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ABSTRACT
Machine learning (ML) models are often used for decision sup-

port. Besides accuracy, applications may want or even require fair

predictions. This paper addresses the largely unexplored problem

of improving fairness not only globally, but also in more specific

or local regions of the data, while not compromising accuracy.

FALCC comprises both a general framework to study various

facets of the problem and efficient algorithms for fair and accu-

rate dynamic model ensemble selection in order to induce local

fairness in classifications. Efficiency is gained by precomputing

optimal models for local regions encompassing similar samples

in an offline phase, thereby reducing the online model selection

to be used to classify new samples to a similarity lookup. To

further improve the quality of the results in terms of fairness,

we introduce techniques for model diversification and proxy dis-

crimination mitigation in the offline phase. Experiments validate

that FALCC is competitive in terms of achieved accuracy and

local fairness, while being significantly more efficient in terms

of prediction runtime for a new sample.

1 INTRODUCTION
Machine learning (ML) models are widely used to predict various

events and recommend actions that should be taken. In many clas-

sification scenarios (e.g., credit scoring [44], crime recidivism [11],

or hiring systems [57]), it is critical for these predictions to be

fair and not to exhibit bias towards specific groups of people. One

example application where the use of ML models has exhibited

discrimination against women was a recruitment tool developed

by Amazon [19]. Another example is the PredPol software, used

in some areas of the United States for crime prediction, which

has been linked to an increase in racial profiling [58].

Bias in ML predictions. In the above examples, biased deci-

sions were made towards groups of different gender or race. Such
attributes are called sensitive attributes (or protected attributes).
Sensitive groups are the groups resulting from the combination

of sensitive attribute values, e.g., groups defined by both gender
and race such as {black , non-binary } or {asian , female }. Today,
laws may actually forbid the consideration of such protected at-

tributes, e.g., for training ML models. Even though less regulated,

non-protected attributes may correlate with protected ones, effec-

tively serving as proxy attributes that may still steer the training

towards a biased ML model that exhibits indirect, so-called proxy

discrimination [38, 61, 65]. While the consensus is that sensitive

attributes, in general, should not impact the overall prediction in

order to be fair, no single formal fairness definition has emerged.

Instead, there are multiple fairness definitions [61].
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Algorithms for fair ML. Algorithms to alleviate the problem

of biased ML predictions have been proposed and divide into pre-

processing, in-processing, and post-processing algorithms [35].

Pre-processing strategies alter the training data. In-processing
methods focus on developing fair models, independent of the

training data. Finally, post-processing methods either modify the

resulting models or the predictions. Most work focus on binary

classification, some further limiting to scenarios with a single

binary sensitive attribute. While theoretically, any classification

problem can be turned into a classification problem with only

binary sensitive groups (one being the privileged group and the

other one being the protected group), this may result in discrimi-

nation of persons that share several protected traits [28, 60].

Local vs. global fairness. Another differentiating factor of so-
lutions for fair ML is the considered notion of fairness. Most

existing algorithms consider a specific global group fairness defi-
nition, hence they consider fairness among groups over the whole

dataset. We will refer to them as global fairness. Global fairness
encompasses several more nuanced definitions, including demo-
graphic parity (aka statistical parity) [24], equalized odds [36],
equal opportunity [36], or treatment equality [5]. The notion of

individual fairness [61] defines that similar people are treated

equally. Individual fairness metrics include, e.g., fairness through
awareness [24] and consistency [77]. Measuring individual fair-

ness for an individual 𝑡 requires determining local regions of the
data that comprise individuals similar to 𝑡 , i.e., a local region is a

subset of a dataset in which each sample has high similarity.

Group fairness and individual fairness may conflict [8], raising

the question of whether a more unified view can be defined. In-

deed, while it was acknowledged that the similarity of individuals

is important for fair classifications [8], from a legal perspective,

group fairness metrics are used to determine underlying discrim-

ination [26]. Recent work has proposed local fairness [55] that
combines the fairness notions defined for global fairness with the

locality of individual fairness. Local fairness is achieved when

each group (i.e., both protected and not protected) is treated

equally (as assessed by a global fairness metric) for subsets of

the population that share lots of traits (i.e., that are similar when

disregarding protected attributes).

We illustrate global, individual, and local fairness using Fig. 1.

It assumes a binary classification problem. Colors indicate if an

individual (e.g., males and females) gets a raise (blue) or not (red).

The figure also visualizes the similarity of individuals through

their distance to each other. Considering a particular global fair-

ness definition (e.g., demographic parity), the classification qual-

ifies as fair, since
2

3
of both males and females receive a raise.

However, within the circled local region, no female gets a raise, as

opposed to all four males. Thus, although the individuals within

this region are very similar (e.g., similar education degree, years

of experience), they are not treated equally. While individual

metrics, such as consistency [77], would mark the women as

being treated unfairly, the overall (average) individual fairness is
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Figure 1: Example binary classification scenario

still high, as 7 out of 9 people within the region receive a positive

outcome. In contrast, local fairness applies, e.g., demographic

parity within the region, identifying it as unfair.

Contributions. This paper investigates solutions that support
efficient and effective locally fair classifications. The goal is to

minimize bias (defined by an existing global bias metric) for each

local region of similar individuals. We focus on in-processing

techniques, but note that achieving local fairness is independent

of the processing technique, analogously to achieving global

fairness. Thus, dedicated pre- or post-processing solutions are

conceivable but out of the scope of this paper, which makes the

following contributions.

We present a general framework to support efficient binary

locally fair classifications for settings with possibly multiple, non-

binary protected attributes, without jeoperdizing accuracy. Its

general definition accommodates a large variety of algorithms

with different fairness metrics, proxy discrimination mitigation

approaches, ML algorithms, or local region identification algo-

rithms. We further show that it covers global, individual, and

local fairness definitions.

We propose the FALCCalgorithm (short for Fair andAccurate

Local Classifications by leveraging Clusters) that conforms to

our framework and is the first efficient algorithm to make
locally fair predictions, while preserving their accuracy (com-

pared to state-of-the-art methods). FALCC achieves efficiency by

precomputing local regions in an offline component and iden-

tifying model ensembles well suited (both in terms of fairness

and accuracy) for each region. This precomputed information is

leveraged when a new sample needs to be classified in an online

fashion.

To ensure the quality of results in terms of accuracy and

fairness, we investigate two “tuning” mechanisms: (1) Clearly,

the quality of a model ensemble (possibly a different one for each

region) depends on the quality of the “pool” of individual models

to choose from. We hypothesize and experimentally verify that

the more diversified a set of ML models for forming ensembles

is, the better suited it is to represent diversity in the regions and

thereby foster fairness. Therefore, FALCC incorporates diver-
sification of ML models. (2) Given that proxy discrimination

is a perennial problem in classification tasks, we integrate and

evaluate inline-processing techniques to counteract the effect
of proxy discrimination. The code of the FALCC framework is

available in our repository
1
.

Our comparative evaluation demonstrates that our imple-

mentation of FALCC is the first efficient system to offer locally

fair, yet accurate classifications. While the results of our in-

processing methods to counteract proxy discrimination show

1
https://github.com/NicoLaessig/FALCC

room for improvement, our evaluation confirms that our hypoth-

esis that model diversification benefits fairness holds and that our

proposed algorithm fares well in generating diverse ensembles.

Structure. We discuss related work in Sec. 2. We introduce our

general framework and selected components in Sec. 3. We report

on our evaluation in Sec. 4 and finally conclude.

