for our supervised learning problem. Supervised
learning always requires labeled data exposing the same
properties as the data in the evaluation. Additionally, the
use of synthetic training data makes our approach data-
independent. It is important that generated and evaluation
data are disjoint.

Feature engineering transforms and reduces the data
properties to key representations. These can be statistical
or derived properties.

Furthermore, transforming the task into an ML problem re-
quires several prerequisites and naming conventions. In ML, the
cost value is called target value and the derived data properties
are called features. Any supervised ML model has two phases:
a training phase and a forward pass. In the training phase, the
model is shown example data from which it learns a function
to predict the target value. This function is applied to new or
unknown data in the forward pass to calculate its target value.
The forward pass is usually much faster than the training phase
by some orders of magnitude. Therefore, training should only be
done once, whereas the forward pass can occur often, which is
beneficial during model application because it adds only minimal
overhead to the decision-making. To get the most out of the train-
ing phase, the example data should be representative, especially
for the model to abstract to new or unknown data. Therefore,
data generation should produce representative synthetic data.
We show how we generate example data in Section 3.2. The
other important part is feature derivation. We present our feature
engineering in Section 3.1.
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Figure 6: Different data generator techniques.

With the trained local ML cost models, we receive predictors
fa, which try to approximate the actual costs of an algorithm f,.
So, we need to adapt our definition of a selection strategy to the
predictors.

®)

argmin f;(x)
acA
The quality of the selection directly depends on the quality of
the models for each algorithm. Errors are only introduced by the
wrong cost model estimates and not by the selection strategy
itself.

3.1 Feature Engineering

Feature engineering is an essential part of our locally learned
model setup pipeline. Here, data representations are formulated
given by varied instructions. We opted for the standard proper-
ties of lightweight integer compression algorithms because their
influences are generally well-studied. So, it is easiest to take into
account all properties of the algorithms and then derive features
for our learned approach.

The first step we use is the blocking of data into chunks with a
fixed number of values each. This is a state-of-the-art procedure
in in-memory column-stores [10, 23]. Given the different lengths
of columns or integer arrays, this is required because blocking re-
duces the input to a fixed size for integer compression. Moreover,
this means that our models only work on these blocks. However,
this is also an advantage because it enables our selection strategy
to work on single segments of a column or data array at a time.
This allows for a different compression algorithm for every block
of a column.

To process whole columns, the selection strategy needs to
be called on every block of the column. This does not lead to a
performance loss because the forward pass is very fast, as our
evaluation will show. Additionally, the model needs only to be
trained on block-level meaning the problem abstraction is much
lower than it would be for individual length input.

However, blocking is not enough to generate meaningful input.
A common abstraction in integer compression is to use bit width
histograms (bwhist) [10]. They collect integer values with the
same bit width into buckets and aggregate a collection of integers
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into a single histogram distribution. Therefore, the histograms
have a fixed length for a given data type, i.e., 64 buckets for 64-
bit integers. Bwhists further reduce the level of abstraction for
an ML model. They reduce the complexity of any collection of
integers to a number of bucket values. In our case, we model
any input as a 64-bit bwhist where the m-th bucket contains the
percentual share of the m-th bit width in the data.

Again, bwhists are not the final feature set. With 64 values,
bwhist are still very large as input for small, efficient ML mod-
els. Fortunately, lightweight integer compression algorithms are
very well studied and documented. Their inner processes can be
directly associated with different data properties. So, particular
important data properties for the algorithms’ performance can
be derived. We identified the following complete set of single
value features from other works in the compression research
area, which argue through their experiments that some of these
features are most important for compression [8, 9].

(1) Is the data sorted? (sorted)
(2) Minimum bit width in the data (minBucket)
(3) Maximum bit width in the data (maxBucket)
(4) Percentage of data in the min. bucket (Min)
(5) Percentage of data in the max. bucket (Max)
(6) Average bit width of the data (Avg)
(7) Number of filled buckets (numBuckets)
(8) Standard deviation of the data (Std)
(9) Skew of the data (Skew)

(10) Kurtosis of the data (Kurt)

The last nine features can be directly derived from the bwhists.
However, we need to inspect the data for the first feature, but
most column stores store this information in their metadata. Our
evaluation will show that this set of features is enough to produce
low errors for all objectives and with competitive runtimes for
training and forward passes. We also ran experiments to explore
the possibilities of reducing the feature set, but the runtime of
all optimization methods did not justify the marginal quality
improvements. Therefore, we use the complete set of features for
all experiments.



