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ABSTRACT

Comma-separated value (CSV) files follow a useful and wide-
spread format for data exchange due to their flexible standard.
However, due to this flexibility and plain text format, such files
often have structural issues, such as unescaped quote charac-
ters within quoted fields, columns containing different value for-
mats, rows with different numbers of cells, etc. We refer to rows
that contain such structural inconsistencies as ill-formed. Conse-
quently, ingesting them into a host system, such as a database
or an analytics platform, often requires prior data preparation
steps.

Traditionally, data scientists write custom code to clean ill-
formed rows, even before they can use data cleaning tools and
libraries, which assume all data to be properly loaded. These
tasks are tedious and time-consuming, requiring expertise and
frequent human intervention. To automate this process, we pro-
pose TASHEEH, a system that automatically detects ill-formed
rows containing data and then standardizes their structure into
a uniform format based on the structure of well-formed rows.
Of 200 351 manually annotated rows from four different sources,
TASHEEH was able to correctly detect 95.53% of data rows and
accurately generate transformations for 87.83% of them.

1 ANOMALOUS ROW STRUCTURES

Comma-separated value (CSV) files, due to their flexible stan-
dard, are particularly popular among business users, data storage
companies, and researchers to collect and share data [6, 7, 41,
44, 45, 54, 59]. However, this flexibility comes with much re-
sponsibility and effort for data engineers and analysts during
pre-processing: due to their loose format, these files appear in
various dialects [13, 17, 65] deviating from the RFC standard [29].
In addition, they often contain various structural inconsisten-
cies [21, 31]. Consequently, it is challenging to load these files
correctly into data-driven systems without prior data prepara-
tion steps [20, 66]. Developers and scientists spend much of their
development time cleaning and organizing data in these files and
have little time for analytical tasks [26, 48, 63].

Recently, our community has begun recognizing such short-
comings as research opportunities and has developed solutions
for preparing and cleaning data [8, 10, 11, 21, 31, 38, 50, 53, 55, 62].
However, we are still far from creating a fully automated data
processing pipeline, in part due to open challenges of raw CSV
files.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

426

Gerardo Vitagliano
gerardo.vitagliano@hpi.de
Hasso Plattner Institute, University of Potsdam
Germany

Felix Naumann
felix.naumann@hpi.de
Hasso Plattner Institute, University of Potsdam

Germany
|11
2 |
3 | ma .
! | Rows with empty cell values
4 | Luw_
| 5 | IFiscal Year,Vionth, Total SSR,internet SSR Percentage_| Header row
| 6 | 2009,0ctober,405,358,0.90%
| 7 | 2009,November,418,945,2.30%
| 8 | 2009,December,495,215,4.40%
| 30 | | 2011,0October,""5,249"",""5,773"",11.00%
31 2011,November,""4,331" ,451"",12.60%
32 2011,December,""6,323"",""1,801"",28.50%
84 | | 2015,April,359,1,0.0% _# in progress | Data row with appended metadata
98 2016,June,417,306,7.30%
| 99 | 2016,July,409,484,11.80%
| 100 | 2016,August,480,527,11.00%
152 | E—ZDZUUIV’ H Rows with fewer columns and not
| 160 | | 2021,August,, : h load data
i enough payloa
| 161 | 12021 September,, _;
| 162 | ! ™Fiscal Analysis Reports to Council 2021,13-11-21: ....."", ,, i Footnote row

Figure 1: A sample of a raw CSV file with ill-formed rows
due to structural inconsistencies at both column- and row-
levels.

As we noted in [21], among other challenges, detecting and
cleaning “ill-formed” rows (see Section 3.3 for a formal definition)
in CSV files are difficult problems. Ill-formed rows occur in raw
data due to loosely defined schemata, incorrect formatting of val-
ues, discrepancies in row structures, etc. They can lead to aborted
loading processes, incorrectly parsed data, and can interfere with
the training process of machine learning algorithms. Figure 1
shows an example of a raw CSV file taken from a government
data portal. We highlight groups of ill-formed rows with different
inconsistencies. Our goal is to automatically detect those rows
that contain data, which we call wanted rows (see Section 3.1
for a formal definition), and automatically repair their structural
inconsistencies.

Some rows are ill-formed and contain no data, e.g., table titles,
footnotes, or empty rows. We call these rows ill-formed unwanted.
Other rows may contain data yet be ill-formed, e.g., because they
contain additional structural or formatting information and pos-
sibly additional columns. We refer to these rows as ill-formed
wanted. To detect ill-formed rows, we make use of our pattern-
based system, SURAGH [21], which abstracts row structures into
structural patterns based on a syntactic pattern grammar. Here,
we extend the use of our syntactic pattern grammar with our
new system TAsHEEH'. The goal of TASHEEH is to improve the
classification of ill-formed rows by recognizing wanted and un-
wanted ill-formed rows, but in particular automatically clean
wanted rows structure.

! TASHEEH (TAs-HEEH) is an Urdu word that means correction or rectification.
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Real-world CSV files are quite “wild” because of their flexi-
ble standard [21]. For example, due to structural inconsistencies
(ill-formed rows) the file in Figure 1, cannot be directly ingested
correctly even into many advanced data preparation and cleaning
tools, such as Trifacta Wrangler [30], Tableau [61], or OpenRe-
fine [19]. Not to mention loading it into a relational DBMS, which
would complain about almost every row. The ingestion challenges
stem from the fact that existing data-driven systems for parsing
CSV files usually assume that the file structure follows the RFC
standard [29], without considering the variations that may exist
in practice [7]. This assumption can lead to significant structural
challenges during the file ingestion process, such as shifted col-
umn values, incorrect field boundaries, misinterpreted quotes
and escape characters, fields spanning to multiple rows, data
mixed with metadata, rows with varying lengths, etc. [66]. In the
following, we discuss structural challenges using the example
file shown in Figure 1.

Example 1.1. The file in Figure 1 contains, among other incon-
sistencies, cell values with either a non-standard quote character
ora missing quote escape character, eg.,""5,249"" (row 30). The
RFC 4180 standard [29] for CSV files states: 1) Each field must
be enclosed in double-quotes if its value contains a character
used as a field delimiter; 2) a double-quote appearing inside a
field must be escaped by preceding it with another double quote.
With those rules, the standardized versions of the value should
either appear as "5,249" as per the Rule 1 if the cell value is a
number 5,249, or as """5,249""", as per Rule 2 if the cell value is
a literal string "5,249" (with quotations included). Loading the
file as-is in a downstream application might lead to a shift in
column values.

Moreover, Sun et al. noted that shifts in values can also occur
when extracting data from multiple sources, during manual data
entry, or when sensors fail [60].

Example 1.2. Another example of structural inconsistency in
the file of Figure 1 (row 84) is data and metadata appearing in
the same row. We also observed this inconsistency appear in the
opposite order as data next-to metadata. In both combinations,
metadata appear mainly in the form of comments, where users
leave notes for reference or try to explain data in that row. An-
other cause is manual data entry or automatic data integration
from multiple sources, where users or automated scripts miss
the newline separator, resulting in a different number of columns
across rows.

Out of a random subset of 1000 files from www.data.gov,
we found that in about 5.8% data and metadata were present
in the same rows. Such additional metadata are not the only
reason for different numbers of columns in rows. Due to the
flexible format of CSV files, users add additional columns for data
and explanations to the data by simply adding delimiters to the
rows. Some rows contain fewer columns due to missing values or
deletion operations causing the same problem. In another random
subset of 1000 files from Mendeley’s data sharing platform?, we
observed that around 7.3% contained wanted rows with a varying
number of columns.

Preparing data with such structural inconsistencies for loading
into data-driven applications is a challenging and time-consuming
task that often requires significant manual effort. TASHEEH aims
to help streamline a data processing pipeline by automating
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preparation tasks at the structural level and minimizing the bur-
den of manual data preparation.
Our paper makes the following main contributions:

(1) A formalization to describe ill- and well-formedness of
rows, wanted and unwanted rows, and row structure stan-
dardization.

A set of files from four open data sources, each annotated
for ill-formed or well-formed, and wanted or unwanted
rows for a total of 200 351 rows. The files, together with
the classification annotations, manually cleaned wanted
rows, and code, are publicly available3.

A system, TASHEEH, that automatically recognizes ill-formed
wanted rows and cleans their structure using a novel pat-
tern transformation algebra.

A wide range of experiments conducted to validate Tas-
HEEH for both classification and transformation of ill-
formed rows.
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The rest of the paper is organized as follows: Section 2 presents
related work. Section 3 defines the relevant concepts related to
pattern extraction and ill- and well-formedness of rows, and
provides formal definitions. Section 4 illustrates the workflow
of TAsHEEH and presents the processes of classifying and trans-
forming ill-formed rows. Section 5 presents the experimental
evaluation of TAsHEEH. Finally, Section 6 concludes our study.

2 RELATED WORK

While a considerable amount of research has been conducted on
detecting and correcting semantic errors in data, little attention
has been given to addressing the structural problems in CSV
files. However, there have been some notable attempts in related
work to comprehend the structure of tabular data. We provide a
succinct overview of these approaches and briefly describe the
pertinent research directions that can be complemented by our
research.