2 RELATEDWORK
In recent years, a lot of work has been published regarding fair-

ness in classification problems. We refer to surveys for a gen-

eral overview [14, 46, 61, 64]. We limit the discussion of related

work to approaches most relevant to ours in terms of algorith-

mic methodology. We summarize these together with FALCC

in Tab. 1. We structure our discussion along three aspects: First,

we differentiate approaches based on their methodological ap-

proach. Second, we highlight supported fairness definitions. Last,

we consider selected differentiating applicability or performance

features. We end this section by highlighting the positioning of

our contribution with respect to these aspects.

Methodological approach. Dynamic model ensemble selection

algorithms have been around for over 20 years. The idea is to

test the accuracy of trained classifiers on the training data within

the local region of a prediction point. Several methods have been

proposed to improve the local accuracy of predictions [17, 45, 73].

More recently, methods that leverage model ensembles in the con-

text of fair classifications have emerged. Most of these consider

non-dynamic ensembles. For instance, Calders and Verwer [13]

train a naive Bayes model separately on the favored and dis-

criminated groups. After the training phase, the method induces

fairness by modifying probabilities of the classifiers. Other ap-

proaches (e.g., [6, 39]) use and adapt the AdaBoost [70] technique

in order to reduce either global [39] or individual [6] bias. Both

approaches use fairness metrics for updating sample weights dur-

ing the training phase. Dwork et al. [25] propose two Decouple

algorithms, in which several classifiers are first trained, and then

all possible resulting classifier combinations (one classifier per

sensitive group) are assessed against a metric which contains an

accuracy and a fairness term. The best (global) model combina-

tion is then used to classify new samples. Lässig et al. [54, 55]

combine the ideas of dynamic model ensembles and fair model

ensembles, for which they present several FALCES algorithms.

Intuitively, these algorithms evaluate all possible model com-

binations (one model per group) within the local region of a

sample and then choose the most suited model combination for

the classification of the sample, thus optimizing local fairness.

We further note that all approaches leveraging model ensem-

bles qualify as in-processing techniques. This contrasts with

approaches that reduce proxy discrimination that typically tackle

the problem during pre-processing [27, 31, 40, 41, 69, 72]. Some

approaches try to reduce proxy discrimination by relabeling [27,

41] or (re-)sampling data and reweighing [40, 72] data points

closest to the “decision border”. Causal fairness approaches that

specifically aim at reducing proxy discrimination include [31, 69]).

They use mutual independence tests to determine influences of

the protected attribute on other attributes. [43] proposes an in-

processing regularizer to remove discrimination. Hereby, mutual

information metrics are used to detect indirect discrimination.

The post-processing method proposed in [34] reduces the proxy

discrimination by minimizing SHAP (Shapley additive explana-

tions) [59] and the MDE (marginal direct effect). While other

approaches previously mentioned might also implicitly reduce
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[17, 45, 73] [13, 39] [6] [25] [40, 41, 72] [27, 31, 69] [43] [34] [77] [16, 50, 51] [54, 55] FALCC

Dynamic model ensembles ✓ × × × × × × × × × ✓ ✓
Fair model ensembles × ✓ ✓ ✓ × × × × × × ✓ ✓
Proxy discr. mitigation × × × × ✓ ✓ ✓ ✓ × × × ✓
Intervention phase - in in in pre pre in post pre pre in in

Global fairness × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Individual fairness × × ✓ × × × × ✓ ✓ ✓ × ✓
Local fairness × × × × × × × × × × ✓ ✓

Non-binary sensitive attributes × × × ✓ × ✓ ✓ × × ✓ ✓ ✓
Runtime-efficiency × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓

Table 1: Properties of related work and FALCC

proxy discrimination, they neither tackle this issue directly nor

consider it in their evaluation.

Fairness notion. Many existing approaches focus on either

global [13, 25, 27, 31, 39–41, 43, 69, 72] or individual [6] fairness.

In an effort to overcome the gap between these two notions of

fairness, recent work (e.g., [16, 34, 50, 51, 77]) proposes to com-

bine concepts from one and the other, or at least accommodate

both definitions in a unified way. This includes for instance sev-

eral approaches. The approach by Zemel et al. [77] transforms the

dataset into a similar representation that has the bias removed.

Lahoti et al. [50, 51] aim at improving the overall tradeoff be-

tween accuracy and fairness by using different approaches, called

iFair [50] and Pairwise Fair Representation (short: PFR) [51]. Fair-

SMOTE [16] is another recent pre-processing technique that aims

at improving global and individual fairness. To the best of our

knowledge, there is no in-processing method that considers both

global and individual fairness. FALCES [54, 55] qualifies as in-

processing method that combines both global fairness and the

notion of local fairness.

Applicability and performance features. Given that we aim

for a general efficient and effective solution, we also survey exist-

ing approaches with respect to the range of classification prob-

lems they support and their efficiency. Note that effectiveness

is implicitly covered through the methods used by different ap-

proaches that we discussed above.

Concerning the applicability, we observe that the minority of

surveyed approaches considers non-binary sensitive attributes as

possible input [16, 25, 27, 31, 43, 50, 51, 54, 55, 69]. On the upside,

most existing fairness algorithms efficiently classify new samples.

Note that this runtime-efficiency does not necessarily extend to

the training (or offline) phase, as it only has to be conducted once.

The only exception to runtime-efficiency for fair classifications

is FALCES [54, 55]. This is due to its reliance on dynamic model

ensemble methods [17, 45, 73], that determine the local region for

each new sample using a 𝑘-nearest neighbor (kNN) algorithm [7].

Additionally, several model combinations are assessed within the

local region to determine the optimal one. Running these two

steps for each new sample is slow.

FALCC.Combining dynamic model ensembles and fair model en-

sembles aligns well with the definition of local fairness. Therefore,

similarly to FALCES, FALCC pursues this approach. However,

FALCC’s system design and the integration of new algorithms,

e.g., to reduce proxy discrimination, make it the first system that

supports efficient, yet high-quality classifications, both in terms

of accuracy and local fairness. It supports a large variety of classi-

fication problems, including problems with multiple non-binary

sensitive attributes.

3 FALCC FRAMEWORK AND ALGORITHMS
This section first provides an overview of the FALCC framework,

which generalizes a large variety of possible solutions to our

overarching problem. We then introduce a running example that

we will use in our subsequent detailed discussion of individual

components.

3.1 Framework overview
Our framework addresses the problem of locally fair and accurate

classifications. The goal is to minimize a loss function 𝐿̂ that

encompasses both accuracy and fairness, for each local region 𝐿𝑅.

That is, ∀𝑟 ∈ 𝐿𝑅 : min(𝐿̂ = 𝜆 ·𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦+(1−𝜆) ·𝑏𝑖𝑎𝑠). Here, 𝜆 is
a weight balancing accuracy and fairness. As a reminder, our goal

is to study in-processing solutions that generally support efficient

and effective locally fair classifications. We frame our research

within the framework depicted in Fig. 2. The framework includes

an offline phase, where we precompute relevant information to

be efficiently accessed and processed during the online phase.
That is, the offline phase is executed once, based on a labeled
input dataset 𝐷 , whereas the online phase is repeated each time

a new test sample 𝑡 to be classified arises. 𝐷 includes one or more

sensitive attributes 𝑆𝑒𝑛𝑠 .

