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ABSTRACT
In public transport planning, the operational costs are mainly de-

termined by the vehicle schedule. However, in the traditionally

sequential planning approach, vehicle scheduling is one of the last

problems that is considered. We therefore propose an integrated for-

mulation for line planning and vehicle scheduling problem, which

brings an appropriate approximation of the operational costs into

the first planning stages. We model the integrated problem as a

mixed-integer program and propose a heuristic solution approach.

Both approaches are tested on close-to real-world data sets from

the open source software framework LinTim.

1 INTRODUCTION
With growing urban areas, public transport can play an important

role in achieving sustainable mobility by consolidating demand

and reducing traffic. For being a viable alternative to individual

motorized transport modes, public transport has to be attractive for

the passengers, e.g., by offering frequent service and short travel

times, and economically viable for the operator. The tasks of finding

a public transport supply that is attractive for both passengers and

operators, is intricate and comprises various subproblems that are

closely interrelated. Some of the most important subproblems are

line planning, timetabling and vehicle scheduling, three problems

that are traditionally solved sequentially and in that order, see

[5, 6]. All three problems are extensively studied, see e.g., [2, 9, 15].

In recent years, the optimization potential arising when several

subproblems are considered in an integratedmanner has been under

research, e.g., in [8, 14].

One important aspect of integration is summarized in the con-

cept of the eigenmodel [16], i.e., to change the order in which the

subproblems are considered. In this paper, we combine the idea

of the eigenmodel and integrate several subproblems by consider-

ing line planning and vehicle scheduling simultaneously in order

to minimize the operational costs. Therefore, we construct lines,

i.e., paths in the infrastructure network that have to be operated

by one vehicle end-to-end, and arrange them into vehicle routes.

By refraining from using a fixed line pool, we allow for a larger

solution space. Additionally, we provide the possibility to create ve-

hicle schedules for a limited number of vehicles and vehicles with a

limited range such as electric vehicles. We provide a mixed-integer
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programming formulation for a restricted version of the integrated

line planning and vehicle scheduling problem and propose a fast

heuristic to solve close-to real-world instances. Additionally, our

approach can be used for creating line pools to serve as a basis for

further planning approaches.

Similar approaches in the literature include the transit route

network design problem which often comprises determining routes

with corresponding frequencies. Here, many of the approaches are

(meta-)heuristics or designed for very specific networks, see [7] for

an overview. An integrated model for line planning, timetabling

and vehicle scheduling is proposed in [12] but due to its size, it can

only be used for very small instances. In [11], a heuristic line pool

generation procedure from [4] is adapted to generate lines which

allow for cost-efficient vehicle schedules for the case of an undi-

rected public transport network and when no depot is considered.

A heuristic sequential approach for first creating a vehicle schedule

and then lines is presented in [10] where the goal is to maximize

the attractiveness for the passengers.

The remainder of the paper is structured as follows. Section 2

gives an overview on the classical sequential approach to public

transport planning. In Section 3, we present our model for the

integrated line planning and vehicle routing problem as well as a

short analysis. The restricted version with the correspondingmixed-

integer program and a heuristic solution approach are presented in

Section 4 and experimentally evaluated in Section 5. The paper is

concluded in Section 6.

2 SEQUENTIAL PLANNING PROCESS
As input we assume that a public transport network (PTN), i.e., a
digraph (V ,A), is given. Here, the nodes V represent stations and

the arcsA direct connections between them, such as roads or tracks.

As we optimize the operational costs of the public transport supply,

we assume that the passengers’ demand is given and their routes

in the PTN are fixed. For a simple path P in (V ,A) we denote by
A(P) the arcs of P and by α(P),ω(P) the first and last node of P ,
respectively. Similarly, we call for arcs a = (u,v) the incident nodes
α(a) = u and ω(a) = v .

For the classical line planning problem as described, e.g., in [15],

lower and upper frequency bounds f min

a ≤ f max

a , a ∈ A, are given
which guarantee that passengers can travel on their routes while

safety restrictions are respected. The goal is to find a set of lines,

i.e., paths in the PTN which adhere to the given bounds.

