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ABSTRACT
Due to the pervasiveness of group activities in people’s daily life,

group recommendation has attracted a massive research effort in

both industry and academia. A fundamental challenge in group

recommendation is how to aggregate the preferences of group

members to select a set of items maximizing the overall satis-

faction of the group; this is the focus of this paper. Specifically,

we introduce a dual adjustment aggregation score, which mea-

sures the relevance of an item to a group. We then propose a

recommendation scheme, termed 𝑘-dual adjustment unanimous

skyline, that seeks to retrieve the 𝑘 items with the highest score,

while discarding items that are unanimously considered inap-

propriate. Furthermore, we design and develop algorithms for

computing the 𝑘-dual adjustment unanimous skyline efficiently.

Finally, we demonstrate both the retrieval effectiveness and the

efficiency of our approach through an extensive experimental

evaluation on real datasets.

1 INTRODUCTION
Nowadays, an increasing number of online businesses are using

recommendation systems. Recommender systems represent a

powerful opportunity for customers and service providers. Rec-

ommender systems make it easier for customers to find items

that interest them. On the other hand, service providers can in-

crease their profit. Current recommendation engine use cases in-

clude Amazon, recommending products; Netflix, recommending

movies; and TripAdvisor, recommending tourist tips on restau-

rants, hotels, and more.

In many real-world settings, there is a need to recommend

items for a group of users rather than a single user, e.g., depart-

ment members going out to a festive dinner or friends planning to

go to a movie. In addition, with the success of social networking,

there is a recently emerging trend, where people form groups

(most likely of large size) and participate together in activities.

This calls for effective techniques for group recommendation.

Research on group recommendation discerns two main kinds

of groups: persistent and occasional (or ephemeral) groups [37].

Persistent groups refer to groups with consistent structure and a

rich historical information about the group-item interactions [21,

38], in this case, each group can be treated as a virtual user

and personalized recommendation techniques are applied. In

contrast, in occasional groups, only the user-item interactions

are available [3, 4], and recommendations must be done on this

basis, i.e., by aggregating the user-item interactions. Note that

recently, hybrid approaches are proposed [11, 44, 45] to make

use of both user-item and group-item interactions, specially to

handle the case where only a poor set of group-item interactions

is available. In this work, we focus on making recommendation

to occasional groups.
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Table 1: User-Restaurant Ratings

Restaurant User AVG Rating
𝑢1 𝑢2 𝑢3

𝜄1 8 9 6 7.67

𝜄2 10 7 5.5 7.50

𝜄3 7.5 6.5 8 7.33

𝜄4 8 8.75 6 7.58

𝜄5 9 6 2 5.67

𝜄6 6 5 3 4.67

The main challenge in developing an effective group recom-

mender system is handling the conflicting preferences of the

group members. Particularly, group members may have different

ratings for a given item, either because they have different tastes

or because ratings are subjective, and some users tend to give

good ratings for most items, while others are harsh critics and

strict, which current approaches fail to fully capture.

To better illustrate this issue, consider the following example.

Suppose that three friends in Singapore are looking for a restau-

rant to arrange a dinner. Assume that the three friends are going

to use a Web site (e.g., TripAdvisor, TheFork, etc.) to search and

filter restaurants based on their preferences. Assume a list of

available restaurants in Singapore, shown in Table 1. Each user

(among the three friends) has some intrinsic rating for each of

the restaurants, determined explicitly (by the user) or measured

implicitly using personalized recommendation approaches such

as collaborative filtering techniques [1].

To avoid users having to go through all the items, a typical

group recommender system aggregates the individual prefer-

ences and returns the top-𝑘 items. Assume in our example that

the recommendation engine employs the average aggregation

strategy [4] and returns the top-2 restaurants. These supposed

best restaurants are 𝜄1 and 𝜄4 (see Table 1). Comparing 𝜄1 and 𝜄4,

observe that users 𝑢1 and 𝑢3 are indifferent, while user 𝑢2 prefers

item 𝜄1. That is, 𝜄1 is unanimously preferred over 𝜄4 and will be

naturally selected by the group. In other words, including 𝜄4 in the

result is not appropriate because it will not be chosen. It would

therefore be interesting to replace 𝜄4 with another potentially

relevant restaurant.