3.2 Data Generation

Besides the derivation of features, data generation is an impor-
tant aspect of supervised models. Some even say that obtaining
high-quality training data is the most crucial part of designing
ML models for data processing [25]. The main contribution of
data generation is to generate synthetic data sets that can be
used during training and resemble data distributions that we
expect to occur in real-world data. This makes our approach
data-independent because the models are able to generalize from
a well-defined synthetic data set to any other data set. So, we
need to generate artificial data sets representing any unknown
data. For this, we need to test several generation techniques to
find the best one.

Additionally, every training example needs to be run for each
integer compression algorithm at least once on the target hard-
ware system to get the necessary labels for all objectives. This
is an expensive operation, even for smaller data sets. However,
this is necessary to capture the hardware behavior and prop-
erties in combination with the integer compression algorithms.
Therefore, the main objective is to use as little data as possible
to shorten this execution but to use as much representative data
as possible to improve the model’s quality. To find this balance
and the best generalizing data-independent generator, we incor-
porate three different generation techniques, each representing
another idea to generate data with increasing complexity. The
three approaches are:

(1) La-ola!
(2) Amount of outliers
(3) Tidal wave

As mentioned in Section 3.1, the generators do not directly pro-
duce integer data but different bwhists from which the data and
features are derived. All generators are presented in Figure 6.
Note that it is not possible to generate every possible bwhist
because a 64-bit bwhist where every bucket can assume val-
ues between 1% and 100% (percentual share) has 100%* different
combinations. Reducing the number of values per bucket to 10%
brackets and grouping the buckets in pairs of two only reduces
the number of combinations to 1032, So, our generators reduce
this problem space even further.

The first generator, the la-ola, is a cycling bucket generator.
For each new bwhist, a fixed portion of a bucket is redistributed
to the next highest neighboring bucket. This happens until the
bucket is empty. Then, the next bucket, which was getting filled
before, is emptied. Therefore, the first bwhist must have a filled
first bucket with otherwise empty buckets. Figure 6a details this
process for the first two buckets. The la-ola generator models
edge conditions, i.e., overflow of buckets into the next higher bit
width.

The second generator tries to model distributions with outliers.
Outliers are larger integer values than the rest of the integer
sequence. This scenario is important for integer compression
algorithms because a high amount of outliers might introduce
the relocation of data to a different level in the memory hierarchy,
i.e., from the cache to the main memory. With a data-independent
approach, we want to be able to cover the eventuality of this use
case. For this, it uses the same approach as the first generator, but
instead of putting the portion of a bucket into the neighboring
one, it always uses the last bucket. After emptying a bucket, the
next higher bucket is emptied into the highest bucket. For our

1Spanish: the wave, also: stadium wave
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use cases, the highest bucket has a bit width of 64. This outlier
generator produces distributions that represent highly skewed
data, as pictured in Figure 6b.

The last generator, called tidal wave, is a cycling Zipf dis-
tribution. For an increasing number from one to 64 buckets, a
Zipf distribution is sampled in these buckets and then used as a
bwhist.If one run from one to 64 is completed, the start bucket is
increased and the process is repeated until every bucket has been
the start bucket. Figure 6c shows the generations where the first
and second bucket are used as the initial buckets. Over several
iterations, the Zipf distribution is stretched over an increasing
number of buckets for the first bucket. The same is repeated
for the second bucket. This gives us a wide range of different
bwhists modeling integer distributions where specific bit widths
are more distinctive without losing the focus on outliers.

With these three generators, we want to examine the potential
to find representative integer data. This data should produce
high-quality learned models but also have as few distributions as
possible to reduce performance load. Every integer compression
algorithm needs to be executed with every example distribution
on the target hardware system to be useful. So, every distribution
we generate without quality gain can be directly attributed to
a performance loss. Conversely, every distribution that brings
quality improvement but is not generated is a quality loss. We
show in our evaluation how the different generators influence
this balance and how well they generalize to different data sets.