Definition 2.1. Let a public transport network (V ,A) with upper

and lower frequency bounds f min

a ≤ f max

a , a ∈ A, and a line pool,

i.e., a set of possible lines L0
be given. The line planning problem is

to find a subset L ⊂ L0
with frequencies f (l) ∈ N>0, l ∈ L, such
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that

f min

a ≤
∑

l ∈L:a∈A(l )

f (l) ≤ f max

a .

We call (L, f ) the corresponding line concept.

Obviously, the line pool L0
has a large influence on the line

concept and the quality of the public transport supply, especially

if it is too restrictive, see [4]. For the remainder of the paper, we

assume that lines have to be simple paths and start and end at

terminal stations V̄ ⊂ V but do not impose further restrictions.

During the timetabling stage, (periodic) times are assigned to

arrivals and departures at each station of each line, i.e., the events

are repeated periodically with a fixed period length T . The depen-
dencies between events are modeled as activities, which represent,

e.g., vehicles driving or dwelling, and transfers of passengers. Each

activity imposes a lower and an upper bound on the difference

of the corresponding event times. The resulting problem is the

well-known NP-hard periodic event scheduling problem, see [17].

However, for the remainder of the paper, we do not consider

headway constraints and assume that transfers between lines have

no restricting upper bound. Therefore, a feasible timetable can be

constructed easily by considering each line separately.

For a given timetable, a vehicle schedule is constructed with

the objective of minimizing the operational costs. We consider a

periodic vehicle scheduling problem where all vehicles start from

the same depot dep.

Definition 2.2. Let a public transport network (V ,A), a line con-
cept (L, f ) and a periodic timetable π with period lengthT be given.

A periodic vehicle schedule is a multiset of paths or (vehicle) routes
R such that

• each route r ∈ R is a concatenation of pairwise disjoint lines

l ∈ L and

• each line l ∈ L is contained in exactly f (l) vehicle routes.

The distance covered by a vehicle route r ∈ R is

dist(r ) =
∑
l ∈r

∑
a∈A(l )

dist(a) + dist(dep,α(r )) + dist(ω(r ), dep)

+
∑

l ,l ′consecutive
lines in r

dist(ω(l),α(l ′))

where dist(a) is the distance from α(a) to ω(a). We call

dist(R) =
∑
r ∈R

dist(r )

the distance of the vehicle schedule.

Similarly, the duration of a vehicle route r ∈ R for timetable π is

dur(r , π ) :=
∑
l ∈r

∑
a∈A(l )

dur(a, l, π )

+ dur(dep,α(r )) + dur(ω(r ), dep) + dur(dep)

+
∑

l ,l ′consecutive
lines in r

dur(ω(l),α(l ′))

where dur(a, l, π ) is the duration between the time scheduled for

the departure of line l at α(a) and at ω(a) and dur(ω(l),α(l ′)) the
duration of relocating between lines l and l ′. Note that the duration
for getting from the depot to the first station of r and from the last

station of r to the depot does not depend on the timetable. The

minimal turn-over time at the depot is represented by dur(dep). We

call

dur(R, π ) =
∑
r ∈R

dur(r , π )

the duration of the vehicle schedule.

For each route r ∈ R, the number of vehicles needed to operate

it is

veh(r , π ) =

⌈
dur(r , π )

T

⌉
.

The total number of vehicles needed to operate R is

veh(R, π ) =
∑
r ∈R

veh(r , π ).

For parameters (λ, µ,κ) ∈ R3

≥0
, we define the costs of vehicle

schedule R for timetable π as

cost(R, π ) := λ · dist(R) + µ · dur(R, π ) + κ · veh(R, π ).

In the basic definition, there are no restrictions on the vehicle

routes. However, restricting the duration of a vehicle route might

be important, especially if electric vehicles are considered. In this

case, restricting the duration of a route according to the battery ca-

pacity and choosing dur(dep) such that the battery can be reloaded

guarantees that the vehicle schedule can be operated by electric

vehicles.