Table extraction. Extracting relational tables from diverse sources
presents an interesting problem, leading to the development of
multiple tools [7, 8, 14, 15, 35, 37]. In particular, TEGRA [8] (for
web lists), TABLESENSE [14] (for spreadsheets), and PYTHEAS [7]
(for CSV files) have achieved considerable success in the table
extraction domain. TEGRA approaches table extraction as a global
optimization problem. Its function searches for the best position
to split every row to ensure column alignment and coherence of
values. TABLESENSE is a deep learning architecture that leverages
a combination of visual and rich-text Excel features to accurately
identify and segment tables within spreadsheets. PYTHEAS is the
state-of-the-art system dedicated to extracting tables from CSV
files. It utilizes machine-learned rules to discover tables in CSV
files by identifying the position of data rows.

Although these systems do not explicitly focus on cleaning
structural issues, which is the primary objective of our research,
we compare our approach with the state-of-the-art system PyTH-
EAS, since (1) it is designed for plain text files, and (2) the sys-
tem’s ability to identify data rows in CSV files allows for a direct
comparison with our classification component (Section 5.2). Con-
versely, TEGRA operates under the assumption that the delimiter
is the only potential structural issue, and it also expects the de-
limiter to be consistent across all rows, and TABLESENSE expects a
spreadsheet format as input, where cell boundaries are typically

Shttps://github.com/HMazharHameed/TASHEEH



well-defined and distinct, which contrasts with the less struc-
tured nature of plain text files like CSV. Therefore, we believe
applying the latter systems would not lead to a fair comparison.

Row and cell type detection. In plain text files like CSV, not
every row may contain data [41]. Therefore, accurately iden-
tifying the boundaries of cells and rows and comprehending
their underlying semantics are essential features for efficient data
processing. Researchers have devised various tools employing
both supervised and unsupervised approaches to classify cells
and rows within tabular data [4, 20, 31, 36, 47]. Among these
approaches, Jiang et al. proposed the state-of-the-art STRUDEL ap-
proach [31]: STRUDEL is a multi-class random forest classifier that
leverages three types of features: content, context, and computa-
tional features to accurately classify rows in CSV files. Although
its primary focus is not on structure-cleaning, we include it in
our comparative analysis by evaluating its performance against
TasHEEH's classification component (Section 5.2).

File structure preparation. In the context of non-standardized
CSV files, various structural inconsistencies can arise when pro-
cessing data using different tools or parsers [66]. Among these,
one notable issue is the occurrence of shifted column values. Sun
et al. introduced the SREN system [60] to address this specific
problem. The approach focuses on repairing shifted values by
leveraging the likelihood of neighboring attribute values and
determining the correct position for swapping. It is the sole so-
lution available that attempts to address one structural problem
in CSV files. In our evaluation (Section 5.3), we compare the per-
formance of the TASHEEH transformation component with the
SREN system.

Recent advances in natural language processing, such as the
development of large language models (LLM), exemplified by the
GPT family [51], have sparked interest in using such models for
traditional data wrangling and cleaning tasks. The underlying
idea is to utilize pre-trained LLMs and employ zero-shot or few-
shot inference techniques to address various data management
tasks. In Section 5.3 we provide a brief overview of our experience
utilizing these models to address structural inconsistencies.

Data transformation. Data transformation has been a long-
standing challenge in research, with various proposals to address
it. Notable among these is the “transform-by-example” method,
which allows users to provide input/output examples for the
system to search for consistent programs [3, 22, 23, 32, 33, 56].
However, these approaches expect the input data to already be
in relational table format, which the system can then analyze
and transform accordingly. In contrast, the CSV files we focus
on in this research often exhibit various structural problems that
make them challenging to parse by these systems, let alone apply
transformations on them. Our system complements the existing
research on data transformation by transforming the structurally
broken CSV files into a consistent format to be then loaded into
these transformation tools.

Error detection and correction. The importance of detecting
and correcting data quality issues has been widely acknowledged
in the research community [2, 25]. Numerous error detection
techniques have been proposed [9, 24, 27, 28, 40, 50, 68], as well
as error correction methods [10, 16, 34, 39, 46, 49, 53]. Again,
these techniques rely on structurally sound data as input. Our
system addresses this challenge by providing a solution for resolv-
ing structural inconsistencies in CSV files, thus enabling these
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downstream data quality techniques to parse them correctly for
subsequent operations.

3 PRELIMINARIES

In this section, we first define wanted and unwanted rows and
present our problem definition. Following that, we provide a
brief overview of our previous work, SURAGH, which we use as
an introductory step in TASHEEH.

3.1 Problem Definition

The input to our approach is a file that is composed of a number
of rows. A row is a sequence of characters terminated by a new-
line separator. Further, let T be a relational table serialized in a
CSV file F and let R be the set of rows of F. Every tuple t € T
contains data from one or possibly multiple rows (e.g., due to a
misplaced line separator). Moreover, due to missing or misplaced
line separators, two tuples can also contain distinct data from
the same row. Formalizing these concepts, we define wanted and
unwanted rows as follows:

Definition 3.1. Let T be a relational table serialized in a CSV
file F, and let ®: T — 2R be a function that maps every tuple
t € T to a non-empty set of rows in F from which it can be parsed.
A row r € R is called wanted, if it serializes data from any tuple
of T,ie., if 3t € T: r € ®(t), and unwanted otherwise.

Since at parsing time we do not know the relational table
serialized in a file F (nor do we know ®), classifying rows as
wanted or unwanted is often not trivial and leads to a trade-
off between the two data quality dimensions completeness and
soundness. If we mistakenly label a ‘wanted’ row as ‘unwanted’,
it leads to information loss, causing the loaded table to miss some
data and thus becoming incomplete. Vice versa, if an ‘unwanted’
row is erroneously classified as ‘wanted’, it introduces incorrect
information into the table, making it unsound. We now define
the problem we address as follows:

Given as input a raw data file F with a set of rows, identify the
structure of the table T serialized in F and transform all wanted
rows to follow that structure, while retaining all of their data values.

To solve this problem, we need to perform three steps: 1) struc-
ture detection to identify the table T, 2) row classification to sep-
arate wanted and unwanted rows, and 3) row transformation to
standardize the structure of wanted rows into a uniform format.

We have addressed the first step of the problem in our previous
work, SURAGH, using a pattern-based approach [21]. SUrRAGH
takes a CSV file as input and classifies its rows as ill- or well-
formed based on the dominant row pattern(s) (see Figure 2). For
the next steps, we developed TAsHEEH that utilizes the pattern
language introduced in SURAGH and further enhances the process
by classifying ill-formed rows into wanted and unwanted rows.
In Figure 2, the output of TASHEEH's classification process is
merged with the results of SURAGH to minimize visual clutter.

In the following sections, we briefly explain how SURAGH ex-
tracts dominant row patterns from CSV rows, a basic step for
row classification and transformation in TAsHEEH. Note that we
assume the transformations should only clean the structure of
the rows and should neither lose data nor invent new information
that was not present in the input file, such as filling null values,
disambiguating values, or normalizing addresses. These seman-
tic transformations can be applied later in the pre-processing
pipeline, leveraging data cleaning tools and libraries [3, 19, 22,
30, 33, 34, 53, 57, 58, 61] that are specifically designed to perform
such transformations.
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Figure 2: Selected rows of the CSV file of Figure 1 with well-
formed rows (highlighted green), ill-formed wanted rows
(highlighted blue), and ill-formed unwanted row (high-
lighted red). The dominant pattern at the bottom corre-
sponds to the file structure automatically detected by Su-
RAGH.

3.2 Pattern Modeling

The goal of SURAGH is to understand the structure of rows in
an input file, abstracting it with patterns. To generate patterns,
SuRrAGH defines a grammar to map cell values into abstract rep-
resentations. We refer to the production rules of this grammar as
abstractions, which are of two types: (1) encoder and (2) aggrega-
tor. The encoder abstractions transform single characters into a
more general representation, e.g., the character “A” is represented
with (UL), for “Upper Letter”. The aggregator abstractions com-
bine representations resulting from other encoder and aggregator
abstractions based on a given rule, e.g., the character sequence
“ABC” is first encoded as (UL)(UL)(UL), and then can be com-
bined in the single abstraction(SEQUL), for “Sequence of Upper
Letters”. Using the given pattern grammar, SURAGH generates
patterns for each cell value, referred to as syntactic cell patterns.

The application of the grammar rules is order-dependent, and
every input value can be transformed into one or more syn-
tactic cell patterns. For example, for the cell value “June” of
the column “Month” in Figure 1, three possible cell patterns are
(ULY(LLY{LL){LL), {UL) (SEQLL), and (TXT). Note that different
patterns have different levels of “specificity”, depending on the
level of abstractions.

3.3 Pattern Extraction

After generating patterns for each cell value, SUrRAGH collects
them for an entire column, referred to as syntactic column patterns.
Among all possible cell patterns within a column, it retains only
those with a sufficiently high specificity and with enough cover-
age of actual cells in the column. For the input file in Figure 1,
the three selected column patterns for the column “Percentage”
are, (SEQD).(SEQD)%, (D).(D)(D)%, and (D)(D).(D){(D)%.

A syntactic row pattern is obtained by selecting a single column
pattern for each of the input file columns. To identify good row
patterns that represent one or more rows, SURAGH inspects all
combinations of columns patterns, selecting among those with
high specificity and coverage. For the input file in Figure 1, two
of the syntactic row patterns are shown in the following table
where cell separators indicate the “Delimiter” (DEL) abstraction,
which we omit to save space:

KN
[ #1 [ (DXDNDXD) |
[P | (D)D)(D)(D) |

(ULY(SEQLL) | (D)(D){D) [ (D)(D)(D) | (D). (D)D) % |
(UL)(SEQLL) | (D)(D)(D) | (SEQD) | (SEQD) .(SEQD) %

Syntactic Row Patterns
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Row patterns that are not a proper subset of another pattern
are called dominant patterns. To avoid pattern redundancy, Su-
RAGH detects and removes all non-dominant patterns. For the
input file in Figure 1, the row pattern #; is a dominant row
pattern (see Figure 2), as it is not a subset of any other row
pattern.