3.3 Training and Hyperparameters

An important part of learned approaches is their training phase.
Usually, this step for setting up a global model is very time-
consuming. Even though generating the example data takes the
longest time of the training process (cf. Section 3.2), learning the
model still takes some additional time. To keep training as short
as possible, we decide not to use neural networks (NNs) because
they would induce long training times. Additionally, we want to
generate as little example data as possible and NNs perform best
with lots of training data. Given these prerequisites, we decided
to use Gradient Boosting (GB) as local models. This technique
has the advantage of being lightweight because its modeling is
based on weak predictors (i.e., decision trees) that have a fast
training phase and forward pass. Every weak predictor is trained
on the residuals of its predecessors. Generally speaking, for P
predictors F our cost models is derived as:

P
falx) =) ApFp(x) + ¢ @)
p=1

In our case, F are the tree predictors. These weak predictors have
two parameters that mainly influence model quality: the number
of estimators P and the maximum depth per tree estimator d.
Any change in these has an impact on the model’s final quality.

As a result, we need to find the best combination of P and d.
This is called hyperparameter tuning and is done by repeating the
training of the ML model with different parameter combinations.
A validation data set is used to assess the model’s quality with
every parameter combination and the best model configuration
is chosen. The validation data has to be disjoint from the training
data. We can directly incorporate the hyperparameter tuning into
the training setup because we see two advantages. Firstly, our
local models have a very low single training time, so repeating
the training is not as time-consuming as it would be for NN.
Secondly, we only have two parameters to keep track of limiting



Table 1: Rel error[%] for objectives (avg over all algorithms).

Generator compr ram2ram decompr ram2ram compr cache2ram decompr ram2reg compr rate
la-ola 11.81% 2.32% 17.80% 19.20% 12.84%
outliers 13.70% 1.23% 17.48% 16.82% 16.74%
tidal 6.03% 1.17% 7.68% 6.87% 7.05%

Table 2: Rel error[%] for algorithms (avg over all objectives).

Generator staticbp dynamicbp group simple
la-ola 14.22% 10.55% 11.34%
outliers 7.71% 11.89% 19.95%
tidal 1.02% 5.04% 11.25%

the search space significantly. Therefore, we can still train all
necessary models in seconds and report smaller overall errors.

Furthermore, the tree structure of the chosen python imple-
mentation? also has a very small memory footprint compared
to other ML models. The trees are stored as one-dimensional
float arrays giving us the advantage of less memory consump-
tion. Furthermore, the sklearn implementation transfers some
of its components to C positively influencing its performance.
A detailed empirical discussion of all this can be found in our
evaluation.

4 EVALUATION

In this section, we evaluate the primary methods of our learned
selection strategy for integer compression algorithms, like the
data generation and hyperparameter tuning, and the overall per-
formance of our approach against other techniques. For the first
part, we extensively compare the results of the three different
generators when used for training ML models and discuss their
performance. Additionally, we detail the final hyperparameter
configurations, the total runtime of the hyperparameter tuning
and training, the time for the forward pass, and the memory
footprint of the final models. This is done for each algorithm and
each objective, as defined in our learned selection strategy setup.
Next, we show the performance of our approach on 201 real-
world data sets from the publicBI benchmark [15] compared to a
baseline, the cost model of Damme et al. [9], and the ML-based
strategy of CodecDB [20]. Additionally, we show the flexibility
of our approach by adding algorithms to our selection strategy
design and evaluating the performance and the required training
times. The last experiment looks at the modeling of hardware
properties by using our approach on a different set of hardware.
To assess the quality of our learned selection strategy, we need
some indicators. We use three standard metrics for error evalua-
tion. Firstly, there is the relative error for a model under a given
algorithm a on a data set X consisting of |X| = n samples.