Offline phase. Starting with the offline phase, FALCC divides

𝐷 into a training dataset 𝐷𝑡𝑟 and a validation dataset 𝐷𝑣𝑎𝑙 . The

first component of the offline phase is diverse model training. Its
goal is to train a diverse set of classifiers on the training dataset

𝐷𝑡𝑟 . We hypothesize that a diverse set of classifiers mitigates the

potential problem of a set of classifiers comprised in an ensemble

being prone to the same problems (relating to fairness or accu-

racy). Our experiments validate this hypothesis. Note that our

framework can in principle accommodate any training to produce

classifiers. The training can be based on either the whole dataset

𝐷𝑡𝑟 or partitions of 𝐷𝑡𝑟 that commonly reflect different sensi-

tive groups (as [25, 54, 55] show, training on a split dataset may

improve accuracy and / or fairness). Given 𝑆𝑒𝑛𝑠 = {𝐴1, . . . , 𝐴𝑠 }
and 𝑑𝑜𝑚(𝐴𝑖 ) the domain of sensitive attribute 𝐴𝑖 , we have sen-

sitive groups 𝐺 = {(𝑎1, . . . , 𝑎𝑠 )|𝑎1 ∈ 𝑑𝑜𝑚(𝐴1), . . . , 𝑎𝑠 ∈ 𝑑𝑜𝑚(𝐴𝑠 )}.
Overall, diverse model training produces a set of models 𝑀

and creates model combination candidates 𝑀𝐶𝑐𝑎𝑛𝑑 , whereas

one candidate 𝑀𝐶𝑐𝑎𝑛𝑑𝑖 = {∀𝑔𝑗 ∈𝐺 : (𝑚𝑖 , 𝑔 𝑗 )|𝑚𝑖 a model , 𝑔 𝑗 ⊆
𝐺 the group on which𝑚𝑖 is applied on.}

The next component in the offline phase offers the opportunity

to study in-processing techniques that mitigate proxy discrimi-

nation. We suggest first baseline algorithms implementing this

component and demonstrate in the evaluation that the frame-

work can incorporate different algorithms.
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Figure 2: The FALCC framework

Next, clustering divides the validation dataset 𝐷𝑣𝑎𝑙 into local

regions using a clustering algorithm. This is reasonable, as clus-

tering allows to group samples in 𝐷𝑣𝑎𝑙 that are highly similar

to each other. We denote the clusters determined by this com-

ponent as 𝐶 = {𝑐1, . . . , 𝑐𝑛}. The choice of clustering algorithm

is flexible. Our implementation relies on a kNN based algorithm

with automated parameter estimation.

Finally, the model assessment component considers both the

clusters in𝐶 and the set of models in𝑀 to (1) enumerate ensemble

candidates for each cluster, (2) assess each combination with

respect to a metric, and (3) keep only the best ensemble for each

cluster. Hence, for each local region (represented by a cluster),

we obtain its “best” model combination. The result of model

assessment is a map𝑀𝐶 that maps each cluster 𝑐𝑖 ∈ 𝐶 to a model

combination. Each combination contains one model per sensitive

group in 𝐺 .

Online phase. In the online phase, we classify new test sam-

ples. Depending on the chosen proxy discrimination mitigation

technique, corresponding sample processing may be required be-

fore a new sample 𝑡 gets assigned to a corresponding cluster. This

is the task of the cluster matching component. It matches 𝑡 to a

cluster of points, 𝑐𝑚 , that are similar to 𝑡 . This cluster then repre-

sents the local region 𝑡 belongs to. The locally fair classification
component simply looks up the best model ensemble for 𝑐𝑚 in

𝑀𝐶 , which is used to classify 𝑡 .

Bridging the gap between global and individual fairness.
By targeting local fairness, FALCC incorporates both local regions

(via clustering), common to individual fairness definitions, and

metrics for model assessment. These can be metrics either for

global or individual fairness. As such, FALCC covers all three

fairness notions (global, individual, and local). To achieve global

fairness, the number of clusters to be used by the clustering

component can simply be set to 1, as this amounts to setting

the considered local region to the full dataset. When applying

metrics defined for global fairness within the local regions, we

effectively implement local fairness. This is an approach similar

to FALCES [54], except that in our work, clustering defines local

regions during the offline phase (as opposed to computing kNN to

𝑡 in the online phase). Additionally, FALCC incorporates various

fairness metrics, while FALCES concentrates on demographic

parity. For individual fairness, the clustering component can be

implemented according to the specific local region definitions

and the model assessment metric set to an individual fairness

metric. To the best of our knowledge, this makes our framework

the first to cover the different fairness notions in a unifiedmanner.

Our implementation of various algorithms with varying fairness

definitions across global, local, and individual in the evaluation

showcases this generality.

3.2 Running example
After the overview of our framework, we introduce an example

subsequently used to illustrate individual components.

We assume a decision-support scenario about employee raises,

given a dataset with multiple attributes about employees, e.g.,

name, gender, sick leave days, management position𝑚𝑔𝑡 , depart-

ment code 𝑑𝑝𝑡 (cf. Tab. 2, ignoring data with grey background).

For simplicity, the sole protected attribute gender only has two dis-
tinct values (e.g., male and female), yielding two sensitive groups,

i.e., 𝑔𝑑 (employees prone to discrimination) and 𝑔𝑓 (employees

typically favored).

Using our approach, we shall see that dedicated models (e.g.,

𝑚1,𝑚2,𝑚3) are trained for an optimized fairness-accuracy be-

havior for clusters of similar employees and sensitive groups

therein. Eventually, this allows us to classify a new sample 𝑡 that

represents an employee of group 𝑔𝑑 using the best model deter-

mined for similar employees of the same sensitive group, say𝑚1.

Another employee 𝑡 ′ very similar to 𝑡 but belonging to 𝑔𝑓 may

then be classified with another model, e.g.,𝑚3. How to reach this

behavior will be illustrated as we discuss the individual steps of

our approach, starting with diverse model training.

3.3 Diverse model training
Given 𝐷𝑡𝑟 , diverse model training determines a set of candidate

model combinations𝑀𝐶𝑐𝑎𝑛𝑑 . Each model combination is a set of

pairs (𝑚𝑖 , 𝑔 𝑗 ) associating a model𝑚𝑖 to a sensitive group 𝑔 𝑗 ∈ 𝐺 .

To obtain the model combinations, our approach first determines

a set of models𝑀 . Then, we enumerate all combinations of mod-

els𝑚𝑖 ∈ 𝑀 with groups 𝑔 𝑗 that satisfy that𝑚𝑖 has been trained

on data comprising 𝑔 𝑗 .

Given the general nature of our framework, any set of models

𝑀 can be trained using various techniques and be provided as

input. However, to boost fairness, we propose to implement an

algorithm that aims at training a diverse set of models. Here, di-

versity refers to the predictive behavior of the models, which does

not necessarily imply the diversity of the type of models. For in-

stance, two trained decision trees are diverse, if their predictions

differ from each other. Boosting is a commonly used technique to

improve the diversity of a model ensemble [47], which iteratively

trains estimators based on the outcome of previous iterations.

Another strategy is bagging [9], in which different subsets of the
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training data are formed, on which the base estimator is trained

on. Commonly used strategies are AdaBoost [70] for boosting

and Random Forests [10] for bagging [20, 68].

We implemented the approach described in this section both

for AdaBoost and Random Forests. Through preliminary experi-

ments in various settings, we verified previous results showcasing

boosting as the more stable approach in inducing diversity [47],

compared to bagging. Thus, AdaBoost is set as the default train-

ing strategy. In our implementation, we use Decision Tree [32] as

the base estimator for the AdaBoost algorithm. Setting the param-

eters for the AdaBoost (and RandomForest) algorithm properly

is important to achieve high diversity in the model ensemble. To

achieve this, we apply hyperparameter tuning [74] based on grid

search. We conducted several initial experiments to narrow down

the search space for grid search, yielding number of estimators

∈ {5, 20}, maximum depth of a decision tree ∈ {1, 7}, and the

splitting criterion for the decision tree ∈ {gini, entropy}. All
other parameters are fixed using the default values given by the

scikit-learn package [62]. Among the metrics that can be used to

measure the diversity of a model ensemble [48], we opt for the

non-pairwise entropy [18].