Finally, the constructed set of dominant row pattern(s) is used
to classify individual rows as ill-formed or well-formed: A row
conforms to a dominant row pattern if it has the same number
of columns as the dominant pattern, and all column values of
the row conform to the corresponding column patterns of the
dominant pattern. We call such a row well-formed, and ill-formed
otherwise [21]. TASHEEH uses dominant row patterns as a filter
in the pattern classification phase and as the target of the pattern
transformation phase (see Section 4).

4 THE TASHEEH SYSTEM

TasHEEH performs in three phases (see Figure 3). In the first
phase, it first uses SURAGH to classify input file rows as ill-formed
or well-formed using dominant row patterns (#y). Then, it runs
SURAGH incrementally for ill-formed rows to obtain row pat-
terns specifically for those rows; we call these patterns potential
row patterns (Pp): these ill-formed data rows can possibly be
transformed into well-formed data rows. TASHEEH repeats the
incremental pattern generation process until no ill-formed rows
are left without a potential pattern. Section 4.1 provides details
for this step.

The second phase uses the incrementally generated patterns
to classify ill-formed rows into wanted and unwanted ones. It
leverages a pattern-level distance measure inspired by sequence
alignment [18]. This pattern sequence alignment helps TASHEEH
determine the extent to which ill-formed rows differ structurally
from well-formed rows. Section 4.2 explains this step in detail.

In its third and final phase, TASHEEH collects wanted rows,
well-formed rows, and their patterns from the previous phases.
It then uses a pattern transformation algebra to transform the
wanted rows into well-formed ones — Section 4.3 explains the
details.

4.1 Incremental Pattern Generation

SURAGH generates a set of dominant row patterns for a given file.
Using these dominant patterns, it classifies rows as ill-formed
and well-formed. During this process, to reduce the dominant
pattern search space, SURAGH retains only the dominant patterns
and discards all other patterns, including those for ill-formed
rows. However, TASHEEH requires these patterns for two reasons:
(1) The level of abstraction of these patterns makes the compari-
son with dominant patterns more applicable than with original
rows. (2) Transforming general patterns that cover multiple ill-
formed rows is more efficient and scalable than transforming
rows individually.

To generate such further patterns, TASHEEH incrementally ex-
ecutes SURAGH. In each iteration, TASHEEH revises the criteria
for classifying rows based on the dominant patterns generated
in that cycle. This iterative process entails discarding previously
identified well-formed rows and re-assessing rows previously la-
beled as ill-formed. As a result, the definition of well-formedness
dynamically adapts with each iteration, guided by the remaining
rows that have yet to be classified. For example, for the input file
in Figure 1, three of the potential row patterns along with the
dominant row pattern are shown in Table 1.
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Table 1: Example set of dominant and potential row patterns (aligned by delimiters); #; corresponds to well-formed rows
(Figure 2 — rows 6-8), 1 corresponds to an unwanted row (Figure 2 — row 5), $» corresponds to wanted rows (Figure 2
— rows 30-32), and Pp3 corresponds to a wanted row (Figure 2 — row 84).

Dominant Row Pattern:

[P4 [ (D) (D)(D)(D)

(DEL) (UL)(SEQLL) (DEL) (Dy(D)(D) (DEL) (SEQD)

(DEL) (SEQD) . (SEQD)% |

Potential Row Patterns:

Pp1|Fiscal Year (DEL) Month

(DEL) Total SSR (DEL) Internet SSR (DEL) Percentage

Py | 2011 (DELY (UL)(SEQLL) (DEL) "(D)

(DEL) (D){D){D)""

(DEL) "(D) (DELY (D)(D){D) " (DEL) {SEQD) . (SEQD)%

P3| 2015 (DELY (UL)(SEQLL) (DEL) 359 (DELY 1

(DEL) ©.0% # in progress

After obtaining dominant and potential patterns for well-
formed and ill-formed rows, TASHEEH processes them further to
classify ill-formed rows into wanted and unwanted.

4.2 Row Classification

In this phase, TASHEEH first calculates the minimum pattern-
level distance between dominant and potential patterns using
a dynamic programming approach. Then, the distance score is
used to find for each potential pattern the closest corresponding
dominant pattern as a target for transformation. Finally, TASHEEH
classifies the potential patterns and their associated rows as ill-
formed wanted or ill-formed unwanted, based on the pattern
distance.

4.2.1 Pattern sequence aligner. The potential patterns that
TASHEEH generated in the previous phase may or may not cover
rows that contain data. To understand how similar they are to
dominant patterns, which do cover data rows, we introduce
a pattern-level distance measure inspired by sequence align-
ment [18]. Sequence alignment frameworks arrange the char-
acters of two sequences to maximize the number of matching
characters [43], calculating the similarity between the sequences
using dynamic programming [5].

Like edit distance frameworks for string matching [67], se-
quence alignment frameworks also expect a pair of input se-
quences and apply the required operation. These frameworks
aim at computing the closest possible match between charac-
ters of the input sequences so that the overall character-wise
distance is minimized. To align the sequences, a set of operations
includes “match”, “mismatch”, and “indel” (insertion and deletion;
represented by a gap character “-”), with a given cost for each
operation. This cost may be fixed or may vary depending on the
user definition.

We introduce a distance-based alignment framework for pattern-
by-pattern alignments, where the input sequences are entire row
patterns. The input patterns are compared column by column,
splitting them on the delimiter character of the raw CSV file.

Let us consider the dominant pattern ; and a potential pat-
tern $p from Table 1. Our distance-based alignment framework
generates $’, and $,, with the same number of column patterns
so that they can be aligned. To do so, the framework pads col-
umn patterns using a special gap character to the shorter of the
two sequences based on the minimum cost edit path. We imple-
mented our framework using a dynamic programming approach
to find the alignment with the lowest distance, similar to other
sequence alignment distances [43]. To find an alignment between
the two patterns Py, Pp, we instantiate a matrix M where the
position at element i, j represents the minimum cost to trans-
form P, [0, ..., j] into Pg[0, ..., i]. The matrix is initialized with
MUi][0] = iand M[0][j] = J, and then all other costs are filled
using Equation (1):

MIi-1][j]+1,
o . T 1
M(Pg, Pp)lil[j] = min E]D][]] 11+

DPyli-11.Pp1i - 1))
1)
Here, the cost of the insertion and deletion are calculated
as 1 (first and second lines of Equation (1)). To determine the
cost between individual column patterns, we define a pattern
distance function O by enumerating four possible cases, which
are summarized in Equation (2). Given two column patterns a,

(1) If & is equal to f, their distance is 0.

(2) If either @ or f are the gap “-” pattern, or contain a null
value pattern (EV'), their distance is 1.

(3) If « contains the delimiter (DEL) and f contains data (or
vice versa), their distance is also 1.

(4) If both column patterns represent data and do not con-
tain any delimiters or gaps, we first obtain the similarity
score between the column patterns as the number of com-
mon abstractions in the same class (letters, digits, special
characters) divided by the maximum length of the two
column patterns. We then define column pattern distance
as 1 minus the similarity score [range: 0-1].
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0, ifa=p
1,  ifa € {“(EV)}or B e {-,(EV)}
D(a,p) =41 ifa=(DEL)and f ¢ {"-,(EV) (DEL)}

2 min(lail, |fi])

i=ld s
max(|al, |f])
2
The pattern distance formula is inspired by the string-by-
string alignment approach [22], which we adapted to define the
distance function D between syntactic column patterns (o, )
using abstractions [21]. We consider the typical three groups of
abstraction classes: letters “I”, digits “d”, and symbols “s” (see
details in [21]). This choice of quantifying distance between string
patterns is motivated by the need to capture structural similarities.
For example, the values “123 Main Street, New York, NY”and
“789 Broadway Avenue, New York, NY” exhibit a significant
structural similarity despite high edit, Jaccard, and Hamming
distances.
The aforementioned dynamic programming approach solves
the following optimization:

LA
1

D(Py, Pp) = min —-— D(P,k], P,k 3

(Pa-Pp) P?I%I%lkz:l (PiIkLP, KD ()

Here, £y and $), are the original input row patterns, while
SD‘; and Pl; are padded row patterns to obtain the same number
of columns. Note that the special gap symbol can be padded at
any position in the pattern sequence to minimize the pattern
distance.

Example 4.1. Table 2 demonstrates the pattern-by-pattern dis-
tance scores between the dominant pattern $; and potential
pattern $p3 from Table 1, where the column pattern distance
scores were determined through the use of Equation (2). The
overall row pattern distance was determined as (0+0+ 0+ 0 +
0+0+0+0+0.90)/9 = 0.10 by applying Equation (3).

Table 2: Column pattern-wise distance scores between row
patterns £, (Figure 2 — rows 6-8) and $p3; (Figure 2 —
row 84).

Aligned Pattern Pairs Distance Score Freq.

Pq column patterns ~ $p3 column patterns

(D)(D){D){D) 2015 0 1
(DEL) (DEL) 0 4
(UL)(SEQLL) (UL)(SEQLL) 0 1
(D)(D)(D) 359 0 1
(SEQD) 1 0 1
(SEQD).(SEQD)% 0.0% # in progress 0.90 1

Potential patterns that are close to the dominant pattern have
alower distance score. To classify wanted and unwanted patterns,
we introduce a distance score threshold: rows whose potential
pattern is not too different from the dominant pattern, i.e., with a
distance lower than the threshold, are considered “wanted”, and
all others are considered “unwanted” (see Section 4.2.3 below for
more details).