To do this, the natural option is to consider only the Pareto

optimal set of items when producing the top-𝑘 answers. We refer

to this set as the unanimous skyline, borrowing the terminology

from the skyline operator [9], and it comprises all items that are

not unanimously dominated. An item unanimously dominates

another item, if the former has ratings as good as or better than

the latter for all group members, and strictly better for at least

one group member. In our example, restaurant 𝜄1 unanimously

dominates restaurants 𝜄4 and 𝜄6. Likewise, restaurant 𝜄2 unani-

mously dominates restaurant 𝜄5. Restaurants 𝜄1, 𝜄2 and 𝜄3 are not

unanimously dominated by any other item, therefore, they form

the unanimous skyline.
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Table 2: Utility Loss of Unanimous Skyline Restaurants

Restaurant User Total Loss
𝑢1 𝑢2 𝑢3

𝜄1 20% 0% 25% 45%

𝜄2 0% 22.22% 31.25% 53.47%

𝜄3 25% 27.78% 0% 52.78%

Considering only the unanimous skyline restaurants, the top-2

query returns restaurants 𝜄1 and 𝜄2. However, observe that the

users do not have the same rating scale. Users 𝑢1 and 𝑢2 tend to

give good ratings and can achieve a utility of 10 and 9, respec-

tively. In contrast, user 𝑢3 is a harsh critic and can reach at best a

utility of 8. Selecting 𝜄2 clearly favors user𝑢1 and deprives user𝑢3
of
(8 − 5.5)/8 = 31.25% of this best utility. Table 2 shows the utility

loss of each user as well as the total utility loss for the unanimous

skyline restaurants. As can be seen, replacing restaurant 𝜄2 with

restaurant 𝜄3 seems more interesting considering the users as a

group regarding both the maximum utility loss per user and the

total utility loss.

To deal with this shortcoming, the simplest strategy is to

minimize either the maximum utility loss per user or the total

utility loss. This interpretation, however, transposes to a kind of

least misery aggregation strategy [4], whose main drawback is

that unsatisfied users have a higher impact on the final decision

than satisfied ones. Thus, in some settings, the recommendation

engine would miss items that are expected to be highly liked by

every group member except one [3]. It is thus important to set

up a risk-benefit balance to preserve items that are highly liked

by most of the group members while minimizing dissatisfaction

among group members.

In this paper, we propose a dual adjustment aggregation. First,

instead of considering the absolute rating of an item to deter-

mine its relevance to a given user, we introduce the notion of

utility ratio, which measures how close/far this item is to the

best rating of that user. This adjusts the individual utilities to

address the fact that users rate differently. Second, for each item,

we define a recommendation score, which adjusts its utility ratios

so that items that are highly liked (resp. disliked) by most group

members are preserved (resp. rejected). Then, to filter the candi-

date items, we propose a novel concept termed 𝑘-dual adjustment
unanimous skyline, which comprises the𝑘 non-unanimously dom-

inated items (i.e., belonging to the unanimous skyline) with the

highest score.

The second challenge is how to compute the𝑘-dual adjustment

unanimous skyline efficiently. The computational complexity

of the 𝑘-dual adjustment unanimous skyline is dominated by

two factors: (1) the number of unanimous dominance checks, to

test whether or not an item is unanimously dominated; and (2)

the number of computed recommendation scores, to rank the

unanimous skyline items.

A straightforward method to compute the 𝑘-dual adjustment

unanimous skyline is to first compute the unanimous skyline

using existing skyline computation algorithms, e.g., BNL [9],

SFS [12, 13], SaLSa [5, 6], then compute the recommendation

score of all items belonging to the unanimous skyline and return

the top-𝑘 ones. However, this approach performs a large number

of unanimous dominance checks, especially, in the presence of

disagreements between users since for any item 𝜄𝑖 it is more likely

there exists another item 𝜄 𝑗 where 𝜄𝑖 and 𝜄 𝑗 are better than each

other over different users.

Another option is to first rank all items according to their rec-

ommendation scores and exploit the monotonicity nature of this

score. The implication is that an item can only be unanimously

dominated by items with better ranks. This is the idea behind the

SFS algorithm [12, 13], to which we infuse a top-𝑘 layer to stop

after retrieving the first 𝑘 items that are not unanimously dom-

inated. Even if this method reduces the number of unanimous

dominance checks, it requires computing the score of all items

and ranking them.

