
Similarity-driven Schema Transformation
for Test Data Generation

Fabian Panse
University of Hamburg, Germany
fabian.panse@uni-hamburg.de

Meike Klettke
University of Rostock, Germany
meike.klettke@uni-rostock.de

Johannes Schildgen
OTH Regensburg, Germany

johannes.schildgen@oth-regensburg.de

Wolfram Wingerath
University of Oldenburg, Germany

wolfram.wingerath@uni-oldenburg.de

ABSTRACT
A flexible and versed generation of test data is an important
aspect in benchmarking algorithms for data integration. This
includes the generation of heterogeneous schemas, each repre-
senting another data source of the integration benchmark. In this
paper, we present our ongoing research on a novel approach for
similarity-driven generation of schemas, which takes as input an
arbitrary dataset, extracts its schema, and derives a set of output
schemas from it. In contrast to previous solutions, we do not fo-
cus on structural transformations of relational or XML schemas,
but extend the scope to contextual transformations and NoSQL
data models, where the required schema information is often only
implicitly defined within the data and must first be extracted.
In addition, we utilize a novel method that generates multiple
schemas based on user-defined heterogeneity constraints making
the generation process configurable even for non-experts.

1 INTRODUCTION
The number of available data sources and the need to integrate
them is growing rapidly in many public, academic, and industrial
sectors [15]. At the same time, the increasing diversity of the data-
base landscape makes an accurate integration of these sources
considerably more difficult. All these factors have made data
integration [20, 21], and all its sub-steps, such as schema match-
ing [4, 5], duplicate detection [17, 48, 50], and record fusion [8, 53],
intensively studied research areas for decades, which still receive
a lot of attention today (e.g., [11, 13, 24, 25, 34, 38, 44, 46]).

The development of novel algorithms for data integration
requires a systematic and thorough evaluation of them [49]. This
in turn requires test datasets that contain a ground truth. Real-
world datasets with ground truths are hard to find, as this truth
has to be determined very laboriously and at high costs. Therefore
the use of test data generators is recommended, which allow a
fast generation of different benchmarking scenarios and allow
the users to create datasets according to their own needs.

An important step in generating test data for data integration
is to create heterogeneous data schemas, each representing a dif-
ferent data source of the integration benchmark, and mappings
between them. Typically, this is accomplished by transforming
an input schema provided by the user. Current generators of
schema-related data integration benchmarks, such as iBench [3],
STBenchmark [2], or MatchBench [26], however, focus on struc-
tural transformations of relational or XML schemas explicitly
defined in the given data, although such schema specifications

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Prepared Input
Dataset &
Schema

Mappings / ProgramsOutput Schemas

Input
Dataset
(& Schema)

Profiling of
Input Dataset

& Schema

Preparation of
Input Dataset

& Schema

Generation
of Output
Schemas

… …
↔

Generation
of Mappings /

Programs
User
Configuration

Knowledge
Base

↔

↔

1.

2 3

5 4

1

Figure 1: Overall procedure of our approach for generating
schemas for data integration benchmarks

are rarely complete or, in the case of many NoSQL datasets, miss-
ing altogether. Moreover, these tools are limited to the generation
of schema pairs, despite the fact that real-world integration tasks
often involve more than two data sources. Finally, their configu-
ration requires detailed knowledge on schema-transformation
operators and thus are difficult to use for non-experts.

In this paper, we propose a novel approach to generate data
schemas (andmappings between them) for data integration bench-
marks that in contrast to existing solutions

• also supports NoSQL data models, such as JSON or prop-
erty graphs,

• profiles the input data to enrich explicit and extract im-
plicit schema information,

• supports contextual schema transformations, such as chang-
ing a column’s format or unit of measurement, and

• utilizes a novel concept of similarity-based transformation
trees to build an arbitrary number of output schemas that
satisfy user-defined constraints on their heterogeneity.

The basic idea of our approach is illustrated in Figure 1. First,
the user submits an arbitrary dataset (e.g., relational, JSON, or
graph-based) as input along with its explicit schema (if available)
and a configuration that specifies the desired heterogeneity of the
output schemas to be generated. Second, the submitted dataset is
profiled to identify, extract, and add missing schema information.
Third, to simplify the subsequent generation of output schemas,
the profiling results are used to decompose the input dataset and
schema as much as possible. Fourth, the desired number of 𝑛
output schemas is generated by transforming the prepared input
schema. To meet the user’s specifications on the output schemas’
heterogeneity as well as possible, we utilize a novel concept
using similarity-based transformation trees. Finally, for each pair
of schemas, two schema mappings as well as two transformation
programs are generated, which will allow us later on to rewrite
queries and transform data from one schema into the other. The

Short Paper

Series ISSN: 2367-2005 408 10.48786/edbt.2022.31

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.31

final output of our generation approach contains (i) the prepared
input dataset and schema, (ii) 𝑛 output schemas, and (iii) 𝑛(𝑛 + 1)
schema mappings and transformation programs between the
individual schemas (input and output).

We plan to embed this schema generation approach into our
DaPo generator [29], where we use the generated schemas to cre-
ate benchmarks for duplicate detection and record fusion that con-
sists of multiple data sources. However, the generated schemas,
mappings, and programs can also be used to create benchmarks
for other data integration tasks, such as schema matching/map-
ping [9, 34, 46], query rewriting [27], or data exchange [10].