N fa(X) = fa(X0)]
S a(X) |+ [ fa(X0)]

This is equal to the Symmetric Mean Absolute Percentage Error
(SMAPE) between the original cost for every objective f;(x)
and the cost estimated by the model f; (x). The second metric is
the accuracy: Out of |X| = n samples, how many times did the

rel(a,X) = 200% (5)
n

https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting

559

strategy predict the correct algorithm?

true positives

acca(X) = (6)

The higher the accuracy, the better the selection strategy. The last
indicator is the loss or slowdown. This metric shows how much
performance we lose due to misclassification. If our strategy does
not select the correct algorithm, we want to quantify the loss
we get for any objective. From our motivational experiment, we
argue that misclassifications are not severe if the slowdown is low.
For a single sample x, the slowdown is defined as the Symmetric
Absolute Percentage Error (SAPE) between the costs of the best
algorithm f}, (x) and the costs of the chosen algorithm f(x).

|fa(x) = fp(x)]

[fa GOl + 1 ()1
The slowdown is only defined for a # b. For a complete data
set X, we require the best (B) and chosen algorithms (A) for all
samples and average the SAPE to receive the SMAPE for the
slowdown.

SAPE(b, a, x) = 200% (7)

| fa; (Xi) = fB, (Xi)]
fa; (X)) | + | fB, (X))

With these metrics, we can compare our learned selection strategy
to other strategies and evaluate its overall quality.

200% ~—
SMAPE(B, A, X) = Z ®)
v &

4.1 Setup

All ML models are trained on an Intel(R) Xeon(R) Gold 6136
system with 64GB memory. However, retrieving the labels for all
objectives for the example data from the generators is executed
on an Intel(R) Xeon(R) Gold 5120 system with 377GB memory.
This roughly depicts a real-world scenario where the ML models
are trained asynchronously on a different machine not to disturb
operations on the system where they should be used after training.
The generated labeling benchmarks have to be executed on the
main system because we need their execution objectives on this
particular hardware if we want to use our selection strategy on
it.

We train our models only on the three data sets generated
by our generators and test our models on two data sets: (i) the
synthetic validation data from the work of Damme et al. [9], and
(ii) the real-world test data, which is a reduced excerpt from the
publicBI benchmark. Note that the validation data is a second test
data set with different properties than the publicBI. We reduced
the publicBI benchmark to ca. 1GB by removing duplicated and
almost equal blocks. However, we still keep data from each of the
201 example data sets within the publicBI. So, we get a diverse dis-
tribution of bwHists and properties from real-world data where
the mix of bit widths is challenging for any selection strategy.
Additionally, we apply an order-preserving dictionary encoding
to all data columns in the publicBI benchmark, which are not
integers. Therefore, we are able to include the compression of
floating point values and strings in a straightforward manner.
Our local models can model even the high complexity of a float-
to-integer dictionary encoding without losing expressiveness.



Table 3: Evaluation benchmarks.

generator forward pass samples training time hyperparameter setup time on

[us] (o) [s] tuning [s] target system [min]
la-ola 26 (£1) 3.151 0.24 4.8 898
outliers 26 (1) 3.151 0.24 4.8 899
tidal 26 (1) 2.080 0.24 4.8 600
Damme et al. 1126 (£1651) 64 - - 11
CodecDB 56 (+£13) 3.151 13.1 - 898

With this processing step, bwHists can be applied to all data
types and the feature derivation is then applied in the same way.
This allows us to evaluate our approaches over all columns and
data types in the publicBI data set.

We consider three state-of-the-art lightweight integer com-
pression algorithms from the null suppression (NS) technique
as examples. For further experiments, we also included a delta
encoding and frame of reference implementation. All five al-
gorithms are vectorized using AVX-512, assume 64-bit uncom-
pressed data elements, and are broadly used [10]:

Static bit packing (static bp) represents all data elements in a data
set using the number of bits required for the largest data el-
ement. This algorithm is straightforward but cannot adapt
to local variations in the data distribution.

Dynamic bit packing (dynamic bp) divides a data set into blocks
of 512 data elements each and represents all data elements
in the block with the bit width of the block’s largest value,
i.e., an individual bit width is chosen per block.

Group simple packs as many data elements as possible into a 512-
bit vector register, whereby a common bit width is chosen
for a variable number of data elements. In fact, dynamic bit
packing and group simple are ports of SIMD-BP128 [24]
and SIMD-Group-Simple [40], respectively.

Delta encoding (DELTA) only saves the differences between each
successive integer value in the data.