4.2.2  Cluster curator. In cases with only one dominant pat-
tern, such as in the example file shown in Figure 2, all potential
patterns are aligned to the single dominant pattern to determine
their distance. However, when files have multiple dominant pat-
terns, the distances between each combination of dominant and

dAfa, p ¢ {-.(EV),(DEL)}
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Table 3: Row pattern transformation operators

Operator  Description

Drop Returns an empty column pattern.

Extract Extracts a (wanted) part from a column pattern.

Ignore Returns the unchanged input column pattern.

Move Relocates a column pattern from one position to another.

Merge Concatenates column patterns and appends the merged
column pattern to the specified position.

Pad Pads a row pattern with empty cell(s).

Permute Rearranges a column pattern set with a given order.

Re-quote  Adds or removes quotes from a column pattern.

Re-escape  Adds or removes escapes from a column pattern.

Re-delimit  Adds or removes a field separator from a column pattern.

Re-line Adds or removes a row separator from a column pattern.

Replace Replaces abstractions in a column pattern.

potential patterns are calculated, and for each potential pattern,
we choose the dominant pattern with the lowest distance.

4.2.3  Pattern classification. After obtaining the pattern dis-
tance for each combination of dominant and potential patterns,
TASHEEH passes it to the pattern classifier, which uses a distance
score threshold to determine whether the potential patterns are
wanted or unwanted, resulting in whether the corresponding
rows contain data or not. Given a distance score threshold 6,
all potential patterns with a distance score < 0 are labeled as
wanted, while the rest are considered as unwanted. With the ex-
periments detailed in Section 5.2 we determined that a threshold
value 0 = 0.3 yielded the highest F-1 score.

4.3 Row Structure Transformation

In this phase, TASHEEH collects the ill-formed wanted rows, well-
formed rows, their patterns, and the corresponding dynamic pro-
gramming matrices M from the previous phase. First, it chooses
the best alignment between dominant and wanted patterns, deter-
mining the necessary transformations to clean up the structure
of wanted patterns. Then, the transformations identified at the
pattern level are used to transform the corresponding wanted
rows into well-formed ones.

4.3.1 Pattern transformation algebra. Table 3 presents a set
of operators to transform one pattern into another. This set is
also the basis to later transform the corresponding rows from
ill-formed ones to well-formed ones. The pattern transformation
operators take one or more input column patterns and output up
to one column pattern with a possibly transformed structure.

Each operator has a specific function based on the inconsis-
tencies that need to be resolved in column pattern(s). For some
inconsistencies, multiple operators may have to be combined in
a specific execution order. For example, to correct shifted column
values, TASHEEH uses the functionalities of Merge, Re-delimit,
Re-quote, Re-escape, and Drop. Here, the execution order is im-
portant because if the Drop operator precedes the Merge operator,
data are lost. Similarly, without the Re-delimit operator before
the Merge operator, shifted values are not fixed, and even worse,
shifted further due to incorrect field boundaries. In the following
section, we explain how we obtain a complete pattern-level edit
path and the functionalities of the transformation operators.

4.3.2  Minimum cost edit path. To find the alignment between
a dominant pattern and a wanted pattern, we trace back from the
bottom right of their matrix M from the previous phase. First, we



construct a graph on M where each node corresponds to a cell
of the matrix and contains information about a pair of column
patterns from the dominant and the wanted patterns. Each node
has three outgoing edges indicating the three possible directions
from one node to another based on the alignment operators
(“match”, “mismatch”, “insert”, and “delete”), where each edge
has its weight based on the cost of the operation required.

Figure 4: Weighted graph for minimum cost path finder

The use of edge weights provides information about the cost
of each transformation, enabling us to choose the best overall
alignment between the patterns. An example of a weighted graph
with outgoing edges is illustrated in Figure 4. The solid line in the
graph represents the path with the minimum cost from one node
to another, where every direction provides information about the
set of operations required to transform one column pattern into
another. For example, the diagonal direction indicates the match
and mismatch alignment operations, and for each of them, we can
apply a set of transformation operators as shown in Table 4. The
determination of which operation to use is based on the column
patterns and the distance score. If two column patterns are equal,
the distance score is zero, and the diagonal direction indicates a
match operation. On the other hand, if the column patterns are
different, the direction indicates a mismatch operation.

Similarly, an outgoing vertical direction represents the inser-
tion operation, while an outgoing horizontal direction represents
the deletion operation. Both directions are accompanied by a set
of transformation operations (see Table 4). In essence, the pro-
cess involves determining the edge weights to represent the cost
(distance) associated with each transformation. Following that,
we employed Dijkstra’s shortest path algorithm [12] to compute
the most efficient path, allowing for the determination of the
minimum cost edit path from the initial node to the final node.
This path represents the alignment between a dominant pattern
and a wanted pattern, as shown in Figure 5. The figure provides
a visual representation of the aligned row patterns (Py, Pp2) and
the marked alignment operators. This information later will be
used by the transformation engine for pattern transformation
(see Section 4.3.3). During backtracking, several paths with equal
minimum edit costs may be found. We choose the first path re-
turned by the shortest path algorithm, and in the case of a tie
between moves, we prioritize the diagonal move if the column
patterns being compared are equal.

4.3.3  Pattern wrangler. TAsHEEH collects the aligned patterns
together with the minimum cost alignment from the previous
step. It then passes the aligned column patterns one at a time
from the row patterns to the transformation engine, the pat-
tern wrangler, which applies the necessary transformations. The
transformation engine stores the results of each column pattern
transformation in a transformation queue and continues to apply
transformations to the remaining column patterns (see Algo-
rithm 1). Once all transformations are complete, it applies the
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Table 4: Pattern sequence alignment operators, where un-
derlined transformation operators were used for both Tas-
HEEH and BASELINE transformation strategies.

Operator Transformation  Corresponding transformation
direction operator(s)
Match Diagonal Ignore
Mismatch  Diagonal Drop, Extract, Ignore, Replace, Re-
delimit, Re-quote, Re-escape, Re-line
Insert Vertical Pad, Permute
Delete Horizontal Merge, Drop, Extract, Move, Re-

delimit, Re-quote, Re-escape, Re-line

preferred transformations from the queue to the corresponding
actual data rows.

Algorithm 1: Pattern Wrangler

Input: Dominant pattern $y, Potential pattern Pp,
alignment A between Py, Pp
Output: List of Transformations T
1T« ]
2 foreach 0 < i < |Pp| do
3 transformations «—
APPLICABLETRANSFORMATIONS(Py[i], Pp[i], A[i])
4 T. < GENERATECOMBINATIONS (transformations)
5 T« TUarg min(DISTANCE(‘Pd [i], ¢(Pp [i])))
cel,
¢ end
7 return T

In the following, we explain the alignment operators listed in
Table 4 and their corresponding transformation operators in the
context of the pattern wrangler.

Match. When aligning row patterns, one often encounters iden-
tical column patterns that do not require a transformation. Such
patterns are marked with the “match” alignment operator, with
the corresponding transformation operator Ignore, which skips
the identical column patterns without applying a transformation.
For example, in Figure 5, we marked column patterns as “match”
if they are identical, indicating that no transformation is required.

Mismatch. Although the “match” and “mismatch” alignment
operators follow a diagonal direction, the operator tag in the
minimum cost edit path differs for non-identical column patterns,
suggesting the need for transformation(s) in the wanted column
pattern. However, not every “mismatched” pattern requires a
transformation: for example, column patterns “(SEQD).(SEQD)%”
and “(SEQD)%” may appear dissimilar, but can both be used to
represent data values within the same column. Transforming
these patterns may result in undesired output. Nonetheless, the
transformation engine identifies such cases using the abstractions
hierarchy and applies the Ignore operator to the mismatched
patterns, thereby preventing unintended results.

The column patterns “(SEQD).(SEQD)%” and “0.0% # in progress”
in Table 2 provide an example of where it is necessary to apply
transformations to column patterns with the mismatched marked
operator. The inconsistency is that the metadata (# in progress)
are appended to the data part (0.0%) in the wanted pattern. Before
applying transformations, the engine determines the necessary
operators based on the abstractions present in the pattern. In
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Figure 5: Minimum cost edit path alignment between row patterns #; (Figure 2 — rows 6-8) and #; (Figure 2 — rows 30-32)

together with marked transformation directions.

this case, since the wanted pattern does not contain dialect char-
acters (delimiter, quote, quote escape), other operators, such as
Re-quote, Re-escape, Re-delimit, and Re-line are not utilized. The
available operators for the transformation engine are Drop, Re-
place, and Extract. The Drop operator is the least preferred and
is used when other operators fail to produce accurate results.
The goal is to decrease the pattern distance between the trans-
formed wanted pattern and the dominant pattern, indicating a
closer match. Thus, the engine first applies Replace and Extract
individually and then in combination, if necessary, to achieve
a transformed wanted pattern, closer to the dominant pattern.
Note that often a single operator can yield the best results, as in
our example, where the Extract operator alone suffices.

After applying the Extract operator to the example column pat-
terns, the resulting pattern is “e.0%”, which is the desired output.
Let us delve into how the Extract operator works. We employ the
same sequence alignment framework designed for row patterns,
aligning the individual literals, symbols, and abstractions of a
pair of column patterns. The table below depicts the alignment
between the elements of the example column patterns, with gap
characters “-” indicating the deletion operation.