Above procedure yields a diverse set of classifiers𝑀 . Diverse

model ensembles are proven to be able to increase accuracy of

predictions [47] and we hypothesize (and later validate experi-

mentally) that this also transfers to improving fairness. As a final

step, diverse model training enumerates all possible combina-

tions of models per sensitive groups, forming the set of candidate

model combinations𝑀𝐶𝑐𝑎𝑛𝑑 .

Example 3.1. In our example, we train the classifiers on

the whole training dataset using AdaBoost with hyperparam-

eter tuning. Assuming our approach yields, e.g., three models

𝑀 = {𝑚1,𝑚2,𝑚3}. This results in nine candidate model combi-

nations 𝑀𝐶𝑐𝑎𝑛𝑑 = {{(𝑚1, 𝑔𝑑 ), (𝑚1, 𝑔𝑓 )}, {(𝑚1, 𝑔𝑑 ), (𝑚2, 𝑔𝑓 )}, ...,
{(𝑚3, 𝑔𝑑 ), (𝑚3, 𝑔𝑓 )}}. For instance, the candidate combination

{(𝑚1, 𝑔𝑑 ), (𝑚2, 𝑔𝑓 )} models the possibility that employees from

sensitive group 𝑔𝑑 will be classified using𝑚1, whereas members

of 𝑔𝑓 will be classified using𝑚2.

3.4 Proxy discrimination mitigation
The FALCC framework allows to study the mitigation of proxy

discrimination during in-processing, as opposed to most of cur-

rent research (see Sec. 2). The idea underlying proxy discrimina-

tion reduction during in-processing within FALCC is to identify

and assign weights to (proxy) attributes. Intuitively, the weights

are used to “manipulate” the subsequent identification of local

regions (the task of the clustering component) such that it is

potentially less affected by the presence of proxy attributes and

thus less prone to proxy discrimination. While this component

is not essential for improving local fairness, we deem it to be an

integral part of a general fairness framework, as it is a highly

discussed topic in fairness research [61, 65]. The framework is

designed to integrate any proxy discrimination technique, as

long as it determines a list of proxy attributes (optionally with

weights) that translates to an update of the original validation

dataset.

Our current framework implementation implements two op-

tions to potentially reduce proxy discrimination. Both rely on

the Pearson correlation [4] between attributes (more precisely,

the correlation between a protected attribute and non-protected

ones), which easily applies to both categorical and continuous

data, albeit limiting to identifying monotonic relationships. Let

|𝑆𝑒𝑛𝑠 | be the number of sensitive attributes. We measure the pair-

wise correlation of each individual sensitive attributes 𝑠 ∈ 𝑆𝑒𝑛𝑠

to any other attribute 𝑎 ∈ 𝐴. The output is a weight that we apply

as reweighing factor for attribute 𝑎. The reweighing formula is

the following: ∀𝑎 ∈ 𝐴:

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑎, 𝑆𝑒𝑛𝑠) =

1

|𝑆𝑒𝑛𝑠 |
∑︁

𝑠∈𝑆𝑒𝑛𝑠

©­­«1 −
∑𝑛

𝑖=1
(𝑠𝑖 − 𝑠)(𝑎𝑖 − 𝑎)√︃∑𝑛

𝑖=1
(𝑠𝑖 − 𝑠)

2
∑𝑛

𝑖=1
(𝑎𝑖 − 𝑎)

2

ª®®¬
(1)

where 𝑠𝑖 and 𝑎𝑖 are the respective values of the 𝑠- and 𝑎 attributes

of sample 𝑖 , and 𝑠 and 𝑎 are the mean values of the 𝑠- and 𝑎-

variables. It holds that𝑤𝑒𝑖𝑔ℎ𝑡 (𝑎, 𝑆𝑒𝑛𝑠) ∈ [0, 1].

Based on determined weights, our first proxy discrimination

mitigation option implements a reweighing technique that reweighs
the data before applying the clustering approach, thereby dis-

torting the data to be clustered. The clustering algorithm im-

plemented in the next component tries to minimize the sum of

squared distance. Attributes with a higher weight will be “spread”

along a higher range, so their distances will increase, such that

these attributes “declutter” the field and will potentially have a

larger impact on cluster separation. Proxy-attributes will exhibit

lower weights, so that the distortion will bring data points closer

together, favoring samples to be in the same cluster irrespective

of their values in these proxy attributes.

The second option completely ignores proxy attributes. Here

we also measure the Pearson correlation and if the correlation

value is above a given threshold 𝛿 with significance level 𝑝 > 0.05,

the attribute is removed for the clustering phase. Setting 𝛿 is a

non-trivial problem, with values ranging from 0.4 to 0.7 in the

literature to indicate strong correlation [2]. We choose 𝛿 = 0.5

as it indicates a moderate to strong correlation and our initial

experiments showed good results. For instance, on the datasets

used in the experiments (see Tab. 4), at most two attributes are

deemed to have a strong correlation with the protected attributes.

Attributes that are not removed keep their original values. A

sensitivity analysis for the threshold is left to future work.

Irrespective of the chosen option, the output is an updated

validation dataset 𝐷 ′
𝑣𝑎𝑙

that is input to clustering. While these

strategies act as pre-processing for the clustering algorithm, in

the scope of our whole framework they are happening during

in-processing. The difference is that the models themselves are

trained on the original datasets and that we also let the attributes

untouched, when classifying new samples.

Example 3.2. We illustrate the second option that removes

proxy attributes, considering the data in Tab. 2 showcasing an

excerpt of 𝐷𝑣𝑎𝑙 . The correlation of the non-protected attributes

(𝑠𝑖𝑐𝑘𝐿𝑒𝑎𝑣𝑒 ,𝑚𝑔𝑡 , 𝑑𝑝𝑡 ) to the sensitive attribute (𝑔𝑒𝑛𝑑𝑒𝑟 ) are com-

puted. Assuming the remaining data is similar to the sample

tuples shown, the attribute 𝑠𝑖𝑐𝑘𝐿𝑒𝑎𝑣𝑒 will be flagged as proxy

attribute and removed from the updated validation dataset 𝐷 ′
𝑣𝑎𝑙

due to its high correlation to 𝑔𝑒𝑛𝑑𝑒𝑟 .

3.5 Clustering
After processing the dataset and training classifiers, we now

want to define local regions. Hereby, the component clusters

the (previously updated) validation dataset 𝐷 ′
𝑣𝑎𝑙

, the rationale

being to have similar samples within the same cluster, such that

clusters are suited stand-ins for local regions. Independently of

the proxy discrimination reduction strategy chosen, we do not

want the clustering to be dependent on sensitive attributes. Thus,
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eid gender sickLeave mgt dpt · · · label cluster 𝑃𝑟𝑚
1

𝑃𝑟𝑚
2

𝑃𝑟𝑚
3

0 1 0.45 0 033 · · · ? 2 - - -

1 1 0.8 1 066 · · · 1 1 0 1 1

2 1 0.75 0 04 · · · 1 2 1 1 0

3 0 0.1 1 07 · · · 1 1 1 0 1

4 0 0.2 0 05 · · · 0 2 0 0 0

5 1 0.9 0 04 · · · 0 2 0 1 0

6 0 0.45 0 095 · · · 0 1 0 0 1

7 0 0 1 01 · · · 1 2 0 0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 2: 𝐷𝑣𝑎𝑙 of our running example. Instances from the
favored group 𝑔𝑓 are denoted by the protected attribute
value 0 and discriminated group 𝑔𝑑 are denoted by the
value 1.

we project these out and perform clustering on Π𝑅\𝑆𝑒𝑛𝑠 (𝐷 ′
𝑣𝑎𝑙

),

where 𝑅 is the set of all attributes in 𝐷 ′
𝑣𝑎𝑙

.