Frame of reference (FOR) also saves a differences instead of data
values. However, in contrast to DELTA, it calculates these
differences from a fixed reference point for each data point.

Due to the local model approach, our learned selection strategy
design requires an individual model for every combination of
algorithm and objective. We evaluate the five important objec-
tives from Section 2 for the three NS compression algorithms
mentioned above. This leads to 15 models for every run during
training, hyperparameter tuning, and the same number of for-
ward passes during model application. Despite this overhead, we
show that our strategy is still performing efficiently.

4.2 ML Evaluation

For comparing the different generators, we use the average rela-
tive error once over all three algorithms and once over all five
objectives. Note that this is not the slowdown but the direct rela-
tive error for the costs of the 15 models. Tables 1 and 2 contain the
relative error on the validation data set for the three generators.
The error is consistently averaged over the dimension, i.e., the
algorithms or objectives, which are not presented. From these
tables, we can derive that it is possible to generate (user-)data-
independent decisions with our generated data. Additionally, the
tidal generator produces the models with the highest quality.
However, even though the la-ola generator is the simplest one, it
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also performs reasonably well. Another result is the poor perfor-
mance of the outlier generator. In conclusion, this generator does
not deliver synthetic representative data for the training. From
this evaluation, one can say that the tidal generator produces
representative data and should be used further to train models.
We will show its direct performance for our selection strategy
on the validation and test data in Section 4.4.

4.3 Hyperparameters and Model Properties

To run the hyperparameter optimization for gradient boosting,
we need to define the search space over the two parameters
estimators and depth. The range for the number of estimators
is [10, 50] with a step size of 10 and the range for the depth is
[3,6]. This generates a search space of 5 -4 = 20 parameter
combinations. During the hyperparameter tuning, for each of
the three generators, each of the 20 configurations spawns a
new training process and yields an individual model trained on
the training data. Then, for each of the three generators, we
select the best of those 20 models, i.e., the one with the lowest
relative error on the validation data. These errors can be found
in Tables 1 and 2. We detail more information about the models’
properties in Table 3. The table contains for each generator, the
cost model by Damme et al., and CodecDB: the forward pass
per sample, the number of training samples, the total duration
of the hyperparameter tuning, and the required time to run the
examples on the target system.

So, for each generator, the resulting 15 models—one for each
combination of the three algorithms and five objectives—have, on
average, a faster forward pass than the competitors. One forward
pass for one model takes 26 ps. This is faster than most com-
petitors’ forward passes and also independent of the algorithm
or objective. The cost model’s forward passes heavily differ for
different algorithms and objectives. Additionally, the models are
so lightweight that a single training only takes 0.24s. In sum,
we need 4.8s to train a whole model including hyperparameter
tuning, which is still faster than just the training of the global
CodecDB model. The hyperparameter tuning always takes the
same amount of time because, for each model, it has to check all
20 different parameter configurations. However, the setup times
of all ML approaches are longer than for the cost model because
we require the label retrieving on the target system.

A very important note we want to address here is that these
setup times are always necessary to generate training data for
any supervised ML approach and only need to be run once. For
example, using NNs would also require using the synthetic data
and its execution on the target hardware system.

All the presented advantages stem from the good-natured
properties of gradient boosting and the use of local models for
our use case. The lightweight weak tree estimators show high
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Figure 7: Accuracy (higher is better).

efficiency in training, the forward pass, and memory consump-
tion. Our models require 18MB of memory, which is less than 15
equivalent NNs would use.

4.4 Comparison

To show its applicability, we compare our learned selection strat-
egy to two classical approaches and one learned global model
approach. The first one is a baseline method, which chooses the
simplest algorithm static bp for each block we want to compress,
whereby the block size is 2,048 values in all experiments. The next
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one is the complex cost model introduced by Damme et al. [9].
Note that the original cost model by Damme et al. [9] does not
directly define the compression cache2ram and decompression
ram2reg selection objectives. However, as the authors mention
in [10], we modified the cost model by employing appropriate
bit width profiles for the first objective, while the latter can be
approximated by using the aggregation runtime objective of the
original cost model. The last one is the classification-based global
model from CodecDB [20]. This allows us to directly compare
the benefits of a local model approach to a state-of-the-art model.
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Figure 9: Scenario: New Hardware.