T T T

[ (SEQD) | .
e [.]e \%\ [#] [i[n] [P]rfofefr]e]s]s]
The transformation engine then stores the Extract operator

in the transformation queue and moves on to the next column

pattern.

Insert. As previously stated, it is common for CSV files to have
ill-formed wanted rows with a varying number of columns. This
inconsistency is manifested in the alignment of the column pat-
terns, where the alignment operator “insert” is marked in the edit
path, indicating the insertion of missing columns. The transfor-
mation engine uses information from the alignment to identify
the position of the missing parts and applies the corresponding
operators (Pad, Permute) to resolve this inconsistency. The trivial
options are at the beginning or end of the row patterns, where
we pad additional column patterns by inserting a field separator.

A more challenging scenario is when the engine needs to add
column patterns in the middle of a row pattern, requiring the
decision of the appropriate position. Imagine a situation where
a file contains sensor data, and new data are frequently being
added. Due to a sensor malfunction, some columns are absent,
resulting in fewer columns in the impacted rows. The problem
is further complicated as the missing parts in the middle cause
a backward shift in the column values, resulting in shift incon-
sistency. In such a scenario, the transformation engine does not
merely add separators between columns, but finds the best posi-
tion by iterating through all the possible indices combinations
provided by the alignment (see Algorithm 2).

Delete. If a pattern of the wanted rows has more column patterns
than a dominant pattern, the alignment framework inserts gaps in
the dominant pattern and marks column patterns with the “delete”
alignment operator in the edit path. The presence of such dele-
tions can be attributed to inconsistencies caused by shifted values
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Algorithm 2: Pattern Padding

Input: Dominant pattern £, Potential pattern £,
Insertion indices I,
Output: Optimal positions in $p for Padding
1 n_pad — [|Pg| = |Ppll
2 P}, « Pad(Pp[In[0]], n_pad)
In [O]aln[|1n| - 1])

4 0% — argmin(DISTANCE(Pd, Permute(Pp,
00

5 return o*

3 O <« PERMUTATIONS(P),

o))

resulting from missing/broken quotes or quotes escape charac-
ters. Or it may be caused by additional columns being appended
to the row due to a missing new-line separator. For example, in
Figure 5, the wanted column patterns “"(D){(DEL){(D){D){D)""”
are aligned with the dominant column pattern “(D)(D)(D)” and
are marked with the delete alignment operator indicating shifted
or additional column inconsistency.

The transformation engine starts with the Merge operator and
stores the intermediate results by combining all the column pat-
terns and updating the positions of these patterns, which are later
used to transform the real data rows. Since potential quote "’ and
quote’s escape™ characters are present in the column patterns,
the system applies the Re-quote and the Re-escape operators for
possible transformations. At present, the transformation oper-
ators only support single”” and double quotes” as quote and
quote’s escape characters. We searched through thousands of
files from the four repositories we crawled and could not find any
file that used other characters for quotes or escaped the quotes.
Nevertheless, we can modify the settings to allow for more char-
acters if there are valid file dialects with other characters. The
transformation engine follows the RFC 4180 standard [29] spec-
ifications as described in Section 1 to standardize the incorrect

s

s

quote and escape characters.

After the quotes and escapes are standardized, the Re-delimit
operator is applied, which replaces the incorrectly treated (DEL)
with the correct literal symbol and updates the intermediate
results in the Merge operator. The final output obtained after
applying the transformations is as follows: “"(D),(D){D){(D)"".
The engine then stores the final result in the transformation
queue.

4.3.4 Row wrangler. The row wrangler takes the sequence
of transformations from the transformation queue and applies
them to all data rows of the pattern at hand, thus cleaning the
structure of the ill-formed but wanted rows. As a final result,
TasHEEH usually outputs a clean and structured CSV file.

5 EXPERIMENTS

This section provides an overview of our experiments, beginning
with a description of the datasets and our annotation process.
We then present the performance results of our pattern classifier



at different distance score thresholds, along with a comparison
against a BASELINE approach and the state-of-the-art row clas-
sifiers. Following this, we present an experimental analysis to
demonstrate the efficacy of TASHEEH’s transformations again in
comparison to our BASELINE approach. Finally, we conclude this
section with a runtime analysis and a usability case study.

5.1 Datasets and Annotation

We use datasets collected from four open data sources: DataGov,
Mendeley, GitHub, and UKGoyv, leveraging files from our previ-
ous work SURAGH [21] and supplementing them with additional
files. The statistics for each of these data sources are summarized
in Table 5. We randomly selected files from each data source
and manually inspected them for inconsistencies. To reduce the
manual annotation workload, they selected only one file from
each group of similarly structured files (e.g., monthly project
reports with identical schemata that likely contain similar incon-
sistencies), resulting in a unique set of diverse files for each data
source.

The files for UKGov and GitHub were taken from prior re-
search on dialect detection [65]. We manually checked a random
sample of 1000 CSV files from each dataset, loading each file into
a RDBMS and selected those that abort the loading process. After
determining files with ill-formed rows in our manual check, we
removed files with similar structures and found 24 unique files in
the UKGov subset and 28 in the GitHub subset. For the DataGov
dataset, we crawled CSV files from www.data.gov. From a ran-
dom selection of 2 500 files, we observed 449 files with ill-formed
rows by loading them into the RDBMS. Again, we sampled 62
files that have a unique structure for our experiments. For the
Mendeley dataset, we crawled projects from data.mendeley.com
and performed a random selection of 180 projects, which already
displayed a large variety of ill-formed rows. While these projects
contain various file formats, such as . XML, .XLSX, etc., we fo-
cused only on those with at least one CSV file. After manual
inspection, we selected 34 unique files from different projects to
include in our experiments.

Table 5: Datasets: number of files (F), average number of
rows (R), average well-formed (WF) rows per file, aver-
age ill-formed wanted (IFW) rows per file, and average
ill-formed unwanted (IFU) rows per file.

| Source ‘#F‘ Avg # R [ Avg # WF [Avg#lFW[Avg#IFU‘
DataGov | 62 877.7 + 1760.4] 819.9 + 1695.5[51.5 + 173.6] 6.2 + 10.5
Mendeley | 34[2909.6 + 3707.2 |2841.4 + 3690.6 |51.0 + 112.3| 17.2 + 43.4
GitHub 28| 662.1 +1013.4| 627.7 £1009.4|17.4 + 29.5|17.1 + 41.7
UKGov | 24|1186.2 + 2865.9|1153.3 + 2845.1/30.4 + 50.1| 25+ 23

We extended the annotated data provided in our previous work
SuracH [21] following the same annotation strategy. In addition
to manually annotating each row as ill-formed or well-formed,
we refined the classifications by manually annotating wanted
and unwanted rows, and created a ground truth of 200 351 rows
across all datasets. Furthermore, we carefully created a ground
truth of manually cleaned “wanted” rows that were used for the
transformation experiments. The code artifacts together with
datasets and annotations are publicly available.

5.2 Classification Performance Evaluation

This section evaluates TASHEEH's classification component, in-
cluding finding the best distance threshold to compare patterns.
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In accordance with Definition 3.1, a detected ill-formed wanted
row is considered a true positive if its corresponding row in the
ground truth is labeled as an ill-formed wanted row. If not, it is
considered a false positive. We use the standard precision P and
recall R metrics to assess the effectiveness of our system:

|true ill-formed wanted rows detected |

" |true & false ill-formed wanted rows detected |

_ |true ill-formed wanted rows detected |

|total ill-formed wanted rows |

In files that have no ill-formed wanted rows, we set the pre-
cision and recall scores to 1 if the classifier returned no false
positives and no false negatives, respectively, and to 0 otherwise.
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Figure 6: Precision, recall and F-1 measures at different
distance score threshold values

We conducted several experiments with different threshold
values to determine the best configuration for the classification
task. The precision, recall, and F-1 scores at different threshold
values for all datasets are displayed in Figure 6. The threshold
value “0.3” yielded the highest F-1 score.

Our rationale behind the consistent optimal threshold across
all datasets is that it appears to be independent of the datasets
themselves. Rather, it seems to serve as a correction factor for
potential bias or noise introduced during the SURAGH pattern
extraction phase. Since row patterns are extracted with a consis-
tent method, the identified threshold is likely compensating for
individual wanted rows whose extracted patterns should but do
not conform to the dominant pattern in the first place.

In the following, we discuss state-of-the-art row classifiers:
PyYTHEASs and STRUDEL, a popular data analytics tool PANDAS, and
a straightforward BASELINE approach against which we compared
our system TASHEEH.

The BASELINE classifier was inspired by the ad-hoc approach
TABULAR [1], which uses column counts in the header and other
rows to assess row completeness. Based on this idea, our BASE-
LINE classifier counts the number of column patterns in the dom-
inant pattern. If the potential pattern has the same number of



Table 6: Row classification comparison overview

BASELINE Panpas [52] PYTHEAS [7] STRUDEL [31] TASHEEH
Source | # files | # rows
P ‘ R ‘ F-1 P ‘ R ‘ F-1 P ‘ R ‘ F-1 P ‘ R ‘ F-1 P ‘ R ‘ F-1
DataGov 62 54416 0.42 | 0.76 | 0.54 0.56 | 0.81 | 0.66 0.75 | 0.96 | 0.84 0.87 | 092 | 0.89 0.96 | 0.96 | 0.96
Mendeley 34 98927 0.39 | 0.73 | 0.51 0.49 | 0.82 | 0.61 0.71 | 0.88 | 0.79 0.79 | 0.94 | 0.86 0.91 | 0.94 | 0.93
GitHub 28 18538 0.45 | 0.74 | 0.56 0.59 | 0.77 | 0.67 0.70 | 0.84 | 0.76 0.76 | 0.87 | 0.81 0.91 | 0.98 | 0.95
UKGov 24 28 469 0.52 | 0.75 | 0.62 0.63 | 0.90 | 0.74 0.85 | 0.90 | 0.87 0.91 | 0.95 | 0.93 1.00 | 0.97 | 0.98

column patterns as the dominant pattern, it is classified as wanted;
otherwise, it is considered to be unwanted.