3 MODELING THE LINE PLANNING AND
VEHICLE SCHEDULING PROBLEM

As in the sequential planning process a vehicle schedule is con-

structed for a given line plan and timetable, we have to adapt our

notation for defining the integrated problem.

Definition 3.1. Let a public transport network (V ,A) with min-

imal and maximal frequency f min

a ≤ f max

a , a ∈ A, arc duration
dur(a), a ∈ A, minimal turn-over time dur(dep) at the depot and

set of terminal stations V̄ ⊂ V as well as a maximal line duration

K and maximal number of routes R be given. The line planning
and vehicle scheduling problem (LVP) is to find a multiset of simple

paths R, i.e., vehicle routes, such that

• for all arcs a ∈ A

f min

a ≤ |{r ∈ R : a ∈ A(r )}| ≤ f max

a ,

i.e., each arc a is contained in at least f min

a and at most f max

a
vehicle routes,

• for all routes r ∈ R

dur(r ) :=
∑

a∈A(r )

dur(a) + dur(dep)

+ dur(dep,α(r )) + dur(ω(r ), dep)

≤ K,

i.e., the duration of each route r does not exceed K ,
• the number of vehicle routes |R | ≤ R,
• α(r ),ω(r ) ∈ V̄ , i.e., the first and the last node of each vehicle

route r are contained in the set of terminal stations and

• for parameter set (λ, µ,κ) ∈ R3

≥0
the approximated costs

cost(R) := λ · dist(R) + µ ·
∑
r ∈R

dur(r ) + κ ·
∑
r ∈R

⌈
dur(r )

T

⌉
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are minimized.

The corresponding set of linesL consists of the paths fromR where

the multiplicity of r ∈ R corresponds to the frequency f (r ).

Note that for a feasible solution of (LVP) the vehicle schedule R

and the line concept (L, f ) are feasible by construction. As each

vehicle route consists of only one line, we do not have to consider

relocating between lines.

Unfortunately, (LVP) is NP-hard even when no restrictions on K
and R are imposed.

Theorem 3.2. (LVP) is NP-hard, even if K = R = ∞ and V̄ = V .

Proof. In this setting, (LVP) is equivalent to finding a costs-

minimal line concept from the set of all simple paths. Setting λ =
κ = 0 and dur(dep,v) = dur(v, dep) = 0 for all v ∈ V leads to the

same cost structure as in [4] where this problem is shown to be

NP-hard. �

Themaximal route durationK and themaximal number of routes

R can be used to influence the structure of the resulting line concept

and vehicle schedule. R restricts the number of vehicle routes and

therefore the number of lines such that there are not too many

- possible very short - lines which would be undesirable from a

passengers’ point of view.K restricts the duration of a vehicle route,

which is beneficial from a robustness viewpoint as long vehicle

routes tend to propagate delays.

Together, they can also be used to bound the number of operated

vehicles.

Lemma 3.3. Let π be a feasible timetable with dur(a) ≥ dur(a, l, π )
for all a ∈ A(l), l ∈ L. Then

R ·

⌈
K

T

⌉
≥ |R| ·

⌈
K

T

⌉
≥

∑
r ∈R

⌈
dur(r )

T

⌉
≥ veh(R, π ).

Proof. The first inequality follows directly from |R | ≤ R, the
second from dur(r ) ≤ K and the last from dur(a) ≥ dur(a, l, π ) for
all a ∈ A(l), l ∈ L. �

Note that we can choose dur(a) ≥ dur(a, l, π ) a priori when the

construction of the bounds for timetabling is known. Additionally,

we can bound the costs cost(R, π ) of the vehicle schedule for a

feasible timetable π .

Lemma 3.4. Let π be a feasible timetable with dur(a) ≥ dur(a, l, π )
for all a ∈ A(l), l ∈ L. Then

cost(R) ≥ cost(R, π ).