Table 4: Scenario: New Algorithms.

algorithm training time training time decision time

per model [s] total [s] total [ps]
NS 4.8 72 79
+DELTA 4.8 96 105
+FOR 4.8 120 131

We extend the CodecDB model to include the additional objec-
tives SO2 to SO5, which were not included in the original paper.
This is done by generating one classification model for every
objective. To evaluate our approach properly, we use both the
validation (TODS) and test data (publicBI) and report the accu-
racy and slowdown for all six selection strategies. From Figures
7 and 8, we derive that our approach is better than the three
comparing selection strategies with some restrictions.

From the accuracy evaluation in Figure 7, we can derive that
our learned selection strategy with the tidal generator produces
the best (highest) results. It beats its competitors in most cases,
except for some objectives for the publicBI benchmark. Even then,
the other approaches are only marginally better. The global model
from CodecDB suffers from overfitting and therefore generates
results that cannot be generalized to the test data. In general, the
accuracy of choosing the right algorithm for all data blocks varies
widely across the board of techniques. Contrarily, the slowdown
evaluation in Figure 8 shows a different story. Here, the la-ola
generator outperforms all other approaches by yielding smaller
slowdowns. There is one exception for the runtime compression
ram2ram for the publicBI data. Again, we argue that these dif-
ferences are only marginal. The global model shows qualities
between the traditional approaches and our local models with a
wide range of measured slowdowns. This is consistent with the
accuracy evaluation and is again an indicator of overfitting and
missing model expressiveness compared to our local models.

All in all, the tidal generator performs better in terms of ac-
curacy and the la-ola generator is better for the slowdown. This
means that with the tidal generator, our learned selection strategy
chooses the right algorithm more often, but if it misclassifies,
the resulting slowdown is more severe. This differs from our
initial findings from Section 4.2, but we think a lower slowdown
is more important than a higher accuracy. For a more compre-
hensive overview of all data presented for the NS algorithms in
this section, we highlight all metrics in Table 5.
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4.5 Scenario: New Algorithms

In this scenario, we take the data from the la-ola generator and
train local models for two additional algorithms: one DELTA and
one FOR algorithm. For testing, we used the TODS validation
data. With the additional two algorithms, our selection strategy
has two more possible choices for each decision. Table 4 details
the cumulative times for expanding the number of algorithms in
the selection strategy. Adding a single ML model takes 4.8s per
combination of algorithm and objective including hyperparame-
ter tuning. This sums to 24s per additional algorithm for all five
objectives SO1 to SO5. The combined forward passes through all
models in the pool generate the total cumulative decision time
for one entire decision as presented in Figure 3. The maximum
decision time over all five algorithms is 131 ps. Adding a new
algorithm only increases the decision time linearly by 26 us. The
DELTA and FOR algorithms are seldom the best selection for any
objective. Therefore, the overall accuracy and slowdown stay the
same as in Figure 7 and Figure 8. With such a low training time
at the same levels of quality, our learned selection strategy is
flexible and can adapt to a changing environment with differ-
ent integer compression algorithms. Additionally, the introduced
overhead through the additional forward passes that come with
each new algorithm is very small and does not slow down the
decision process. We argue that these properties stem from the
local model approach and cannot be reached easily with a global
model.

4.6 Scenario: New Hardware

In the last scenario, the whole collection of algorithms, including
DELTA and FOR, is tested on different hardware. However, differ-
ent hardware is only used for collecting labeled training data and
applying the learned selection strategy. For this, the hardware
contains an Intel(R) Xeon(R) Silver 4214R with 125GB memory.
The training is done asynchronously on the same hardware as
for the other experiments. The training data again is the la-ola
generated data set and the test data is the TODS validation data
set. Figure 9 shows the transfer of the selection strategy to the
new hardware with an Intel(R) Xeon(R) Silver. For all objectives
SO1 to SO5, as defined in Section 2.2, the overall levels of ac-
curacy and slowdown are similar to or better than the ones on
an Intel(R) Xeon(R) Gold. This is because the Xeon(R) Silver is
the newer CPU with better performance properties. Therefore,
we argue that our approach can model properties required for
integer compression over different hardware.