The rest of the paper is structured as follows: First we elabo-
rate on related work and open challenges in Section 2. Then we
describe howwe address schema profiling, preparation, and trans-
formation in our research project in Sections 3 and 4. Thereafter,
we discuss the calculation of schematic heterogeneities in Sec-
tion 5 and present our overall generation approach in Section 6.
We conclude this paper in Section 7.

2 RELATEDWORK & OPEN CHALLENGES
Static benchmarks and experiment suites, such as Alaska [18],
XBenchMatch [22], T2D [55], or Valentine [37], provide valuable
test scenarios for different schema matching use cases. However,
they are limited to particular domains (e.g., Alaska includes data
on electronic devices) and can only be customized by removing
individual schema components (e.g., sources, tables, or columns)
from the test input. In addition, we cannot use them for DaPo,
because it is supposed to work on arbitrary datasets.

The schema generators STBenchmark [2], MatchBench [26],
and iBench [3] all support the renaming of labels. While iBench
and MatchBench are limited to relational schemas, STBenchmark
also provides operators for transforming nested XML schemas.
The transformation of constraints is partially covered by STBench-
mark (referential) and iBench (unique, referential, and functional
dependencies). All three generate benchmarking scenarios con-
sisting of one source and one target schema. Thus, it is difficult
to achieve a predefined degree of heterogeneity between mul-
tiple output schemas. EMBench++ [32] is a tool for generating
entity matching benchmarks, which is able to add and remove
individual columns from the benchmark’s schema, but does not
support more complex schema transformations.

Besides benchmarking, there is a lot of work on schema and
data transformation in many other research areas. Examples
are data cleaning [54], schema evolution [19, 28, 36, 61], multi-
database languages, such as SchemaSQL [39], or polyglot data
management [16, 56]. Our goal is to reuse the results (e.g., trans-
formation operators for NoSQL data models) obtained in these
works whenever possible and to extend them if necessary. Despite
the large amount of existing research on schema transformation,
the following challenges remain for our project:

• Extraction of missing (implicit) schema information of a
given dataset. This may be the whole schema if the data
is managed by a schemaless NoSQL data store.

• Identification of appropriate operators for schema trans-
formation and dependencies between them.

• Identification and collection of knowledge (e.g., ontologies)
required for some schema-transformation operators.

• Developing methods to measure the heterogeneity be-
tween two schemas.

• Developing an algorithm for generating multiple schemas
while considering user-defined heterogeneity constraints.

3 SCHEMA PROFILING & PREPARATION
Every (semi-)structured dataset follows a schema, which is either
explicitly managed by the underlying database system, implicitly
defined by the data-processing applications, or a mix of both (e.g,
an SQL database manages the datas’ structure, but the semantics
of some columns is only known to the applications). Due to evolv-
ing applications, in the latter two cases, different records of the
same dataset may also conform to different schema versions [58].

3.1 Data Schema & Categories
In the literature, data schemas are often limited to structural
descriptions. In this paper, we take a broader view of the term
and consider the schema as the conglomerate of all information
describing the actual data. We group this information into four
categories: (1) structural, (2) linguistic, (3) constraint-based, and
(4) contextual. Linguistic schema information refers to (the seman-
tics of) labels, such as the names of relational tables and columns,
XML tags, or field names in field-value pairs (e.g., (’name’,’Ian’)).
Constraint-based information refers to integrity constraints rang-
ing from keys to application-specific conditions. Contextual in-
formation encompasses all remaining information necessary to
fully interpret individual data objects (e.g., tables, columns, or val-
ues). For example, the context of a column includes its (i) format
(e.g., ’yyyy-mm-dd’ vs. ’dd.mm.yy’), (ii) level of abstraction (e.g.,
district vs. city), (iii) unit of measurement (e.g., ’cm’ vs. ’inch’),
and (iv) encoding (e.g., {yes,no} vs. {1,0}). The context of a table
includes its scope (e.g., ’book’ vs. ’novel’).

3.2 Data & Schema Profiling
Many datasets do not contain an explicit description of their com-
plete schema. However, the more detailed schema information
we have, the greater the choice of transformation operators we
can apply to it. Thus, it is important to derive a schema from the
input data that is as accurate, complete, and detailed as possible.

The profiling of data is currently a hot topic in the database
community [1], and there is already a lot of (ongoing) research on
identifying and extracting (i) schema information in/from CSV
files [33], JSON documents [35], and graph databases [40], (ii) in-
tegrity constraints, such as unique [7], denial constraints [45, 52],
inclusion dependencies [59], or functional dependencies [6, 14,
51, 57], and (iii) semantic domains [31, 62], that we reuse for our
purpose. However, the identification of some contextual informa-
tion, such as the scope of a table or the unit of measurement of a
column, has not yet received much attention and needs further
research. The same applies to identifying the semantic closeness
of columns to determine which of them are likely to merge.