Proof. This follows directly from Lemma 3.3, as dist(R) is inde-

pendent of the timetable and dur(a) ≥ dur(a, l, π ) for all a ∈ A(l),
l ∈ L. �

4 SOLVING THE RESTRICTED LINE
PLANNING AND VEHICLE SCHEDULING
PROBLEM

To solve the integrated line planning and vehicle scheduling prob-

lem, we consider the following restriction (rLVP): For each arc

a ∈ A, we suppose that an arc frequency f (a) ∈ { f min

a , . . . , f max

a }

is given and we have to find a solution to (LVP) such that

• for all arcs a ∈ A

f (a) = |{r ∈ R : a ∈ r }|,

i.e., each arc a is contained in exactly f (a) vehicle routes and
• for parameter set (λ, µ,κ) ∈ R3

≥0
the approximated costs

¯cost(R) := λ · dist(R) + µ ·
∑
r ∈R

dur(r ) + κ · |R | ·

⌈
K

T

⌉
are minimized.

From Lemma 3.3, we know that the optimal objective value of

(rLVP) is an upper bound on the optimal objective value of (LVP).

Corollary 4.1. Let R be an optimal solution of (LVP) and ¯R an
optimal solution of (rLVP). Then

¯cost( ¯R) ≥ cost( ¯R) ≥ cost(R).

Proof. The first inequality follows directly from Lemma 3.3

while the second inequality follows as
¯R is a feasible solution of

(LVP). �

4.1 Graph Construction for Vehicle Routing
Formulation

We can model (rLVP) as a slightly modified capacitated vehicle

routing problem on the following digraph G̃ = (Ṽ , Ã). The idea is
that the nodes Ṽ represent the arcs of PTN (V ,A). By setting the

demand of each node in Ṽ to the duration of the arc in A and the

capacity of the vehicle routing problem to K − dur(dep), we get a

direct correspondence between the vehicle routes in both graphs.

An example of the construction is given in Figure 1.

We set

Ṽ := {via : a ∈ A, i ∈ {1, ..., f (a)}} ∪ {ṽ0},

i.e., we create | f (a)| nodes for each arc a ∈ A in the public transport

network and an artificial depot node ṽ0.

To indicate the corresponding arc a = (v,w) ∈ A of the created

nodes ṽ ∈ Ṽ in the vehicle routing graph, we use ṽ ′
:= a if ṽ = via

for i ∈ {1, ..., f (a)}.
For each node v ∈ V and each incoming arc a ∈ δ−(v) and

outgoing arc b ∈ δ+(v) in PTN (V ,A) we create arcs (via,v
j
b ),

i ∈ {1, ..., f (a)}, j ∈ {1, ..., f (b)}, in the vehicle routing graph G̃.

v1 v2

v3

v4

f (a1) = 2

f (a2
) =

1

f (a3) = 1

f (a
4 ) =

1

(a) PTN (V , A).

v1

a1

v2

a1

v1

a2

v1

a3

v1

a4

ṽ0

(b) Vehicle routing graph G̃ = (Ṽ , Ã).

Figure 1: Transformation of the public transport network
(V ,A) to the vehicle routing graph G̃. Terminal stations are
V̄ = {v1,v4}.
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To ensure that each line begins and ends at a terminal station, we

have arcs from the artificial depot node ṽ0 to each node ṽ whose

corresponding left station α(ṽ ′) is a terminal station and the other

way round if the corresponding right station ω(ṽ ′) is a terminal

station. Formalized we have

Ã :={(via,v
j
b ) : a,b ∈ A, i ∈ {1, ..., f (a)}, j ∈ {1, ..., f (b)},

ω(a) = v = α(b) for v ∈ V }

∪ {(ṽ0,v
i
a ) : a ∈ A, i ∈ {1, ..., f (a)},α(a) = v for v ∈ V̄ }

∪ {(via, ṽ0) : a ∈ A, i ∈ {1, ..., f (a)},ω(a) = v for v ∈ V̄ }.