PaNDAs is a Python module for data analysis. We compared
our approach with PANDAS by considering rows that were suc-
cessfully parsed and loaded into a data frame as wanted, while
any other rows the tool skipped* due to inconsistencies were
considered unwanted. Note that we set the recall score to 1 if
PANDAS loads every row, thus not misclassifying any unwanted
row.

PyTHEAS is a pattern-based table discovery system that em-
ploys a rule-based approach to identify tables and row classes in
CSV files [7]. As PYTHEAS is a supervised learning approach, the
authors provided a model with weights, which we used to classify
the rows in our dataset. To compare our approach with PYTHEAs,
we considered the rows that PYTHEAS classified as “data” to be
wanted, the others were considered unwanted.

STRUDEL is a multi-class random forest classifier designed for
CSV file row classification [31]. We trained STRUDEL using the
original code and data publicly available at the STRUDEL project
page®. To compare our approach with STRUDEL, we considered
the rows classified as “data” by STRUDEL to be wanted, the others
were considered unwanted.

When PyTHEAS and STRUDEL classified all rows as data, the
recall score was 1, indicating that no wanted rows were misclas-
sified.

Table 6 presents the results of the row classification for all
systems. Precision, recall, and F1-score metrics are reported to
assess the classification performance of each system. Our pro-
posed approach, TAsHEEH, achieved the best performance across
all metrics, outperforming both state-of-the-art systems, PyTs-
EAs and STRUDEL. This achievement is particularly significant
considering that PyTHEAS and STRUDEL use supervised learn-
ing approaches that require labeled data for training, while our
approach is unsupervised and requires no labeled data. By elimi-
nating the requirement for labeled data, TAsHEEH offers greater
flexibility and adaptability for analyzing a wide range of CSV
files and makes it easier to scale to new datasets without the need
for costly and time-consuming labeling efforts.

PyTHEAS and STRUDEL faced several challenges in classifying
the data rows in some of the files in our collection. For instance,
STRUDEL had difficulty distinguishing between data rows and
non-data rows (comments, notes) with the same number of fields
as data rows, which were present in some files in our collection.
In addition, PYTHEAS’ rules for identifying data rows were based
on the majority of the content in each row, and when data and
metadata appeared in the same rows, PYTHEAS misclassified those
rows if the majority of the content were metadata. Another chal-
lenge for both systems was data rows with fewer columns at the
bottom of the file, which were misclassified as notes. Finally, both

4Using on_bad_lines = 'skip'
Shttps://hpi.de/naumann/s/strudel
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systems sometimes misclassified rows with new line separators
between cell values as group headers.

In situations of very few classification errors, where the sys-
tem mistakenly identifies unwanted rows as wanted (resulting
in false positives), this typically occurs when a dominant pattern
and an ill-formed unwanted row mainly comprise the same pat-
tern sequences. For example, when numeric headers like “year
values” (e.g.,1990, 1991), are present, and the column values also
contain identical information, it becomes challenging to distin-
guish between the two. Similarly, this challenge applies to cases
of solely textual headers, such as “first name” and “last name”,
when the values in the column contain names. For a wanted
row classified as unwanted (a false negative) a scenario occurs
when an ill-formed wanted row has additional details in several
columns. For example, a dominant pattern may include date for-
mat for column values, while the wanted rows contain both date
and time format for several columns, leading to a high pattern
distance.

5.3 Transformation Performance Evaluation

We evaluate the effectiveness of the transformations using the
accuracy metric:

_ |correctly cleaned ill-formed rows|

|total ill-formed rows|

A row is considered to be correctly cleaned only if the output
produced by the system matches exactly the corresponding row
in the transformation ground truth, which was manually created.
For unwanted rows, the correct cleaning operation is to delete
the row.

As we discussed in Section 2, there has been no prior research
on automatically cleaning the structure of ill-formed rows in CSV
files. Therefore, we compared TASHEEH against a BASELINE trans-
formation strategy that uses a simplified set of transformation
operations, shown underlined in Table 4.

For evaluating the transformation performance of both Tas-
HEEH and the BASELINE transformation strategy, we opted to use
TasHEEH as the row classifier, since it outperformed the other
row classifiers. Additionally, we evaluated our approach using
a PERFECT row classifier with manually annotated ground truth
for comparison. The experiments with the TASHEEH classifier
included 7 866 ill-formed rows for DataGov, 3 957 for Mendeley,
1392 for GitHub, and 2 871 for UKGov, which also included mis-
classified rows from SURAGH. For the PERFECT classifier, we used
the manually annotated wanted rows for each dataset, with 3 578
for DataGov, 2319 for Mendeley, 963 for GitHub, and 789 for
UKGov. In Figure 7, we present the results of the BASELINE and
TasHEEH transformation strategies in cleaning ill-formed rows.

Note that with the PERFECT classifier for both BASELINE and
TasHEEH transformation strategies, if a file contains no wanted
rows, we set the accuracy score to 1.
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Figure 7: BASELINE and TASHEEH transformation effective-
ness with TAsHEEH and PERFECT row classifiers

5.3.1 Ill-formed rows transformation evaluation. The evalua-
tion results in Figure 7 highlight the performance of both BASE-
LINE and TASHEEH transformation strategies in combination with
both TaAsHEEH and PERFECT row classifiers.

The performance of the BASELINE strategy was particularly
notable in files where the errors were limited to unwanted rows,
requiring only the deletion operation. This resulted in a substan-
tial enhancement in the overall performance of the BASELINE
strategy. We also observed that the BASELINE strategy performed
well in scenarios where padding cells at the start or end of a row
pattern was the correct transformation. Additionally, the BASE-
LINE strategy achieved high accuracy when the transformation
only involved deleting an entire column pattern.

The experimental results indicate that the combination of Tas-
HEEH transformation with a PERFECT classification achieved the
highest overall performance. However, when TASHEEH is used
for both classification and transformation, the results are almost
as good as those obtained with a PERFECT classifier. These find-
ings highlight the effectiveness of the TASHEEH transformation
strategy and its associated classifier in identifying and cleaning
ill-formed rows, leading to improved overall performance.

In cases where TASHEEH failed to generate accurate transfor-
mations, we observed that the problems mainly stemmed from
domain-specific issues. For example, in the Mendeley dataset,
the issues were related to the formatting of numbers, where the
patterns used scientific notation differently, such as using expo-
nents “E” or “e” in some cases. As a result, the Extract operator
removed these values, considering them as non-data parts due to
their low pattern frequency. Even in combination with different
operators, the Extract operator struggled to capture these domain-
specific variations accurately. We also encountered difficulties
with complex strings, such as URLs or long addresses, with sig-
nificantly different patterns in the UKGov, GitHub, and DataGov
datasets, resulting in either incorrect information being extracted
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or dropping the column pattern entirely. These observations high-
light the challenge of dealing with complex data types, which
requires more understanding of recognizing the data types to
handle such variations in patterns effectively. Overall, TASHEEH
is a general-purpose system that has effectively handled vari-
ous data transformation tasks. For more domain-specific cases,
TASHEEH can be customized by implementing domain-specific
rules.

5.3.2  SRFN - TASHEEH comparison. SRFN is the only other sys-
tem that addresses a specific type of structural inconsistency in
data rows by “swapping repair using a fixed set of neighbors” [60].
SREN focuses on fixing shifted values in CSV files by leveraging
the likelihood of neighboring attribute values and swapping them
to determine the correct position. We evaluated the performance
of SRFN on our dataset by utilizing the available artifacts on the
project’s GitHub repository®. As access to the author’s dataset
was not available, we tested the system on our own files only.
SRFN requires three inputs to be specified: (1) fixed attributes
that should not be modified during the repair process, (2) rows
that are to be considered for repair, and (3) the number k of
nearest neighbors to be considered. The authors suggest that to
determine a proper k, users should test different values on their
own data to find the optimal setting. In their paper, the authors
tested a minimum of 2 nearest neighbors up to a maximum of
864 neighbors, depending on the length of the file. Following the
same setting, we started our experiments with 2 neighbors and
tried up to 864 neighbors if the file was longer than 864 rows.
We found that SRFN is capable of addressing the problem of
swapping misplaced values, such as swapping the position of
name and passport values if misplaced. However, for the dataset
files used in our experiments, the SRFN system could not fix any
inconsistency, e.g., shifted values, even after applying it with all
possible parameter settings, having an overall transformation
accuracy of 0.