3.3 Data & Schema Preparation
After we have profiled the input data, the obtained schema in-
formation is used to further decompose the input dataset and
schema so that their information is represented in as much detail
as possible. This decomposition has the goal to simplify subse-
quent transformations. For example, it is easier to merge two
attributes than to split one. Therefore, we transform the input
dataset into a structured data model, normalize its schema, and
split its attributes into several subattributes if a clear separation
between the corresponding values is possible. Moreover, if its
records conform to different schema versions, they are all initially
migrated to the same version (e.g., the latest one) [36].

409

{ "Hardcover (Horror)" : [{
"BID" : "B",
"Title" : "It",
"Price" : { "EUR" : 32.16,

"USD" : 37.26 },
"Author" : "King, Stephen

(1947-09-21, USA)"
}] }

BID Title Genre Format Price Year AID

1 Cujo Horror Paperback 8.39 2006 1

2 It Horror Hardcover 32.16 2011 1

3 Emma Novel Paperback 13.99 2010 2

AID Firstname Lastname Origin DoB

1 Stephen King Portland 21.09.1947

2 Jane Austen Steventon 16.12.1775

Book

Author

IC1: ∀b ∈ Book, ∀a ∈ Author: b. AID = a. AID ⇒ πYear a. DoB < b. Year

(Prepared) Input

{ "Paperback (Horror)" : [{
"BID" : "C",
"Title" : "Cujo",
"Price" : { "EUR" : 8.39,

"USD" : 9.72 },
"Author" : "King, Stephen

(1947-09-21, USA)"
}] }

Output

Figure 2: Example of Schema & Data Transformations

4 SCHEMA-TRANSFORMATION OPERATORS
According to the four categories of schema information presented
in Section 3.1, we distinguish the same four categories of schema-
transformation operators. Since we decomposed and detailed
the input schema in the preparation step as much as possible,
we do not need structural operators that decompose a schema
further, such as normalize a table or split a column, and do not
need contextual operators that increase the level of detail, such
as drill-down or an increase of precision. Nevertheless, it should
be noted that there are still operators which decompose existing
schema elements if this is part of a restructuring process, such
as (un)nesting or regrouping (see example described below).

Constraint-based operators change the set of given integrity
constraints. This can be the addition of a new constraint or the
removal, strengthening or weakening of an existing constraint.
Obviously if we just migrate the data of our input instance to
these output schemas, every removed constraint will still be
satisfied. However a removal of those constraints is relevant, if
the data is further polluted with data errors as in DaPo.

Operators of all four categories are illustrated in Figure 2. We
have several structural transformations. For instance, the Book
and the Author tables are joined, restructured by grouping all
records based on their formats, and then converted into JSON
collections. Moreover, the columns Firstname, Lastname, DoB,
and Origin are merged into the property Author. Finally, the book
price is added in dollar and both price values are nested into one
property Price. In addition, we have several contextual transfor-
mations. First, the abstraction level of the column Origin was
drilled-up from city to country. Second, the format of the column
DoB was changed. Third, the scope of the Book table was reduced
to the genre ’horror’. Examples for linguistic transformations are
the renaming of the two Book collections and the two Price prop-
erties. The only constraint-based transformation is the removal
of integrity constraint IC1 which was necessary because the Year
values were removed from the two book collections.

4.1 Transformation Dependencies
It is important to note that the execution of one operator may
require the subsequent execution of others. For example, if we
merge two columns, we need to define a new column name. The

samemay apply if we increase the level of abstraction of a column
(drill-up). Thus, we have dependencies between the four afore-
mentioned categories. Typically, a structural operator implies a
linguistic or contextual operator, and a contextual operator im-
plies a linguistic one, but not vice versa. In addition, changing a
context may require to change an integrity constraint. For exam-
ple, when converting the unit of measurement of a column from
’feet’ to ’cm’, we may need to adapt a constraint that restricts
the maximum size value. Finally, linguistic transformations also
often require a refactoring of constraints. This leads us to the
following (approximate) dependency order:

structural → contextual → linguistic → constraint (1)

4.2 Required Knowledge
Several transformation operators require additional information,
which we store in a knowledge base (see Figure 1). Most struc-
tural transformations only require knowledge about the data
model with which the given schema is defined. It becomes more
complex if the schema has to be transformed from one model
(e.g., relational) into another (e.g., JSON). In this case, we need
transformation rules, either directly between both models (e.g.,
[41, 56]) or indirectly via a third model, which can be a generic
one such as U-schema [12].

In addition to these mappings, we need dictionaries and ontolo-
gies (e.g., from DBpedia [43]) to enable linguistic and contextual
transformations addressing semantic relations, such as synonyms
or hyperonyms. For changing units of measurement, we need
conversion rules, which in turn may be time-variant (e.g., the
daily changing exchange rate between two currencies). Finally,
changing the format or encoding of a column requires alternative
(and common) representations and terminologies of the corre-
sponding domain, which we collect from other datasets, such as
the Dresden Web Tables Corpus [23] or GitTables [30].