The demand of each node ṽ ∈ Ṽ is defined as d(ṽ) := dur(a) for
ṽ ′ = a, whereas the capacity of the vehicles is set to

C := K − dur(dep) and the maximal number of vehicles is set

to R.
For a feasible solution to the vehicle routing problem in G̃ we

know

• there are at most R tours,

• the demand of all nodes in a tour does not exceed K and

• all nodes Ṽ are covered by exactly one tour.

We can translate such a tour (ṽ0, ṽ1, ..., ṽn, ṽ0) in G̃ back to a

not necessarily simple path (ṽ ′
1
, ..., ṽ ′

n ) in (V ,A). By construction,

the resulting set of paths covers all arcs according to their frequen-

cies f (a), there are at most R paths and the duration of each path

including the turn-over time does not exceed K .
Before we consider how simple paths can be constructed, we

define the costs of arcs Ã to correspond to ¯cost.

cost(via,v
j
b ) = λ · dist(a) + µ · dur(a),

if via , ṽ0 , v
j
b ,

cost(ṽ0,v
j
b ) = λ ·dist(dep,v)+µ · (dur(dep,v)+dur(dep))+κ ·

⌈
K

T

⌉
,

if α(b) = v and

cost(v
j
a, ṽ0) = λ · dist(w, dep) + µ · dur(w, dep),

if ω(a) = w .

4.2 MIP Formulation for Simple Lines
We formulate the mixed-integer program as a modified capacitated

vehicle routing problem in (1)-(13).

The first part up to constraints (7) is equal to the formulation of

the capacitated vehicle routing problem as in [18].

The variable xã indicates if the corresponding arc ã ∈ Ã is used

and uṽ describes the summed up demands of the nodes on the

corresponding tour starting at ṽ0 up to ṽ ∈ Ṽ . Constraints (6) -
(7) ensure that the capacity C is not exceeded. Constraints (4)-(5)

ensure that no more than R vehicles are used.

By construction, we can have multiple nodes in the transformed

vehicle routing graph corresponding to the same arc in the public

transport network. As a consequence, it is possible to obtain non-

simple paths after translating the vehicle routing solution back to a

line concept, i.e., multiple identical arcs on the same line.

Therefore we adapt the previously mentioned capacity con-

straints to ensure that all lines are simple paths.

min

∑
ã∈Ã

xã · cost(ã) (1)

s .t .
∑

ã∈δ−(ṽ)

xã = 1 ṽ ∈ Ṽ \ {ṽ0} (2)∑
ã∈δ+(ṽ)

xã = 1 ṽ ∈ Ṽ \ {ṽ0} (3)∑
ã∈δ−(ṽ0)

xã ≤ R (4)∑
ã∈δ+(ṽ0)

xã ≤ R (5)

d(ṽ) ≤ uṽ ≤ C ṽ ∈ Ṽ \ {ṽ0} (6)

uṽ + d(w̃) − uw̃

≤ (1 − x(ṽ ,w̃ )) · (C + d(ṽ)) (ṽ, w̃) ∈ Ã (7)

uap,ṽ = 1 p ∈ A, ṽ ∈ Ṽ \ {ṽ0},p = ṽ
′

(8)

uap,ṽ − uap,w̃ ≤ 1 − x(ṽ ,w̃ ) p ∈ A, (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃
(9)

uaw̃ ′,ṽ ≤ 1 − x(ṽ ,w̃ ) (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃ (10)

xã ∈ {0, 1} ã ∈ Ã (11)

uṽ ≥ 0 ṽ ∈ Ṽ \ {ṽ0} (12)

0 ≤ uap,ṽ ≤ 1 p ∈ A, ṽ ∈ Ṽ \ {ṽ0} (13)

We introduce the variable uap,ṽ that indicates if the tour that

contains node ṽ ∈ Ṽ also contains a node w̃ ∈ Ṽ with w̃ ′ = p ∈ A,
i.e., the arc p ∈ A of the public transport network is already covered

by the vehicle routing tour containing node ṽ . Obviously, uap,ṽ = 1

if p = ṽ ′
(see constraints (8)).