5.3.3 Large language models for structural tasks. There has
been increasing interest in leveraging large language models
(LLMs) for traditional data wrangling and cleaning tasks. One
intriguing aspect is their potential for zero-shot or few-shot infer-
ence, where models can perform tasks without specific training
on those tasks. However, despite the allure of these capabilities,
our own exploratory analysis using the state-of-the-art language
model GPT 3.5 (in its version davinci-003, like in [42]) revealed
several challenges. (1) Prompt engineering: The performance of
the model was found to be highly sensitive to the specific wording
of the input prompt and the content of the file. (2) Repeatabil-
ity challenges: While the prompt engineering process yielded
reasonable results, achieving repeatability remains a significant
challenge. There is no guarantee that using the same prompt will
consistently produce similar outcomes. Multiple attempts with
the same prompt often yielded different results, making it diffi-
cult to replicate and rely on specific outcomes. (3) Reproducibility
challenges: The closed-source nature of the language model poses
obstacles to achieving reproducibility. Limited access hinders the
ability to reproduce and verify results. Although efforts are being
made to open-source these architectures [64], the reliance on
substantial hardware resources adds another layer of complexity
to the reproducibility process. (4) Adaptability challenges: Despite
the impressive performance of the model for language model-
ing and its ability to follow instructions, its performance varies

®https://github.com/SwappingRepair/SRFN



greatly depending on the specific task at hand [69]. Adapting
it to different tasks, such as file structure cleaning, remains a
significant challenge, as it tends to exhibit hallucination when
confronted with tasks beyond its specific training.

5.4 Runtime Analysis

TasHEEH achieved an average classification time of 6.47 +9.24 ms
per file with the global distance score threshold. The transforma-
tion times averaged at 4.45 + 6.32 ms per file on a computer with
a 4-core Intel Core i7 2.3G CPU and 16GB of RAM.

Figure 8 shows the runtime of TASHEEH on the files in our
datasets. Additionally, to test on larger files, we included six large
files by extending existing files with duplicate rows. Although the
overall runtime of our approach scales quadratically, we observed
a high variance in the results due to the quite different pattern
complexity of individual files. All-around, in the complete error
detection and correction pipeline, the row pattern generation
process of SURAGH dominates the processing time.
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Figure 8: TASHEEH classification and transformation ef-
ficiency, together with SURAGH (quadratic interpolation).
The size of the marks indicates the number of wanted
patterns within the file, i.e., indirectly its degree of incon-
sistency.

5.5 Usability Case Study

To demonstrate the usability of TASHEEH, we conducted a user
study, to measure the time and accuracy of cleaning raw data
files both manually and with TaAsHEEH. We invited five computer
scientists with data cleaning expertise, not involved in our project,
to clean a random sample of ten files from our real-world datasets
mentioned in Section 5.1. These files exhibit an average number
of rows of 904 + 842, with an average number of ill-formed rows
of 64 + 47. Before the study, we provided them with a clear
explanation of the task, i.e., row structure cleaning. They were
free to use any tool or programming environment they preferred.
Each participant was assigned the same set of files to work on. We
measure the file-wise time taken for completion and the accuracy
of the cleaning rows with the same measure of Section 5.
Figure 9 shows the results for both manual cleaning and Tas-
HEEH for the sample files (each expert is represented by the same
color and marker type). Manually cleaning required a significant
amount of time, averaging 67 + 18 minutes across all experts.
Additionally, the accuracy achieved is not always perfect, av-
eraging 83 + 17 % across all experts: sometimes experts simply
removed the inconsistencies they did not understand, e.g., mis-
placed delimiter. Also, in some cases, certain unwanted rows,
such as aggregation rows or expanded group headers were er-
roneously treated as wanted, resulting in a significant negative
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Figure 9: Comparison of manual cleaning with TASHEEH

impact on the overall score. In contrast, when utilizing the Tas-
HEEH system, the accuracy is significantly higher, with 8 out of
10 files achieving a perfect cleaning result, averaging 87%. More-
over, the time required for cleaning using TASHEEH is remarkably
low, averaging 6.80 + 0.34 minutes (across three experimental
runs). Even if we consider that the user would manually clean
the two files that were not perfectly cleaned by TASHEEH, the
time required to achieve a completely flawless result would be
9 + 3 minutes, which was the average time the experts took for
these two files during manual cleanup. To summarize, the use
of TAsHEEH not only significantly reduces the overall cleaning
time to 15.80 + 3.34 minutes but also delivers improved accuracy
compared to a fully manual approach.

6 CONCLUSION

Our work introduces TASHEEH, a data preparation system de-
signed to identify and clean ill-formed data rows in raw CSV files.
It utilizes the pattern language introduced in our previous work
SURAGH [21], which classifies rows as either ill-formed or well-
formed, based on the dominant row patterns. TASHEEH further
classifies the ill-formed rows as wanted (data) or unwanted (non-
data) and repairs the structural inconsistencies in the ill-formed
wanted rows using a pattern transformation algebra.

To evaluate the effectiveness of TASHEEH, we extended the
annotated data provided in our previous work SURAGH and cre-
ated a ground truth of 200351 rows across 148 files, each with
at least one loading problem. Moreover, we created a distinct
ground truth of manually cleaned ill-formed wanted rows. Our
results show that TASHEEH achieves an average precision of 95%
and an average recall of 96% in identifying wanted rows across
all files. In addition, TASHEEH automatically generates accurate
transformations for 86% of ill-formed rows across all files, thus
automatically recovering much data that could otherwise not be
ingested.

As TASHEEH is extensible, it allows for the addition of new
transformation operators as needed, ensuring that the system can
be adapted to handle new use cases without requiring a complete
overhaul of the underlying architecture.

In addition to its primary goal of reducing human effort during
raw data preparation, TASHEEH functionalities offer promising
future directions, e.g., data annotation, data augmentation, prepa-
ration suggestion, and preparation estimation.

ACKNOWLEDGMENTS

This research was funded by the HPI research school on Data
Science and Engineering.



REFERENCES

(1]

[2

=

E

=

=
X0,

[11]

[12]

[13

[14]

[15]

[16]

[17]

[18]

[19

[20

[21]

[22]

[23]

[24

Abdulrazaq Hassan Abba and Mohammed Hassan. 2018. Design and im-
plementation of a csv validation system. In Proceedings of the International
Conference on Applications in Information Technology. 111-116.

Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Thab F Ilyas,
Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016.
Detecting data errors: Where are we and what needs to be done? PVLDB9, 12
(2016), 993-1004.

Ziawasch Abedjan, John Morcos, Thab F Ilyas, Mourad Ouzzani, Paolo Papotti,
and Michael Stonebraker. 2016. DataXformer: A robust transformation discov-
ery system. In Proceedings of the International Conference on Data Engineering
(ICDE). IEEE, 1134-1145.

Marco D Adelfio and Hanan Samet. 2013. Schema extraction for tabular data
on the web. PVLDB 6, 6 (2013), 421-432.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. 1990. Basic local alignment search tool. Journal of molecular biology
215, 3 (1990), 403-410.

Sara Bonfitto, Luca Cappelletti, Fabrizio Trovato, Giorgio Valentini, and Marco
Mesiti. 2021. Semi-automatic column type inference for CSV table understand-
ing. In International Conference on Current Trends in Theory and Practice of
Informatics. Springer, 535-549.

Christina Christodoulakis, Eric B Munson, Moshe Gabel, Angela Demke
Brown, and Renée J Miller. 2020. Pytheas: pattern-based table discovery
in CSV files. PVLDB 13, 12 (2020), 2075-2089.

Xu Chu, Yeye He, Kaushik Chakrabarti, and Kris Ganjam. 2015. Tegra: Table
extraction by global record alignment. In Proceedings of the International
Conference on Management of Data (SIGMOD). 1713-1728.

Xu Chu, Thab F Ilyas, and Paolo Papotti. 2013. Discovering denial constraints.
PVLDB 6, 13 (2013), 1498-1509.

Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. Katara: A data cleaning system powered by knowledge
bases and crowdsourcing. In Proceedings of the International Conference on
Management of Data (SIGMOD). 1247-1261.

Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F
Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data
cleaning system. In Proceedings of the International Conference on Management
of Data (SIGMOD). 541-552.

Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs.
Numer. Math. 1 (1959), 269-271.

Till D6hmen, Hannes Miihleisen, and Peter Boncz. 2017. Multi-hypothesis
CSV parsing. In Proceedings of the International Conference on Scientific and
Statistical Database Management (SSDBM). 1-12.

Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. 2019.
Tablesense: Spreadsheet table detection with convolutional neural networks.
In Proceedings of the National Conference on Artificial Intelligence (AAAI),
Vol. 33. 69-76.

Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. 2009. Harvesting
relational tables from lists on the web. PVLDB 2, 1 (2009), 1078-1089.

Anna Fariha, Ashish Tiwari, Alexandra Meliou, Arjun Radhakrishna, and
Sumit Gulwani. 2021. Coco: Interactive exploration of conformance constraints
for data understanding and data cleaning. In Proceedings of the International
Conference on Management of Data (SIGMOD). 2706-2710.

Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Koss-
mann. 2019. Speculative distributed CSV data parsing for big data analytics. In
Proceedings of the International Conference on Management of Data (SIGMOD).
883-899.

Martin Gollery. 2005. Bioinformatics: sequence and genome analysis. Clinical
Chemistry 51, 11 (2005), 2219-2220.

Inc. Google. 2022. OpenRefine. www.openrefine.org (last accessed August
30th, 2022).

Mazhar Hameed and Felix Naumann. 2020. Data Preparation: A Survey of
Commercial Tools. SIGMOD Record 49, 3 (2020), 18-29.

Mazhar Hameed, Gerardo Vitagliano, Lan Jiang, and Felix Naumann. 2022.
SURAGH: Syntactic Pattern Matching to Identify Ill-Formed Records.. In
Proceedings of the International Conference on Extending Database Technology
(EDBT). 143-154.

Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit
Chaudhuri. 2018. Transform-data-by-example (TDE) an extensible search
engine for data transformations. PVLDB 11, 10 (2018), 1165-1177.