5 HETEROGENEITY CALCULATION
Systematic benchmarking requires that the user is able to gen-
erate test datasets with varying degrees of heterogeneity. To
assist inexperienced users who are unable to map such a degree
to a corresponding sequence of transformation operators, we
need measures to quantify the heterogeneity between the gen-
erated output schemas. Since heterogeneity can be seen as the
conceptual opposite of similarity, we can use common similarity
measures for this purpose. Such measures can greatly differ from
one schema category to another. For this reason, we separate our
measurement into four parts accordingly and model the hetero-
geneity of two schemas by a quadruple ℎ ∈ [0, 1]4 where each of
the tuple’s values represents the normalized heterogeneity with
respect to one of the four schema categories (see Section 3.1).

Subsequent calculationswith those quadruples follow the rules
of component-wise addition and scalar multiplication, i.e., let
𝑣,𝑤 ∈ R4 and 𝜆 ∈ R, it holds:

𝜋𝑘 (𝑣 +𝑤) = 𝜋𝑘 (𝑣) + 𝜋𝑘 (𝑤) (2)
𝜋𝑘 (𝜆 · 𝑣) = 𝜆 · 𝜋𝑘 (𝑣) (3)

where 𝜋𝑘 (𝑣) gives the 𝑘th entry of tuple 𝑣 . Moreover, it holds:

𝜋𝑘 (𝑜𝑝 (𝑣,𝑤)) = 𝑜𝑝 (𝜋𝑘 (𝑣), 𝜋𝑘 (𝑤)) (4)

for 𝑜𝑝 ∈ {min,max}.
The meaning of structural similarity between two schemas

strongly depends on the available structures and thus can greatly
differ between the individual data models. Existing measures

410

πk(h
c
min)=0.4 πk(h

c
max)=0.8

πk(h
i
min)=0.5 πk(h

i
max)=0.7

1

2 5

Hi,k={0.1,0.2}

{0.2,0.1} {0.3,0.4} {0.2,0.3}

3{0.35,0.5} {0.4,0.5} {0.5,0.6}

{0.4,0.4} {0.3,0.3} {0.3,0.6}{0.5,0.5} {0.4,0.7} {0.7,0.8}

{0.2,0.4} {0.4,0.6} {0.3,0.3}

4

n0

Figure 3: Example of a transformation tree. The numbers
indicate the order in which the nodes were expanded. Valid
(▲) and target (■) nodes are colored and shaped differently.

to capture such similarities include XClust [42] for hierarchical
XML schemas and similarity flooding [47] for relational schemas.

We can use measures from string matching, such as Soundex
or Levenshtein [20], to compare labels. Contexts affect the actual
data. Thus, one way to compare two contexts is by comparing a
small sample of duplicate records from the compared datasets.
Here we can again use similarity measures for string matching.

The simplest way to compare two sets of integrity constraints,
is to calculate their set-based similarity by using measures such
as Jaccard or Dice [20]. In that case, however, it is lost that differ-
ent constraints can be very similar in their semantics. However,
we are not aware of existing measures that are able to capture
such similarities. Nevertheless, Türker and Saake define various
relationships between integrity constraints [60], which can be
used as a starting point to develop such a measure.

6 GENERATION PROCESS
The input to a generation task are (i) the prepared input dataset
and schema, and (ii) a user configuration including 𝑛, the number
of output schemas to be generated. In the configuration, the user
can define which transformation operators may be used during
the generation process. The most important parameters, however,
are the three quadruples ℎ𝑐min, ℎ

𝑐
max, ℎ

𝑐
avg ∈ [0, 1]4 that allow the

user to control the minimal, maximal, and average degree of
heterogeneity between the generated schemas. Obviously, it has
to hold 𝜋𝑘 (ℎ𝑐min) ≤ 𝜋𝑘 (ℎ𝑐avg) ≤ 𝜋𝑘 (ℎ𝑐max) for 𝑘 ∈ {1, . . . , 4}.

Based on this information, the output schemasS = {𝑆1, . . . , 𝑆𝑛}
are generated one after another, each by transforming the pre-
pared input schema, so that ∀𝑘 ∈ {1, . . . , 4}:

∀𝑆𝑖 , 𝑆 𝑗 ∈ S, 𝑖 ≠ 𝑗 : 𝜋𝑘 (ℎ(𝑆𝑖 , 𝑆 𝑗)) ∈ [𝜋𝑘 (ℎ𝑐min), 𝜋𝑘 (ℎ
𝑐
max)] (5)∑︁

𝑆𝑖 ,𝑆 𝑗 ∈S,𝑖≠𝑗
𝜋𝑘 (ℎ(𝑆𝑖 , 𝑆 𝑗)) ≈ 𝜋𝑘 (ℎ𝑐avg)

𝑛(𝑛 − 1)
2

(6)

6.1 Overall Generation Procedure
To meet the parameter ℎ𝑐avg for the average heterogeneity of the
schemas as closely as possible (Equation 6), new threshold values
are determined at the beginning of every run 𝑖 ∈ {1, . . . , 𝑛}. Log-
ically, each newly generated schema can only be compared to
the previously generated schemas. This leads to the fact that the
number of newly added pairwise heterogeneity tuples ℎ ∈ [0, 1]4
per run increases as the generation task progresses. While the
first run does not yet generate any of these tuples, the fourth
run already generates three. Consequently, the last run has the
highest impact on the final average. We have to consider this
imbalance during the calculation of the aforementioned thresh-
olds. Let 𝜌𝑖 be the number of pairwise schema comparisons that
remain before starting run 𝑖 . It is initially set to 𝜌1 = 𝑛(𝑛 − 1)/2
and decreases by 𝑖 − 1 after the 𝑖th run, i.e., 𝜌𝑖+1 = 𝜌𝑖 − (𝑖 − 1).