Any clustering algorithm can be used in our framework. Our

current implementation relies on the well known k-means clus-

tering algorithm [37] with automatic selection of its parameter 𝑘 .

Examples of parameter estimation algorithms to set 𝑘 are LOG-

Means [30], the Elbow method [71], or XMeans [63]. We opt for

the LOGMeans algorithm in our implementation as it is both

runtime-efficient and does not compromise cluster quality [30].

To faithfully implement global fairness, our implementation also

allows to simply set 𝑘 manually, e.g., to 1.

Once the (automatically) configured clustering is complete,

one potential issue that can arise is that a cluster does not contain

samples of all sensitive groups, thus lack coverage. For example,

with our two sensitive groups 𝑔𝑑 and 𝑔𝑓 and a cluster 𝑐𝑖 that only

contains samples from 𝑔𝑓 , we can only reasonably associate a

best model to 𝑔𝑓 in the scope of that cluster. However, if a new

sample of 𝑔𝑑 comes in during the online phase and is assigned

to the corresponding cluster 𝑐𝑖 , the best choice of a model is

unclear. To overcome this issue, our algorithm checks for each

cluster 𝑐𝑖 if samples of all sensitive groups are present. If not, a

nearest neighbors algorithm [7] is used to find reasonably close

representatives of any missing group to “fill in the gaps” for a

cluster 𝑐𝑖 [55]. Unlike in fair ranking research [75, 76], where the

representation of the top ranked results should be proportional to

the overall data distribution, we only require any representation

from each group. This allows us to calculate the best model

combination within the cluster, considering all groups, while not

losing much of the locality. The number of nearest neighbors

chosen is fixed in our implementation, estimating this parameter

is left to future work.

Example 3.3. Assume that the parameter estimation algorithm

for k-means returns 𝑘 = 2. The clusters 𝐶 = {𝐶1,𝐶2} subse-

quently determined on the sample data of 𝐷 ′
𝑣𝑎𝑙

shown in Tab. 2

(ignoring the protected attribute 𝑔𝑒𝑛𝑑𝑒𝑟 and the proxy attribute

𝑠𝑖𝑐𝑘𝐿𝑒𝑎𝑣𝑒) are identified in the column labeled 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 . Note that

both clusters include tuples from each sensitive group.

3.6 Model assessment
The last component of the offline phase assesses all model com-

bination candidates𝑀𝐶𝑐𝑎𝑛𝑑 (see Sec. 3) for each local region, as

determined by the clusters in 𝐶 . The result is a dictionary 𝑀𝐶

that maps each cluster 𝐶𝑖 ∈ 𝐶 to the best model combination in

𝑀𝐶𝑐𝑎𝑛𝑑 for that cluster. This requires a metric to assess the qual-

ity of models with respect to some validation data. In general, the

assessment should be able to consider both accuracy and fairness.

A template for measures considering both is given in Eq. 2. The

template essentially is a 𝜆-weighted sum of two parts, one part

quantifying inaccuracy and the other one unfairness. The weight
𝜆 ∈ [0, 1] balances the relevance of inaccuracy and unfairness.

The inaccuracy part corresponds to the 𝐿1 loss, which calculates

the percentage of tuples that have been predicted wrong. The

unfairness part (marked with . . . ) can be exchanged to reflect

different fairness definitions. In general, for each fairness defini-

tion, we use a mean difference metric in which we compare each

group of a cluster with the average of that cluster. Notation-wise,

we denote the number of tuples in a labeled dataset 𝐷 as |𝐷 |.
Each tuple 𝑖 ∈ 𝐷 has an actual label 𝑦𝑖 and predicted label 𝑧𝑖 .

𝐿̂ =

𝜆

|𝐷 |
∑︁
𝑖∈𝐷

|𝑦𝑖 − 𝑧𝑖 |︸              ︷︷              ︸
Inaccuracy

+ (1 − 𝜆) · · ·︸     ︷︷     ︸
Unfairness

(2)

Tab. 3 summarizes different metrics known for measuring

global bias to define the unfairness part of the equation template.

|𝐺 | denotes the number of sensitive groups, remaining notation

has been introduced before. All listed metrics are integrated in

our implementation.

The FALCC framework also allows to accommodate individ-

ual fairness metrics, such as consistency [77]. High consistency

indicates that kNNs have the same prediction outcome. To ex-

actly model this within our framework actually requires adapting

the implementation of the clustering component in addition to

considering prediction outcomes during model assessment. Even

so, finding the 𝑘𝑁𝑁 of a new sample 𝑡 can be quite expensive in

terms of runtime. A more efficient, yet approximate solution can

leverage clusters either as overestimates or substitutes for kNN.

Future avenue is to explore other metrics and how applying them

in our setting affect the results.

Once model assessment has computed the quality of each

model combination for each cluster, FALCC retains only the best

combination for each cluster, i.e., the model combination that

minimizes 𝐿̂.

Example 3.4. For both clusters in 𝐶 , we assess the nine model

combinations in 𝑀𝐶𝑐𝑎𝑛𝑑 (see Example 3.1). We opt for demo-

graphic parity as fairness metric underlying 𝐿̂ and set 𝜆 = 0.5.

Predictions made by the individual models for the sample tuples

of the validation dataset are illustrated in the last three columns

with grey background in Tab. 2. Based on the sample data and pre-

dictions shown, the algorithm determines that for cluster 𝐶1,𝑚3

is best suited for both sensitive groups (inaccuracy of
1

3
and bias

of 0) while for cluster𝐶2, model𝑚1 (𝑚3) fits 𝑔𝑑 (𝑔𝑓 ) best (inaccu-

racy of 0 and bias of 0). This results in the final model dictionary

𝑀𝐶 = {𝐶1 : {(𝑚3, 𝑔𝑑 ), (𝑚3, 𝑔𝑓 )},𝐶2 : {(𝑚1, 𝑔𝑑 ), (𝑚3, 𝑔𝑓 )}}.

3.7 Online Phase
As outlined in Sec. 3.1, the online phase consists of three steps: (1)

processing of the new sample; (2) assigning the new sample to a

cluster; (3) looking up the model to use for classification. It takes

as input a new sample 𝑡 , the clustered validation dataset, the

sensitive attributes 𝑆𝑒𝑛𝑠 , and𝑀𝐶 as computed offline. It outputs

a classification result for sample 𝑡 . Due to a rather straightfor-

ward processing, we discuss the three steps directly based on the

running example.

Example 3.5. The goal is to classify new employee 𝑡 (eid=0 in

Tab. 2), which belongs to the discriminated group 𝑔𝑑 . In Step (1),
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Demographic parity [24] 𝑑𝑝 =
1

|𝐺 |
∑
𝑗∈𝐺

���𝑃 (𝑧=1 |𝐺=𝑗 ) − 𝑃 (𝑧=1)

��� Protected and unprotected groups have an equal probabil-

ity of a positive outcome.

Equalized odds [36] 𝑒𝑞_𝑜𝑑 =
1

2

1∑
𝑘=0

(
1

|𝐺 |
∑
𝑗∈𝐺

���𝑃 (𝑧=1 |𝐺=𝑗 ,𝑦=𝑘) − 𝑃 (𝑧=1 |𝑦=𝑘)
���) The probability of a positive outcome for tuples with a

real positive label should be equal among all groups, as

well as the probability of a positive outcome for tuples

with a real negative label.