Jeffrey Heer, Joseph M Hellerstein, and Sean Kandel. 2015. Predictive Interac-
tion for Data Transformation.. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR). Citeseer.

Alireza Heidari, Joshua McGrath, Thab F Ilyas, and Theodoros Rekatsinas.
2019. Holodetect: Few-shot learning for error detection. In Proceedings of the
International Conference on Management of Data (SIGMOD). 829-846.

[25] Joseph M Hellerstein. 2008. Quantitative data cleaning for large databases.

[26]

[27]

United Nations Economic Commission for Europe (UNECE) 25 (2008), 1-42.
Joseph M Hellerstein, Jeffrey Heer, and Sean Kandel. 2018. Self-Service Data
Preparation: Research to Practice. IEEE Data Engineering Bulletin 41, 2 (2018),
23-34.

Severin Holzer and Kurt Stockinger. 2022. Detecting errors in databases with
bidirectional recurrent neural networks. In Proceedings of the International
Conference on Extending Database Technology (EDBT).

438

[28]

[29]
[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Zhipeng Huang and Yeye He. 2018. Auto-detect: Data-driven error detection
in tables. In Proceedings of the International Conference on Management of Data
(SIGMOD). 1377-1392.

IETF 2005. RFC 4180. https://tools.ietf.org/html/rfc4180.
February 7th, 2023).

Trifacta Inc. 2022. Trifacta Data Engineering Cloud. www.trifacta.com (last
accessed August 30th, 2022).

Lan Jiang, Gerardo Vitagliano, and Felix Naumann. 2021. Structure Detec-
tion in Verbose CSV Files. In Proceedings of the International Conference on
Extending Database Technology (EDBT). 193-204.

Zhongjun Jin, Michael R Anderson, Michael Cafarella, and HV Jagadish. 2017.
Foofah: Transforming data by example. In Proceedings of the International
Conference on Management of Data (SIGMOD). 683-698.

Zhongjun Jin, Michael Cafarella, HV Jagadish, Sean Kandel, Michael Minar, and
Joseph M Hellerstein. 2019. CLX: Towards verifiable PBE data transformation.
In Proceedings of the International Conference on Extending Database Technology
(EDBT). 265-276

Zhongjun Jin, Yeye He, and Surajit Chauduri. 2020. Auto-transform: learning-
to-transform by patterns. PVLDB 13, 12 (2020), 2368-2381.

Elvis Koci, Maik Thiele, Wolfgang Lehner, and Oscar Romero. 2018. Table
recognition in spreadsheets via a graph representation. In 2018 13th IAPR
International Workshop on Document Analysis Systems (DAS). IEEE, 139-144.
Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. 2019. Cell
classification for layout recognition in spreadsheets. In Knowledge Discovery,
Knowledge Engineering and Knowledge Management: 8th International Joint
Conference, IC3K 2016, Porto, Portugal, November 9-11, 2016, Revised Selected
Papers 8. Springer, 78-100.

Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. 2019. A genetic-
based search for adaptive table recognition in spreadsheets. In International
Conference on Document Analysis and Recognition (ICDAR). IEEE, 1274-1279.
Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken
Goldberg. 2016. ActiveClean: Interactive data cleaning for statistical modeling.
PVLDB 9, 12 (2016), 948-959.

Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective error
correction via a unified context representation and transfer learning. PVLDB
13, 12 (2020), 1948-1961.

Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel
Madden, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
configuration-free error detection system. In Proceedings of the International
Conference on Management of Data (SIGMOD). 865-882.

Johann Mitlohner, Sebastian Neumaier, Jirgen Umbrich, and Axel Polleres.
2016. Characteristics of open data CSV files. In Proceedings of the International
Conference on Open and Big Data (OBD). IEEE, 72-79.

Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. 2022. Can
Foundation Models Wrangle Your Data? PVLDB 16, 4 (2022), 738-746.

Saul B Needleman and Christian D Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of molecular biology 48, 3 (1970), 443-453.

Sebastian Neumaier, Axel Polleres, Simon Steyskal, and Jiirgen Umbrich. 2017.
Data integration for open data on the web. In Reasoning Web International
Summer School. Springer, 1-28.

Dan Olteanu. 2020. The Relational Data Borg is Learning. PVLDB 13, 12 (2020),
3502-3515.

Jinfeng Peng, Derong Shen, Nan Tang, Tieying Liu, Yue Kou, Tiezheng Nie,
Hang Cui, and Ge Yu. 2022. Self-supervised and Interpretable Data Cleaning
with Sequence Generative Adversarial Networks. PVLDB 16, 3 (2022), 433-446.
David Pinto, Andrew McCallum, Xing Wei, and W Bruce Croft. 2003. Table
extraction using conditional random fields. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in informaion
retrieval. 235-242.

Gil Press. 2016. Cleaning Data: Most Time-Consuming, Least Enjoyable Data
Science Task. Forbes (March 2016).

Abdulhakim Qahtan, Nan Tang, Mourad Ouzzani, Yang Cao, and Michael
Stonebraker. 2020. Pattern functional dependencies for data cleaning. PVLDB
13, 5 (2020), 684-697.

Abdulhakim A Qahtan, Ahmed Elmagarmid, Raul Castro Fernandez, Mourad
Ouzzani, and Nan Tang. 2018. FAHES: A robust disguised missing values
detector. In Proceedings of the International Conference on Knowledge Discovery
and Data Mining (SIGKDD). 2100-2109.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018.
Improving Language Understanding by Generative Pre-Training.

Jeff Reback, jbrockmendel, Wes McKinney, Joris Van den Bossche, Matthew
Roeschke, Tom Augspurger, Simon Hawkins, Phillip Cloud, gfyoung, Sinhrks,
Patrick Hoefler, Adam Klein, Terji Petersen, Jeff Tratner, Chang She, William
Ayd, Shahar Naveh, JHM Darbyshire, Richard Shadrach, Marc Garcia, Jeremy
Schendel, Andy Hayden, Daniel Saxton, Marco Edward Gorelli, Fangchen Li,
Torsten Wortwein, Matthew Zeitlin, Vytautas Jancauskas, Ali McMaster, and
Thomas Li. 2022. pandas-dev/pandas: Pandas 1.4.3. https://doi.org/10.5281/
zenodo.6702671

Theodoros Rekatsinas, Xu Chu, Thab F Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017),
1190-1201.

Yoones A Sekhavat, Francesco Di Paolo, Denilson Barbosa, and Paolo Merialdo.
2014. Knowledge base augmentation using tabular data. In Proceedings of the

(last accessed



[55

[56
[57

[58

[59

[60

[61

[62

]

]

]

]

Workshop on Linked Data on the Web (LDOW).

Vraj Shah and Arun Kumar. 2019. The ML data prep zoo: Towards semi-
automatic data preparation for ML. In Proceedings of the International Workshop
on Data Management for End-to-End Machine Learning. 1-4.

Rishabh Singh. 2016. Blinkfill: Semi-supervised programming by example for
syntactic string transformations. PVLDB 9, 10 (2016), 816-827.

Rishabh Singh and Sumit Gulwani. 2012. Learning semantic string transfor-
mations from examples. PVLDB 5, 8 (2012), 740—-751.

Shaoxu Song, Aoqian Zhang, Lei Chen, and Jianmin Wang. 2015. Enriching
data imputation with extensive similarity neighbors. PVLDB 8, 11 (2015),
1286-1297.

Elias Stehle and Hans-Arno Jacobsen. 2020. ParPaRaw: Massively Parallel
Parsing of Delimiter-Separated Raw Data. PVLDB 13, 5 (2020), 616—628.

Yu Sun, Shaoxu Song, Chen Wang, and Jianmin Wang. 2020. Swapping repair
for misplaced attribute values. In Proceedings of the International Conference
on Data Engineering (ICDE). IEEE, 721-732.

LLC Tableau Software. 2022. Tableau. www.tableau.com (last accessed August
30th, 2022).

Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Sam
Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-trained Transformer
Is Almost All You Need towards Democratizing Data Preparation. PVLDB 14,
8(2021), 1254-1261.

439

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Ignacio G Terrizzano, Peter M Schwarz, Mary Roth, and John E Colino. 2015.
Data Wrangling: The Challenging Journey from the Wild to the Lake. In
Proceedings of the Conference on Innovative Data Systems Research (CIDR).
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
CoRR abs/2302.13971 (2023).

Gerrit JJ van den Burg, Alfredo Nazabal, and Charles Sutton. 2019. Wran-
gling messy CSV files by detecting row and type patterns. Data Mining and
Knowledge Discovery 33, 6 (2019), 1799-1820.

Gerardo Vitagliano, Mazhar Hameed, Lan Jiang, Lucas Reisener, Eugene Wu,
and Felix Naumann. 2023. Pollock: A Data Loading Benchmark. PVLDB 16, 8
(2023), 1870-1882.

Robert A Wagner and Michael J Fischer. 1974. The string-to-string correction
problem. Journal of the ACM (JACM) 21, 1 (1974), 168-173.

Pei Wang and Yeye He. 2019. Uni-detect: A unified approach to automated
error detection in tables. In Proceedings of the International Conference on
Management of Data (SIGMOD). 811-828.

Chaoning Zhang, Chenshuang Zhang, Chenghao Li, Yu Qiao, Sheng Zheng,
Sumit Kumar Dam, Mengchun Zhang, Jung Uk Kim, Seong Tae Kim, Jinwoo
Choi, et al. 2023. One Small Step for Generative Al, One Giant Leap for AGI:
A Complete Survey on ChatGPT in AIGC Era. CoRR abs/2304.06488 (2023).