Moreover let 𝜎𝑖 ∈ R4 be the total sum of heterogeneity we still
need at the start of run 𝑖 to meet the user’s specification. Initially,
it equals 𝜎1 = 𝜌1 ·ℎ𝑐avg and decreases by ℎ𝑖 =

∑𝑖−1
𝑗=1 ℎ(𝑆𝑖 , 𝑆 𝑗) after

we have generated schema 𝑆𝑖 in the 𝑖th run. i.e., 𝜎𝑖+1 = 𝜎𝑖 − ℎ𝑖 .
Based on these numbers, the two thresholds are calculated as:

ℎ𝑖min = max(ℎ𝑐min, (𝜎𝑖 − 𝜌𝑖+1 · ℎ𝑐max)/(𝑖 − 1)) (7)

ℎ𝑖max = min(ℎ𝑐max, (𝜎𝑖 − 𝜌𝑖+1 · ℎ𝑐min)/(𝑖 − 1)) (8)

6.2 Generation of Each Output Schema
Due to the dependency order described in Section 4.1, the gener-
ation of each output schema 𝑆𝑖 is executed in four steps:

(1) structural transformations
(2) contextual transformations
(3) linguistic transformations
(4) constraint-based transformations

Between every two steps, dependent transformations of the fol-
lowing categories are identified and executed.

In each step 𝑘 ∈ {1, . . . , 4}, we span a so-called transformation
tree (see Figure 3). The root node 𝑛0 represents the schema result-
ing from the previous step (or the prepared input schema if 𝑘 = 1).
This node is expanded by applying a predefined number of trans-
formations. The resulting schemas form the child nodes of 𝑛0.
Then, for each of these schemas 𝑆 , the heterogeneity to all already
generated output schemas is measured regarding the schema cat-
egory of the respective step (i.e., structural if 𝑘 = 1). The result is
the heterogeneity bag 𝐻𝑖,𝑘 (𝑆) = {𝜋𝑘 (ℎ(𝑆, 𝑆 𝑗)) | 𝑗 < 𝑖}. The node
of schema 𝑆 is called valid if

∀ℎ ∈ 𝐻𝑖,𝑘 (𝑆) : ℎ ∈ [𝜋𝑘 (ℎ𝑐min), 𝜋𝑘 (ℎ
𝑐
max)] (9)

In addition, a valid node is called a target node if

avg(𝐻𝑖,𝑘 (𝑆)) ∈ [𝜋𝑘 (ℎ𝑖min), 𝜋𝑘 (ℎ
𝑖
max)] (10)

Next, a leaf node of the current tree is expanded. If there is
already a target node by then, the node to be expanded is selected
randomly among all leaf nodes. If this is not the case, the distance
to the range [𝜋𝑘 (ℎ𝑖min), 𝜋𝑘 (ℎ

𝑖
max)] is calculated for all leaf nodes,

and then the leaf node with the smallest distance is expanded.
The construction of the tree ends after a predefined number of

nodes have been expanded. If there are target nodes by then, one
of them is chosen randomly as the output schema 𝑆𝑖 . Otherwise,
the schema of the node with the smallest distance is returned as
output where valid nodes are preferred to non-valid ones.

7 CONCLUSION & ONGOINGWORK
In this paper, we presented a novel approach for generating a
set of heterogeneous data schemas as needed in data integration
benchmarks. In contrast to existing solutions, it is (i) not limited to
relational or XML schemas, (ii) able to deal with implicit schema
information, (iii) also considering contextual schema transforma-
tions, (iv) able to generate scenarios with more than two schemas,
and (v) similarity-driven, i.e., the generation is based on user-
defined similarity scores, which ease its configuration.

The research presented in this paper is ongoing work which
is being implemented in the context of the DaPo project [29].
In this project, we use the resulting schemas as input to a data
pollution process to generate realistic benchmarks for duplicate
detection and record fusion consisting of multiple heterogeneous
data sources. The next steps of the project include the develop-
ment of (i) similaritymeasures for the different schema categories,
and (ii) a filter that selects suitable transformation operators de-
pending on the respective node of the transformation tree.

411

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling Rela-

tional Data: A Survey. VLDB J. 24, 4 (2015), 557–581. https://doi.org/10.1007/
s00778-015-0389-y

[2] Bogdan Alexe, Wang Chiew Tan, and Yannis Velegrakis. 2008. STBench-
mark: Towards a Benchmark for Mapping Systems. Proceedings of the VLDB
Endowment 1, 1 (2008), 230–244. https://doi.org/10.14778/1453856.1453886

[3] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. 2015. The
iBench Integration Metadata Generator. Proceedings of the VLDB Endowment
9, 3 (2015), 108–119. https://doi.org/10.14778/2850583.2850586

[4] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm. 2011. Schema Matching
and Mapping. Springer.