If we use arc (ṽ, w̃), i.e., x(ṽ ,w̃ ) = 1, we copy the value of uap,ṽ
to uap,w̃ for all p ∈ A in (9). Additionally, this tour may not have

covered the public transport network arc w̃ ′ ∈ A before node w̃ ∈ Ṽ ,

i.e., uaw̃ ′,ṽ = 0 and is ensured in constraints (10).

4.3 MIP Formulation for Elementary Lines
In a similar way, we can ensure that we only obtain elementary

lines after translating the vehicle routing solution back to a line

concept, i.e., we get lines with no repeating nodes.

Therefore, we use nearly the same constraints as (8) - (10) to

exclude repeating source nodes (see constraints (14) - (17)) and

target nodes (see constraints (18) - (21)) in the lines translated back

from the vehicle routing tours.

Again, we have the variable uαp,ṽ that indicates if the tour that

contains node ṽ ∈ Ṽ also contains a node w̃ ∈ Ṽ with α(w̃ ′) = p ∈

V , i.e., the node p ∈ V of the public transport network is already

covered (as source node) by the vehicle routing tour containing

node ṽ . The same applies for the variablesuωp,ṽ and the target nodes.

By this construction, it is possible that a line begins and ends at the

same node.
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Note that if we ensure elementary lines, we do not have to ensure

simple lines.

uαp,ṽ = 1 p ∈ V , ṽ ∈ Ṽ \ {ṽ0},p = α(ṽ ′) (14)

uαp,ṽ − uαp,w̃ ≤ 1 − x(ṽ ,w̃ ) p ∈ V , (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃ (15)

uαα (w̃ ′),ṽ ≤ 1 − x(ṽ ,w̃ ) (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃ (16)

0 ≤ uαp,ṽ ≤ 1 p ∈ V , ṽ ∈ Ṽ \ {ṽ0} (17)

uωp,ṽ = 1 p ∈ V , ṽ ∈ Ṽ \ {ṽ0},p = ω(ṽ ′) (18)

uωp,ṽ − uωp,w̃ ≤ 1 − x(ṽ ,w̃ ) p ∈ V , (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃ (19)

uωω(w̃ ′),ṽ ≤ 1 − x(ṽ ,w̃ ) (ṽ, w̃) ∈ Ã, w̃ , ṽ0 , w̃ (20)

0 ≤ uωp,ṽ ≤ 1 p ∈ V , ṽ ∈ Ṽ \ {ṽ0} (21)

4.4 Heuristic Solution Approach
In addition to solving the MIP directly, we can use modifications

of know heuristics for the capacitated vehicle routing problem to

solve (rLVP). In particular, we tested a modification of the savings

algorithm by Clarke and Wright [3].

The algorithm is initialized with |Ṽ − 1| tours (ṽ0, ṽ, ṽ0) for all

ṽ ∈ Ṽ . After that, the saving

s(ṽi , ṽj ) = cost(ṽi , ṽ0) + cost(ṽ0, ṽj ) − cost(ṽi , ṽj )

is calculated for all ṽi , ṽj ∈ Ṽ with ṽi , ṽ0 , ṽj and sorted in

non-increasing order.

Now, the first unused saving s(ṽi , ṽj ) is taken and the tours Ti ,Tj
corresponding to node ṽi and ṽj are merged by removing arcs

(ṽi , ṽ0), (ṽ0, ṽj ) and adding (ṽi , ṽj ), if the following conditions are

fulfilled:

• Ti , Tj
• there exists arc (ṽi , ṽ0) in Ti and (ṽ0, ṽj ) in Tj
• the summed up demand of both tours Ti and Tj does not
exceed the capacity C .

Subsequently, the next unused saving is taken and this step is

repeated until R tours are left.