Table 5: All results from the ML evaluation.

generator data set  objective accuracy slowdown accuracy slowdown accuracy slowdown
baseline baseline cost model cost model ML ML

la-ola TODS compr ram2ram 65.81% 26.35% 91.35% 11.00% 69.27% 10.59%
decompr ram2ram 55.89% 2.07% 20.81% 1.56% 72.22% 1.31%

compr cache2ram 61.46% 37.44% 68.71% 34.37% 70.16% 8.98%

decompr ram2reg 53.32% 43.91% 43.17% 32.38% 72.78% 13.96%

compr rate 37.32% 37.24% 74.70% 35.68% 64.36% 7.21%

publicBI  compr ram2ram 96.51% 8.69% 96.67% 8.23% 45.93% 9.55%

decompr ram2ram 45.84% 0.54% 5.83% 1.25% 64.71% 0.36%

compr cache2ram 92.42% 14.87% 92.69% 14.52% 90.41% 13.41%

decompr ram2reg 76.43% 9.72% 72.17% 17.09% 62.79% 8.38%

compr rate 47.97% 14.63% 52.36% 13.08% 51.14% 6.74%

outliers TODS compr ram2ram 81.62% 18.88%
decompr ram2ram 62.21% 2.05%

compr cache2ram 78.30% 22.86%

decompr ram2reg 70.86% 25.28%

compr rate 54.96% 20.57%

publicBI  compr ram2ram 82.03% 15.11%

decompr ram2ram 8.19% 1.25%

compr cache2ram 78.11% 39.91%

decompr ram2reg 62.79% 8.38%

compr rate 29.08% 8.85%

tidal TODS compr ram2ram 84.61% 9.26%
decompr ram2ram 80.36% 1.45%

compr cache2ram 83.72% 19.86%

decompr ram2reg 85.31% 24.96%

compr rate 83.54% 21.81%

publicBI  compr ram2ram 96.53% 8.42%

decompr ram2ram 61.84% 0.37%

compr cache2ram 92.61% 14.54%

decompr ram2reg 82.10% 8.35%

compr rate 48.93% 11.45%

5 DISCUSSION

In this paper, we have shown that our learned selection strategy
works data-independently with local models and little human en-
gineering. Our ML models are better than competing approaches
when using the right training data. This data was chosen carefully
by comparing different generators representing different sets of
data distributions. The local model approach makes the selection
strategy extendable by design, which is essential for the dynamic
life cycles of compression algorithms in systems. This also applies
if we switch to other hardware. Through their fast forward passes,
our learned approach can be used as a selection strategy as they
add minimal overhead during query optimization. Our learned
selection strategy greatly reduces the human effort in setting up
new models because, with the presented generator-benchmark-
training pipeline, we can automate the addition of any other
integer compression algorithm to our selection design.?

We see three potential future extensions of our work, which
are out of the scope of this paper. Firstly, our selection strategy
also supports cascades of different compression algorithms. Here,
every cascade generates a new local model and is handled just
like a single algorithm, which works out of the box with our ap-
proach. Secondly, we could adapt our approach to other data type
compression, like floating point. However, this would require
new feature engineering and data generation to obtain the same

3https://github.com/lucaswo/learned- selection-strategy
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levels of quality and automatism as for the integer compression.
Lastly, another step forward would be integrating our learned
selection strategy into an existing database system. A candidate
would be MorphStore [10] from our motivational experiment
in Section 1.1. However, a full integration and evaluation are
beyond the scope of this paper.

6 CONCLUSION

Data compression has been a well-established query optimization
technique in database systems and has recently experienced a
revival. Unfortunately, there is no single-best integer compres-
sion algorithm depending on data as well as hardware properties.
Thus, in this paper, we presented an ML-based learned selec-
tion strategy with local models to select the best-fitting integer
compression algorithm. Our learned selection strategy is charac-
terized by three properties: (i) a (user-)data-independent strategy
by training on synthetic representative data, (ii) a fast strategy by
providing a decision with low computational and human effort,
and (iii) an extendable strategy by using local models.
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