[5] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. 2011. Generic
Schema Matching, Ten Years Later. Proceedings of the VLDB Endowment 4, 11
(2011), 695–701. http://www.vldb.org/pvldb/vol4/p695-bernstein_madhavan_
rahm.pdf

[6] Laure Berti-Équille, Hazar Harmouch, Felix Naumann, Noël Novelli, and Sara-
vanan Thirumuruganathan. 2019. Discovery of Genuine Functional Depen-
dencies from Relational Data with Missing Values. In Actes du XXXVIIème
Congrès INFORSID. 287–288. http://inforsid.fr/actes/2019/INFORSID_2019_
p287-288.pdf

[7] Johann Birnick, Thomas Bläsius, Tobias Friedrich, Felix Naumann, Thorsten
Papenbrock, and Martin Schirneck. 2020. Hitting Set Enumeration with Partial
Information for Unique Column Combination Discovery. Proceedings of the
VLDB Endowment 13, 11 (2020), 2270–2283. http://www.vldb.org/pvldb/vol13/
p2270-birnick.pdf

[8] Jens Bleiholder and Felix Naumann. 2008. Data fusion. ACM Comput. Surv.
41, 1 (2008).

[9] Angela Bonifati, Ugo Comignani, Emmanuel Coquery, and Romuald Thion.
2019. Interactive Mapping Specification with Exemplar Tuples. ACM Trans.
Database Syst. 44, 3 (2019), 10:1–10:44. https://doi.org/10.1145/3321485

[10] Angela Bonifati, Ugo Comignani, and Efthymia Tsamoura. 2021. Exchanging
Data under Policy Views. In Proceedings of the 24th International Conference
on Extending Database Technology, EDBT. OpenProceedings.org, 1–12. https:
//doi.org/10.5441/002/edbt.2021.02

[11] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-Laure Mug-
nier. 2020. Obi-Wan: Ontology-Based RDF Integration of Heterogeneous
Data. Proceedings of the VLDB Endowment 13, 12 (2020), 2933–2936. https:
//doi.org/10.14778/3415478.3415512

[12] Carlos Javier Fernández Candel, Diego Sevilla Ruiz, and Jesús Joaquín García
Molina. 2021. A Unified Metamodel for NoSQL and Relational Databases.
CoRR (2021). https://arxiv.org/abs/2105.06494

[13] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Inte-
gration Tasks. In Proceedings of the 2020 International Conference on Manage-
ment of Data, SIGMOD Conference. ACM, 1335–1349. https://doi.org/10.1145/
3318464.3389742

[14] Loredana Caruccio, Vincenzo Deufemia, Felix Naumann, and Giuseppe Polese.
2021. Discovering Relaxed Functional Dependencies Based on Multi-Attribute
Dominance. IEEE Trans. Knowl. Data Eng. 33, 9 (2021), 3212–3228. https:
//doi.org/10.1109/TKDE.2020.2967722

[15] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2020. Dataset Search: A Sur-
vey. VLDB J. 29, 1 (2020), 251–272. https://doi.org/10.1007/s00778-019-00564-x

[16] Alberto Hernández Chillón, Diego Sevilla Ruiz, and Jesús García Molina.
2021. Towards a Taxonomy of Schema Changes for NoSQL Databases: The
Orion Language. In Proceedings of the 40th International Conference on Con-
ceptual Modeling, ER, Vol. 13011. Springer, 176–185. https://doi.org/10.1007/
978-3-030-89022-3_15

[17] Peter Christen. 2012. Data Matching: Concepts and Techniques for Record
Linkage, Entity Resolution, and Duplicate Detection. Springer.

[18] Valter Crescenzi, Andrea De Angelis, Donatella Firmani, Maurizio Mazzei,
Paolo Merialdo, Federico Piai, and Divesh Srivastava. 2021. Alaska: A Flexible
Benchmark for Data Integration Tasks. CoRR (2021). https://arxiv.org/abs/
2101.11259

[19] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013. Au-
tomating the Database Schema Evolution Process. VLDB J. 22, 1 (2013), 73–98.
https://doi.org/10.1007/s00778-012-0302-x

[20] AnHai Doan, Alon Halevy, and Zachary G. Ives. 2012. Principles of Data
Integration. Morgan Kaufmann.

[21] Xin Luna Dong and Divesh Srivastava. 2015. Big Data Integration. Morgan &
Claypool Publishers. https://doi.org/10.2200/S00578ED1V01Y201404DTM040

[22] Fabien Duchateau and Zohra Bellahsene. 2014. Designing a Benchmark for
the Assessment of Schema Matching Tools. Open J. Databases 1, 1 (2014), 3–25.
https://nbn-resolving.org/urn:nbn:de:101:1-201705194573

[23] Julian Eberius, Katrin Braunschweig, Markus Hentsch, Maik Thiele, Ahmad
Ahmadov, and Wolfgang Lehner. 2015. Building the Dresden Web Table
Corpus: A Classification Approach. In Proceedings of the 2nd IEEE/ACM Inter-
national Symposium on Big Data Computing, BDC. IEEE Computer Society,
41–50. https://doi.org/10.1109/BDC.2015.30