Equal opportunity [36] 𝑒𝑞_𝑜𝑝 =
1

|𝐺 |
∑
𝑗∈𝐺

���𝑃 (𝑧=1 |𝐺=𝑗 ,𝑦=1) − 𝑃 (𝑧=1 |𝑦=1)

��� Similar to the equalized odds definition, but only takes into

account the probability of a positive outcome for tuples

with a real positive label.

Treatment equality [5] 𝑡𝑟_𝑒𝑞 =
1

|𝐺 |
∑
𝑗∈𝐺

��� 𝐹𝑃𝐺=𝑗

𝐹𝑃𝐺=𝑗 +𝐹𝑁𝐺=𝑗
− 𝐹𝑃𝑡𝑜𝑡𝑎𝑙

𝐹𝑃𝑡𝑜𝑡𝑎𝑙 +𝐹𝑁𝑡𝑜𝑡𝑎𝑙

��� Ratio of false positives (𝐹𝑃 ) to false negatives (𝐹𝑁 ) is

equal among all groups.

Table 3: Metrics (or normalized adaptations thereof) traditionally used for global fairness, integrated in FALCC

we need to process the new sample analogously to the proxy

discrimination mitigation technique of the offline phase, e.g., we

generate 𝑡 ′ by removing the attribute 𝑙𝑒𝑎𝑣𝑒𝑆𝑖𝑐𝑘 of 𝑡 . In Step (2),

we determine the local region 𝑡 ′ falls into, i.e., we match 𝑡 ′ to
the cluster in 𝐶 whose center is closest to 𝑡 ′. To not misguide

the cluster matching based on sensitive attributes, it ignores all

attributes of 𝑆𝑒𝑛𝑠 , i.e., 𝑔𝑒𝑛𝑑𝑒𝑟 . We assume 𝑡 ′ matches cluster 𝐶2.

Therefore, in Step (3), we retrieve the model combination for

𝐶2 from 𝑀𝐶 , i.e.,

{
(𝑚1, 𝑔𝑑 ) ,

(
𝑚3, 𝑔𝑓

)}
. Given that 𝑡 belongs to

𝑔𝑑 , the final choice of model to classify this sample is the one

associated with 𝑔𝑑 in the retrieved model combination, i.e.,𝑚1.

The final output is the classification result.

4 EVALUATION
4.1 Setup

4.1.1 Datasets. We evaluate the algorithms both on real world

and synthetic datasets. As real-world data, we use several datasets

commonly used in experiments of fairness-aware machine learn-

ing approaches [56]. The main features of these benchmark

datasets are summarized in Tab. 4.

The Communities andCrimeData Set (short:Communities) [22,
67] contains data about violent crimes per population within sev-

eral communities. We use 0.2 per 100𝑘 population as threshold

for the label. This data has a rich set of features, which are nu-

merical, apart from some information regarding the place of the

communities. Few attributes tend to have lots of NULL values.

We removed such attributes. Like in other papers [41, 42], we

add a binary sensitive attribute Race for which we choose 6% of

black population within a community as threshold.

We also use the Adult Data Set [21] about persons working
in the United States and their salary. The salary is a binary label

with the threshold of 50𝑘 per year. Due to the data not being

numeric, it required some efforts in pre-processing. We use the

pre-processed datasets according to the rules presented in [52].

As sensitive attributes, we choose the attributes sex and race. After
pre-processing, both sensitive attributes are binary and we obtain

4 sensitive groups.

Another census dataset we use is the US Census Demographic

Data [12] (also known as ACS2017 ) from 2017, which tracks

the average salary and attribute values of people from different

districts. We consider race being the protected attribute and use

6% of black population as threshold.

We also use a Credit Card Clients dataset [23], where sex is
the protected attribute and payment is the label. Most of the

data are already numerical values within the range [0, 1], since

they represent several percentages of the district population.

Other data, like the amount of males and females living in these

districts also have been converted to a percentage number. Very

few rows have missing data, which we remove from the dataset.

In this dataset, there are several salary attributes. We choose

the SalaryPerCapita attribute as label and used 30𝑘 as threshold.

The other salary attributes are omitted. Like in the Communities

dataset, we add the sensitive attribute Race and use 6% of black

population as threshold again.

Finally, we also consider the COMPAS Recidivism Racial Bias

(short: COMPAS) [66] dataset. We use the already pre-processed

data which was designed for the FairML framework [1]. Race is
the binary sensitive attribute, while 2y Recidivism is the binary

label.

We further evaluate the algorithms on two synthetic datasets.

Each exhibits one of two biases: Social bias (aka direct bias) is
the bias resulting solely from the sensitive attribute. For implicit
bias, the sensitive attribute itself has no direct influence on the

overall prediction, but it correlates with several of the other

features that do. For both cases, we generate a bias of 30% in mean

difference, that is 35%/65% for unfavored/favored group. Both

synthetic datasets contain around 14𝑘 tuples and 8 features. Since

some algorithms do not apply on non-binary sensitive groups,

we generate binary sensitive groups for most of the conducted

experiments. All datasets are randomly split as follows: 50% for

training, 35% for validation, and 15% for prediction.

4.1.2 Algorithms. We compare the performance of FALCC

with components implemented as described in the previous sec-

tion, with the Decouple algorithm [25] optimized for global fair-

ness, the “Proposed Ensemble Fair Learning Method” [6] (we

refer to it as FairBoost) developed to foster individual fairness, the
“Learning Fair Representations” (short: LFR) [77], the iFair [50]
and Fair-SMOTE [16] algorithms that focus on optimizing both,

the FaX algorithm [34] that additionally focuses on reducing

redlining, and the family of FALCES algorithms [54] proposed to

obtain local fairness. For the LFR algorithm, we use the implemen-

tation provided by the AIF360 framework [3]. Implementations

are also available for FaX [33], Fair-SMOTE [15], and iFair [49].

We implemented the other methods based on their description.

As the Decouple and FALCES algorithms operate similarly and

can be easily adapted to use other metrics, we implemented the

metrics described in Sec. 3.6 to be used by these algorithms as

well. For algorithms that are potentially affected by the models

considered to form ensembles, namely FALCC, FALCES, and De-

couple, we consider two alternative configurations. The first uses
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dataset sensitive attr. # of samples # of features 𝑃𝑟 (𝑦 = 1|𝑠 = 1) 𝑃𝑟 (𝑦 = 1|𝑠 = 0) 𝑃𝑟 (𝑠 = 1)

ACS2017 [12] race 72𝑘 23 49.6% 28.2% 58.8%

Adult Data Set [21] sex 46𝑘 21 31.3% 11.4% 67.6%

Adult Data Set [21] race 46𝑘 21 26.3% 16% 85.7%

Adult Data Set [21] sex, race 46𝑘 21 32.4% 12.3%, 22.6%, 7.6% 59.6%

Communities [22, 67] race 2𝑘 91 19.4% 62.6% 51.4%

COMPAS [66] race 6.1𝑘 7 38.5% 50.2% 40.1%

Credit Card Clients [23] sex 30𝑘 23 20.8% 24.2% 60.4%

Table 4: Metadata about real world datasets, including probabilities wrt group association.

the algorithms “off-the-shelf”, i.e., FALCC uses the diversifica-

tion algorithm for diverse model training (see Sec. 3.3), while

Decouple and FALCES train 5 standard classifiers (analogously

to the evaluation reported in [54, 55]). The second configuration

provides the algorithms with models optimized for fairness to

begin with (i.e., LFR, Fair-SMOTE, and FAX in our experiments).

When reporting results for the second variant, we add an aster-

isk to the original algorithm names (i.e., FALCC*, FALCES*, and

Decouple*). All classifiers are trained on the whole datasets.