As in the MIP, by adding further conditions we can ensure simple

and elementary lines, respectively. To guarantee the former, we

only merge two tours Ti ,Tj , if the corresponding public transport

network arcs of the Ti are not the same as those in Tj .
In a similar way we proceed with the target and source nodes of

the corresponding public transport network arcs of tour Ti and Tj
to ensure elementary lines.

In some cases, the algorithm may terminate even though there

are still more than R tours. This is due to the significantly increased

number of conditions for merging two tours.

5 EXPERIMENTAL EVALUATION
We test the two solution approaches for (rLVP) on three data

sets from the open source software framework LinTim [13], grid,
long-distance and goettingen, see Figure 2, and compare them

to the traditional sequential solution approach. The data sets rep-

resent an artificial benchmark instance, the long-distance train

network in Germany and the bus network in Göttingen, respec-

tively.

(a) grid. (b) long-distance. (c) goettingen.

Figure 2: Public transport networks for various data sets.

Table 1: Instance size and mean solver time (in seconds) and
gap of the MIP formulation as well as the mean run time
the heuristic approach in seconds. Note that for the MIP so-
lution approach a time limit of 60 minutes is applied.

PTN Heu. MIP

Data Set |V | |A| Time Time Gap

grid 25 80 0 3600 100%

long-distance 250 652 2 3600 99%

goettingen 257 548 12 3600 66%

For each data set, we evaluate the approximated costs ¯cost(R)

and the actual costs cost(R, π ) for various settings of K and R for

the MIP formulation and the heuristic solution approach of (rLVP)

for simple lines. For the MIP formulation, we use Gurobi 8.1.1

[1] and report the best solution found within a time limit of 60

minutes. These solutions are compared to the traditional approach

of sequentially finding a line plan for a given pool, a timetable and

a vehicle schedule.

Note that the runtime for the heuristic is considerably smaller

than for the MIP-formulation, especially on the largest data set

goettingen. The mean runtimes for all settings of K and R are

reported in Table 1.

The results are depicted in Figure 3. We make the following

observations:

• By using an integrated approach to line planning and vehicle

scheduling, it is possible to find solutions that are much

cheaper than by using the sequential solution approach, even

when the duration of a vehicle route is restricted. For data

sets goettingen, grid and long-distance, the costs can
be reduced by up to 18%, 36% and 75%, respectively.

• For smaller K , i.e., for shorter vehicle routes, more routes R
have to be allowed to find feasible solutions.

• With the heuristic approach, it is not possible to find feasible

solutions for all given combinations of K and R.
• For larger K , the error of using ¯cost(R) instead of cost(R, π )
increases.

• While the costs cost(R, π ) do increase slightly for smaller,

i.e., more restrictive K , the difference is much smaller than

suggest by ¯cost(R).

For data set grid, we additionally compared using simple paths

for the vehicle route to restricting the routes to elementary paths.

Here, the costs of the heuristic solutions increased by about 8%
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(a) grid.

(b) long-distance.

(c) goettingen.

Figure 3: Costs for the different solution approaches for var-
ious data sets.

compared to the simple paths. Additionally, there are more infeasi-

ble combinations of K and R when the routes are restricted further.

However, for some applications it might be necessary to restrict

the set of lines to elementary instead of simple lines.

6 CONCLUSION AND OUTLOOK
In this paper, we modeled the integrated line planning and vehicle

scheduling problem and proposed a solution approach for fixed

arc frequencies. While the heuristic solution approach is especially

fast and therefore can be used for larger data sets, the MIP-based

solution approach outperforms the classical sequential solution

approach even when restricting the duration of vehicle routes.

To better incorporate the passengers’ perspective, it is also pos-

sible to use (rLVP) to generate a line pool instead of a line concept

by choosing higher values for f (a), a ∈ A. This allows for creat-
ing a larger set of potential lines which can be operated within

the duration restriction K from which a line concept can be cho-

sen separately. Evaluating these line pools in comparison to the

approach from [4] and in combination with other integrated solu-

tion approaches such as integrated line planning, timetabling and

passenger routing may lead to interesting new solution approaches.
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