[24] Martin Franke, Ziad Sehili, Florens Rohde, and Erhard Rahm. 2021. Evaluation
of Hardening Techniques for Privacy-Preserving Record Linkage. In Proceed-
ings of the 24th International Conference on Extending Database Technology,
EDBT. 289–300. https://doi.org/10.5441/002/edbt.2021.26

[25] Leonardo Gazzarri and Melanie Herschel. 2021. End-to-end Task Based Paral-
lelization for Entity Resolution on Dynamic Data. In Proceedings of the 37th
IEEE International Conference on Data Engineering, ICDE. IEEE, 1248–1259.
https://doi.org/10.1109/ICDE51399.2021.00112

[26] Chenjuan Guo, Cornelia Hedeler, Norman W. Paton, and Alvaro A. A. Fer-
nandes. 2013. MatchBench: Benchmarking Schema Matching Algorithms
for Schematic Correspondences. In Proceedings of the 29th British National
Conference on Databases, BNCOD, Vol. 7968. Springer, 92–106. https://doi.org/
10.1007/978-3-642-39467-6_11

[27] Alon Y. Halevy. 2001. Answering Queries using Views: A Survey. VLDB J. 10,
4 (2001), 270–294. https://doi.org/10.1007/s007780100054

[28] Kai Herrmann, Hannes Voigt, Jonas Rausch, Andreas Behrend, and Wolfgang
Lehner. 2018. Robust and Simple Database Evolution. Inf. Syst. Frontiers 20, 1
(2018), 45–61. https://doi.org/10.1007/s10796-016-9730-2

[29] Kai Hildebrandt, Fabian Panse, Niklas Wilcke, and Norbert Ritter. 2020. Large-
Scale Data Pollution with Apache Spark. IEEE Trans. Big Data 6, 2 (2020),
396–411. https://doi.org/10.1109/TBDATA.2016.2637378

[30] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2021. GitTables: A
Large-Scale Corpus of Relational Tables. CoRR (2021). https://arxiv.org/abs/
2106.07258

[31] Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen,
Arvind Satyanarayan, Tim Kraska, Çagatay Demiralp, and César A. Hidalgo.
2019. Sherlock: A Deep Learning Approach to Semantic Data Type Detection.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD. ACM, 1500–1508. https://doi.org/10.1145/
3292500.3330993

[32] Ekaterini Ioannou and Yannis Velegrakis. 2019. EMBench++: Data for a
Thorough Benchmarking of Matching-Related Methods. Semantic Web 10, 2
(2019), 435–450. https://doi.org/10.3233/SW-180331

[33] Lan Jiang, Gerardo Vitagliano, and Felix Naumann. 2021. Structure Detection
in Verbose CSV Files. In Proceedings of the 24th International Conference on
Extending Database Technology, EDBT. OpenProceedings.org, 193–204. https:
//doi.org/10.5441/002/edbt.2021.18

[34] Angelika Kimmig, Alex Memory, Renée J. Miller, and Lise Getoor. 2019. A
Collective, Probabilistic Approach to Schema Mapping Using Diverse Noisy
Evidence. IEEE Trans. Knowl. Data Eng. 31, 8 (2019), 1426–1439. https:
//doi.org/10.1109/TKDE.2018.2865785

[35] Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2015. Schema Extraction
and Structural Outlier Detection for JSON-based NoSQL Data Stores. In BTW.
425–444. https://dl.gi.de/20.500.12116/2420

[36] Meike Klettke, Uta Störl, Manuel Shenavai, and Stefanie Scherzinger. 2016.
NoSQL Schema Evolution and Big Data Migration at Scale. In Proceedings of
the 2016 IEEE International Conference on Big Data, BigData. IEEE Computer
Society, 2764–2774. https://doi.org/10.1109/BigData.2016.7840924

[37] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Kat-
sifodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset
Discovery. In Proceedings of the 37th IEEE International Conference on Data En-
gineering, ICDE. IEEE, 468–479. https://doi.org/10.1109/ICDE51399.2021.00047

[38] Shrinu Kushagra, Hemant Saxena, Ihab F. Ilyas, and Shai Ben-David. 2019.
A Semi-Supervised Framework of Clustering Selection for De-Duplication.
In Proceedings of the 35th IEEE International Conference on Data Engineering,
ICDE. IEEE, 208–219. https://doi.org/10.1109/ICDE.2019.00027

[39] Laks V. S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian. 2001.
SchemaSQL: An Extension to SQL for Multidatabase Interoperability. ACM
Trans. Database Syst. 26, 4 (2001), 476–519.

[40] Hanâ Lbath, Angela Bonifati, and Russ Harmer. 2021. Schema Inference
for Property Graphs. In Proceedings of the 24th International Conference on
Extending Database Technology, EDBT. OpenProceedings.org, 499–504. https:
//doi.org/10.5441/002/edbt.2021.58

[41] Dongwon Lee, Murali Mani, and Wesley W. Chu. 2003. Schema Conversion
Methods between XML and Relational Models. In Knowledge Transforma-
tion for the Semantic Web, Borys Omelayenko and Michel C. A. Klein (Eds.).
Frontiers in Artificial Intelligence and Applications, Vol. 95. IOS Press, 1–17.