Some of the algorithms require additional parameters. We set

the 𝑘-value for the 𝑘-nearest neighbor algorithm for FALCES to

𝑘 = 15, which is the suggested configuration in [55]. FALCC uses

the same value when we have to apply the nearest neighbor algo-

rithm during the clustering step due to missing representatives

of a group within a cluster (see Sec. 3.5). Since FairBoost does

not consider the 𝑘-nearest neighbors per sensitive group, we set

𝑘 = 30 for this approach. This way, the number of𝑘NN considered

overall is equal. Due to excessive running time (>24h), we omit

the results on the larger datasets for iFair. FALCES comes in four

variants and we only report the best result of these algorithms

(denoted as FALCES-BEST ). That is, we choose the result of the
variant that exhibits the least local bias. Thus, we consistently

compare to the “best” FALCES algorithm, which varies across

experiments.

4.1.3 Metrics. We use the metrics described in Sec. 3.6. Ac-

curacy matches the respective term of Eq. 2 (with 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

1 − 𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). When reporting global fairness, we take the un-

fairness part of Eq. 2 and define the (local) region as comprising

the full dataset. The local bias directly uses Eq. 2, with 𝜆 = 0.5,

thus weighing the accuracy and fairness equally. We report the

average local bias over all clusters (=regions), weighted by the

sample ratio within the clusters. We choose consistency to assess

individual fairness.

4.1.4 Evaluation goals. (EG1) First, we aim at evaluating the

overall quality of FALCC. To this end, we perform an extensive

comparative evaluation in terms of accuracy, global bias, local

bias, and individual bias. (EG2) Our second goal is to validate

our hypothesis that a diverse set of classifiers can help improve

the overall results in terms of fairness, thereby justifying diverse

model training. (EG3) We further study the effect of our redlining

compensating strategy. (EG4) Finally, we evaluate the runtime

of FALCC. In all experiments, we conduct four runs on differ-

ent dataset splits (we use the same four randomstates for each

algorithm) and report the averages of the runs.

4.2 EG1: Comparative evaluation of result
quality

For the set of experiments concerning EG1, we perform a com-

parative evaluation of all algorithms mentioned above, on all

considered datasets. The comparison focuses on accuracy, global

fairness, local fairness, and individual fairness. For global and

local fairness, we further consider varying fairness metrics, i.e.,

demographic parity, equalized odds, and treatment equality. We

omit experiments with the equal opportunity fairness definition,

as it is similar to equalized odds, and thus similar results are ex-

pected (confirmed by initial experiments). For individual fairness,

we consider consistency only. Each combination of algorithm,

dataset, and fairness-definition is run four times on different

dataset splits.

Fig. 3 exemplifies our results on the COMPAS dataset using

demographic parity for all “off-the-shelf” algorithms (i.e., with-

out Decouple*, FALCES*, and FALCC*). For global fairness vs.

accuracy, the Pareto-optimal solutions are found by LFR ( ), Fair-

SMOTE( ), Decouple( ), FALCES-BEST( ), and FaX( ). Yet, these

may not all be “good compromises”, especially when fairness

should not come at the price of degrading accuracy. For instance,

LFR exhibits the lowest global bias, but stands far apart frommost

(slightly) less fair algorithms in terms of accuracy. The same can

be seen for the iFair algorithm in the local and individual bias

results. Hence, Pareto-optimal solutions are not always the “opti-

mal” choices and therefore we evaluate models using different

strategies. Also, depending on which fairness-definition we em-

ploy, the algorithms yielding Pareto-optimal solutions vary. For

instance, for global fairness, FALCC ( ) is not part of the Pareto-

optimal solutions, while it is for local and individual bias. To

incorporate these two facets in our evaluation, we consider both

the membership of an algorithm in the Pareto-optimal solutions

and the rank of an algorithm’s solution. This ranking relies on

the 𝐿̂ metric in Eq. 2, weighing accuracy and bias equally.

Tab. 5 summarizes the results for all tested configurations.

It reports the percentage of configurations in which an algo-

rithm is a Pareto-optimal solution and how often it appears in

the top-3 according to the 𝐿̂-based ranking. We opt for top-3,

as we believe that consistently performing well is important.

These percentages are reported separately for each bias notion

(global, local, individual) and across all tested configurations (All

dims). On the left, we report results for all algorithms with their

standard configuration. On the right (with grey background), we

show results when incorporating models designed for fairness to

ensemble-based algorithms.

4.2.1 Default setup. The results show that FALCC performs

best when it comes to improving local fairness without com-

promising accuracy. FALCC is within the top-3 in 89% of the
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Figure 3: Accuracy-fairness tradeoffs on COMPAS dataset and using demographic parity. Values shown in %.

experiments (this observation still holds when considering the

top-1 solution only, albeit with a smaller gap to the runner-up

algorithm). This is expected, given that FALCC is designed to

improve local bias. Interestingly, FALCC also performs well for

global and individual fairness, with FALCC appearing the most

frequent in the top-3 for global fairness (tied with Decouple and

FaX), and individual fairness (tied with FaX). The Decouple algo-

rithm performs well globally (as expected), but struggles in terms

of local and individual results. The FaX algorithm tends to be

especially effective in improving the individual fairness-accuracy

tradeoff. This can be explained by the SHAP [59] values it uses,

as they use consistency as one of their properties. Across all con-

ducted experiments (see All dims columns), FALCC appears in

ever Pareto-optimal solution. The biggest gap between being part

of the Pareto-set and performing well against the 𝐿̂ metric can be

seen by the LFR algorithm. While it is part of most Pareto-sets

due to exhibiting low bias, it rarely ends up in the top-3. The

drawback is caused by the low accuracy as exemplified in Fig. 3.

The main takeaway so far is that FALCC is the (consistently)

best algorithm to improve local fairness without compromising

accuracy. Furthermore, it is also effective in improving global

fairness and individual fairness. However, keep in mind that

so far, the input classifiers of the Decouple, FALCES-BEST, and

FALCC algorithms were solely trained for optimizing accuracy.

4.2.2 Using fair classifier as model input. We now also run

Decouple*, FALCES-BEST*, and FALCC* that rely on fair classi-

fiers. In the right part of Tab. 5, we see that this can enhance the

overall quality of these algorithms’ results.

Considering local and individual results, FALCC and FALCC*

perform similarly well, with FALCC appearing in more Pareto-

optimal solutions. The biggest difference can be seen globally.

FALCC* appears in twice as many top-3 solutions compared

to FALCC. This is expected, as all fair classifiers used as input

are used to induce global fairness. Over all dimensions, both

FALCC and FALCC* rank first and second in the Pareto-optimal

set appearances and third and first in top-3 ranks, respectively.

The gap between Decouple and FALCC is small in the exper-

iments, when using the fair classifier set as input. This can be

explained, as we only take three different models as input, ending

up with 9 model combinations (with binary protected groups).

A higher variety of input models could highlight the differences

between FALCC and the other approaches.

Overall, we can conclude that FALCC consistently outper-

forms state-of-the-art solutions in terms of local fairness, when

accuracy should not be compromised. It also shows good perfor-

mance for global and individual fairness. The results also show

that a non-fairness-induced diverse model ensemble set can be

nearly as effective as having fair classifiers as input.

4.3 EG2: Diversification of model ensembles
We introduced the diversification of model ensembles into FALCC

to improve the quality of the results, which was confirmed in the

experiments reported above. We now study the effect of model

diversification in more detail. To this end, we first generate sets

of models with a varying degree of diversity. That is, we train

several AdaBoost and Random Forest models using different

parameter settings.

Fig. 4 plots quality results (accuracy, local bias) of FALCC for

each run with varying parameter settings during the model train-

ing step. To measure diversity, we use non-pairwise entropy [18],

which returns a value between 0 and 1. A higher entropy score

indicates a higher diversity within the model ensemble set. The

different colors of the scatter plot points depict the density of

the plot. Furthermore, a linear regression of the scatter plot is

depicted. The figure reports results on accuracy and local bias

for three datasets, those not shown exhibit similar trends.