[42] Mong-Li Lee, Liang Huai Yang, Wynne Hsu, and Xia Yang. 2002. XClust:
Clustering XML Schemas for Effective Integration. In Proceedings of the 11th
International Conference on Information and Knowledge Management, CIKM.
ACM, 292–299. https://doi.org/10.1145/584792.584841

[43] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia - A Large-Scale, Multilingual
Knowledge Base Extracted fromWikipedia. Semantic Web 6, 2 (2015), 167–195.
https://doi.org/10.3233/SW-140134

[44] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proceedings
of the VLDB Endowment 14, 1 (2020), 50–60. https://doi.org/10.14778/3421424.
3421431

[45] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Ap-
proximate Denial Constraints. Proceedings of the VLDB Endowment 13, 10
(2020), 1682–1695. https://doi.org/10.14778/3401960.3401966

[46] Lacramioara Mazilu, Norman W. Paton, Alvaro A. A. Fernandes, and Martin
Koehler. 2019. Dynamap: Schema Mapping Generation in the Wild. In Proceed-
ings of the 31st International Conference on Scientific and Statistical Database
Management, SSDBM. ACM, 37–48. https://doi.org/10.1145/3335783.3335785

412

[47] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similar-
ity Flooding: A Versatile Graph Matching Algorithm and Its Application
to Schema Matching. In Proceedings of the 18th IEEE International Confer-
ence on Data Engineering, ICDE. IEEE Computer Society, 117–128. https:
//doi.org/10.1109/ICDE.2002.994702

[48] Felix Naumann and Melanie Herschel. 2010. An Introduction to Dupli-
cate Detection. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00262ED1V01Y201003DTM003

[49] Fabian Panse and Felix Naumann. 2021. Evaluation of Duplicate Detection
Algorithms: From Quality Measures to Test Data Generation. In Proceedings
of the 37th IEEE International Conference on Data Engineering, ICDE. IEEE,
2373–2376. https://doi.org/10.1109/ICDE51399.2021.00269

[50] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas.
2021. The Four Generations of Entity Resolution. Morgan & Claypool Publishers.
https://doi.org/10.2200/S01067ED1V01Y202012DTM064

[51] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to
Functional Dependency Discovery. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference. ACM, 821–833. https:
//doi.org/10.1145/2882903.2915203

[52] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019.
Discovery of Approximate (and Exact) Denial Constraints. Proceedings of the
VLDB Endowment 13, 3 (2019), 266–278. https://doi.org/10.14778/3368289.
3368293

[53] Romila Pradhan, Siarhei Bykau, and Sunil Prabhakar. 2017. Staging User
Feedback toward Rapid Conflict Resolution in Data Fusion. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference. ACM, 603–618. https://doi.org/10.1145/3035918.3035941

[54] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An
Interactive Data Cleaning System. In Proceedings of 27th International Con-
ference on Very Large Data Bases, VLDB. 381–390. http://www.vldb.org/conf/
2001/P381.pdf

[55] Dominique Ritze, Oliver Lehmberg, and Christian Bizer. 2015. Matching
HTML Tables to DBpedia. In Proceedings of the 5th International Conference
on Web Intelligence, Mining and Semantics, WIMS. ACM, 10:1–10:6. https:
//doi.org/10.1145/2797115.2797118

[56] Johannes Schildgen, Yannick Krück, and Stefan Deßloch. 2017. Transforma-
tions on Graph Databases for Polyglot Persistence with NotaQL. In Daten-
banksysteme für Business, Technologie und Web (BTW 2017), 17. Fachtagung des
GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS) (LNI), Vol. P-
265. GI, 83–102. https://dl.gi.de/20.500.12116/677

[57] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann,
Dennis Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube. 2019. DynFD:
Functional Dependency Discovery in Dynamic Datasets. In Proceedings of
the 22nd International Conference on Extending Database Technology, EDBT.
OpenProceedings.org, 253–264. https://doi.org/10.5441/002/edbt.2019.23

[58] Uta Störl, Meike Klettke, and Stefanie Scherzinger. 2020. NoSQL Schema Evo-
lution and Data Migration: State-of-the-Art and Opportunities. In Proceedings
of the 23rd International Conference on Extending Database Technology, EDBT.
OpenProceedings.org, 655–658. https://doi.org/10.5441/002/edbt.2020.87

[59] Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann. 2017. De-
tecting Inclusion Dependencies on Very Many Tables. ACM Trans. Database
Syst. 42, 3 (2017), 18:1–18:29. https://doi.org/10.1145/3105959

[60] Can Türker and Gunter Saake. 1998. Deriving Relationships between Integrity
Constraints for Schema Comparison. In Proceedings of the 2nd East Euro-
pean Symposium on Advances in Databases and Information Systems, ADBIS,
Vol. 1475. Springer, 188–199. https://doi.org/10.1007/BFb0057732

[61] Yannis Velegrakis, Renée J. Miller, and Lucian Popa. 2004. Preserving mapping
consistency under schema changes. VLDB J. 13, 3 (2004), 274–293. https:
//doi.org/10.1007/s00778-004-0136-2

[62] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demi-
ralp, and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection
in Tables. Proceedings of the VLDB Endowment 13, 11 (2020), 1835–1848.
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf

413