On most datasets, we observe that the bias tends to be lower

with higher entropy, i.e., higher diversity in the set of trained

models. There are exceptions, e.g. the social30 dataset, where

the bias is generally low and quite steady. While accuracy also

degrades with reduced bias, the overall accuracy-fairness trade-

off is getting better with more diverse model ensembles. A high

entropy seems to be especially important for datasets where the

bias is caused indirectly. In summary, we conclude that our hy-

pothesis holds and that diversity in the set of classifiers can have

a positive effect on fair classifications using model ensembles

(see Sec. 4.2.1).

4.4 EG3: Effect of proxy discrimination
mitigation

In line with EG3, we now apply FALCC approach and vary the

strategies designed to mitigate proxy discrimination. More pre-

cisely, we consider the two techniques discussed in Sec. 3.4 and
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Global Local Individual All dims. Global Local Individual All dims.

algorithm Pareto 𝐿̂ Pareto 𝐿̂ Pareto 𝐿̂ Pareto 𝐿̂𝑎𝑣𝑔 Pareto 𝐿̂ Pareto 𝐿̂ Pareto 𝐿̂ Pareto 𝐿̂𝑎𝑣𝑔

FairBoost 3.7 11.1 3.7 3.7 0.0 0.0 7.4 0.0 3.7 7.4 3.7 0.0 0.0 0.0 7.4 0.0

LFR 74.1 11.1 63.0 22.2 85.2 18.5 85.2 11.1 74.1 3.7 59.3 7.4 85.2 18.5 85.2 7.4

iFair 7.4 0.0 7.4 0.0 29.6 11.1 33.3 0.0 3.7 0.0 7.4 0.0 29.6 0.0 33.3 0.0

FaX 74.1 59.3 85.2 63.0 74.1 81.5 85.2 88.9 66.7 29.6 77.8 33.3 70.4 44.4 77.8 25.9

Fair-SMOTE 48.1 44.5 44.4 51.9 18.5 40.7 48.1 51.9 29.6 37.0 29.6 33.3 7.4 14.8 40.7 33.3

Decouple 40.7 59.3 33.3 25.9 29.6 29.6 44.4 22.2 37.0 37.0 29.6 11.1 29.6 22.2 40.7 14.8

FALCES-BEST 51.8 55.5 51.8 44.4 22.2 37.0 55.5 37.0 37.0 29.6 33.3 11.1 14.8 22.2 44.4 14.8

FALCC 37.0 59.3 96.3 88.9 74.1 81.5 100.0 88.9 29.6 25.9 96.3 66.7 74.1 55.5 100.0 55.5

Decouple-FAIR 66.7 63.0 59.3 48.1 40.7 33.3 81.5 59.3

FALCES-FAIR-BEST 55.6 29.6 40.7 33.3 29.6 51.9 70.4 29.6

FALCC-FAIR 40.7 51.9 51.9 70.4 33.3 48.1 85.2 63.0
Table 5: Summary of the first experiment. Values denote in how many percent of experiments the corresponding algorithm
belonged to either the Pareto-optimal set, or to the top-3 when applying 𝐿̂.
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Figure 4: Results of the second set of experiments for varying model ensemble diversity (measured via entropy) with
demographic parity chosen as fairness definition
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Figure 5: Experiment on varying redlining reduction strate-
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Figure 6: Runtime comparison for the online phase of
FALCC, FALCES-FASTEST and OTHER-FASTEST.
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compare results with running FALCC without any proxy dis-

crimination reduction step. We expect the proxy discrimination

mitigation strategies to create more “group-balanced” clusters,

which exhibit a distribution similar to the full (global) dataset.

This should result in improved global fairness. At the same time,

we assume that local bias is less affected by the proxy discrimina-

tion mitigation strategies, as FALCC tries to optimize the chosen

model combinations within each local region.

Fig. 5 reports the quality results for the different strategies on

the Implicit dataset, i.e., the artificial dataset generated to include
proxy-attributes, and using the demographic parity metric. For

this experiment, we vary the degree of bias within the dataset

(𝑥-axis). The results show that both our proxy discrimination

mitigation strategies reduce global bias in cases with moderate

to high bias. They prove to be especially effective in settings

where the datasets contain high indirect bias. As expected, these

techniques do not affect local bias much; it remains quite stable

among all strategies. However, applying one of the two proxy

discrimination mitigation techniques might result in higher local

bias, but to a very small degree. While the global bias overall

is reduced, the inaccuracy is increased as well, but to a smaller

degree.

On the real-world datasets, due to a less extreme proxy dis-

crimination effect, the positive impact on global bias is less pro-

nounced (but present), while we sometimes do observe a decrease

in local bias using the reweighing technique. In general, both

proxy discrimination mitigation strategies show similar results.

Overall, the hypothesis can be confirmed. While the global

bias is improved on datasets containing proxy attributes, it might

come at the cost of accuracy. However, the reduction in global

bias is more significant than the decrease in accuracy, making the

overall tradeoff feasible. A general conclusion cannot be made

on reweighing compared to removing.

4.5 EG4: Runtime-efficiency
For the last set of experiments, we measure the runtime of FALCC

and compare it to the fastest algorithm of the FALCES family, as

this state-of-the-art approach can perform similarly well on local

fairness when using the same classifiers as input (see EG2), and

the fastest algorithm of the other algorithms. Note that the fastest

algorithm often does not provide the best qualitative results. The

runtime of the online phase is depicted in Fig. 6. The number

behind “Adult Data” indicates the amount of sensitive groups.

Clearly, FALCC significantly outperforms FALCES-FASTEST in

terms of runtime of the online phase. We further note that while

FALCES scales poorly with an increasing number of sensitive

groups (e.g., on the Adult Data dataset), FALCC scales well. The

main reason for the comparably bad runtime of FALCES is that

for each new sample considered in the online phase, first the

kNN [29] have to be computed. Then, all (retained) model com-

binations must be assessed on these kNN. This strategy has the

big downside, that we cannot precompute the kNN in the offline

phase for the instances we want to predict, if they are not avail-

able yet. In FALCC, local region determination and assessment

are done once in the offline phase, only requiring cluster match-

ing and model lookup during online processing. While FALCC

is an efficient, fair dynamic model ensemble approach, other al-

gorithms have better runtime efficiency. This is expected, as we

must determine to which cluster we assign a new test sample 𝑡

during the online phase, while the fastest compared algorithm

only has to perform the classification.

Putting this result together with our previous results on qual-

ity, we conclude FALCC is the first efficient algorithm to tackle

local bias effectively without compromising accuracy.

5 SUMMARY AND OUTLOOK
We presented FALCC, a system for efficient locally fair classifica-

tions. After an overview of the general framework, we discussed

details of the implementation options of its different compo-

nents. The evaluation validated that the novelties of the system

architecture compared to the state-of-the-art make FALCC the

new method of choice for locally fair classifications. Indeed, it is

highly efficient while maintaining low local bias and high accu-

racy over a large range of experiments for a variety of fairness

definitions. It is also a “one-size-fits-all” solution, since FALCC

can often keep up with the performance of the varying best com-

petitor, alleviating users from the tedious choice among multiple

algorithms.

In the future, we plan to investigate how to simplify the con-

figuration of FALCC using parameter estimation techniques [53].

This will increase the effectiveness and the usability of FALCC

for non-expert users. Initial results when using fair classifiers

as input were promising. Thus, we may also investigate several

sets of fair classifiers that can be integrated into our framework,

potentially in combination with our current training strategy.
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