To optimize the extraction of the 𝑘-dual adjustment unanimous
skyline, we go one step forward and propose a novel algorithm,

which leverages effective pruning techniques minimizing both

the number of unanimous dominance checks and the number of

computed scores. To achieve this, the algorithm admits sorted

lists that maintain the set of items in decreasing order of the

ratings for each user. Using this scheme, the items that may

unanimously dominate a given item are reduced to the part of

unanimous skyline items located before it in a list. In addition,

at each level, the algorithm creates a virtual item and uses it to

compute an upper bound score for the items not examined, used

as an early termination condition to avoid iterating through all

items that are definitely not part of the result.

Furthermore, we perform a theoretical analysis to study the

average computational complexity of the three algorithms.

Contributions. To recapitulate, the main contributions of this

work can be summarized as follows.

• We propose a new group recommendation score, which

takes into account the fact that users rate differently and

preserves (resp. disfavors) items that are highly liked (resp.

disliked) by most group members, using a dual adjustment

aggregation;

• We introduce the notion of 𝑘-dual adjustment unanimous

skyline, which consists of the 𝑘 unanimously preferred

items with the highest group recommendation score;

• We present two baseline methods by adapting prior work,

and also propose a novel algorithm to efficiently compute

the 𝑘-dual adjustment unanimous skyline;

• We perform a theoretical analysis to study the average

computational complexity of the different algorithms;

• We conduct a comprehensive experimental study to eval-

uate our approach both in terms of retrieval effectiveness

and efficiency, using real datasets.

The remainder of this paper is organized as follows. Section 2

formally defines the problem of 𝑘-dual adjustment unanimous

skyline. Section 3 describes the 𝑘-dual adjustment unanimous

skyline computation algorithms and their average time complex-

ity. Section 4 presents our experimental study. Section 5 reviews

the related work. Finally, Section 6 concludes the paper.

2 PROBLEM DESCRIPTION
In this section, we provide the basics used in this paper and

formalize the notion of 𝑘-dual adjustment unanimous skyline.

Table 3 lists and describes the frequently used symbols through-

out this paper.

Let I = {𝜄1, 𝜄2, . . . , 𝜄𝑛} be a set of items, andU = {𝑢1, 𝑢2, . . . , 𝑢𝑚}
be a set of users. For each item 𝜄𝑖 and each user 𝑢𝛼 , we have a
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Table 3: Notation

Symbol Description

I, 𝜄𝑖 set of items, a specific item

U, 𝑢𝛼 set of users, a specific user

𝑛,𝑚 number of items, number of users

𝜄𝑖 .𝑢𝛼 rating of 𝑢𝛼 for 𝜄𝑖
𝜄𝑖 ≻ 𝜄 𝑗 𝜄𝑖 unanimously dominates 𝜄 𝑗
US unanimous skyline

𝑡 (𝑢𝛼 ) target (best rating) of 𝑢𝛼
𝜏 (𝑢𝛼 , 𝜄𝑖 ) utility ratio of 𝜄𝑖 to 𝑢𝛼
𝑠 (𝜄𝑖 ) score of 𝜄𝑖 to the group

𝑘-DAUS 𝑘-dual adjustment unanimous skyline

ℓ𝛼 sorted list of 𝑢𝛼

ℓ𝛼 [𝑖] 𝑖th entry of ℓ𝛼

rating (relevance), which we denote by 𝜄𝑖 .𝑢𝛼 , that either 𝑢𝛼 pro-

vided explicitly or obtained using personalized recommendation

techniques; meaning that we have the full user-item interactions.

Let us first recall the definition of the conventional skyline,

adapted to our problem.

Definition 2.1 (Unanimous Dominance). Given two items 𝜄𝑖
and 𝜄 𝑗 , we say that 𝜄𝑖 unanimously dominates 𝜄 𝑗 , denoted by

𝜄𝑖 ≻ 𝜄 𝑗 , iff 𝜄𝑖 has better or equal ratings than 𝜄 𝑗 for all users and

there exists at least one user for which 𝜄𝑖 is preferred over 𝜄 𝑗 . i.e.,

𝜄𝑖 ≻ 𝜄 𝑗 ⇔ ∀𝑢𝛼 ∈ U : 𝜄𝑖 .𝑢𝛼 ≥ 𝜄 𝑗 .𝑢𝛼 ∧ ∃𝑢𝛽 ∈ U : 𝜄𝑖 .𝑢𝛽 > 𝜄 𝑗 .𝑢𝛽 .

Definition 2.2 (Unanimous Skyline). The unanimous skyline,

denoted by US, comprises the set of items that are not unani-

mously dominated by any other item. i.e., US = {𝜄𝑖 ∈ I | �𝜄 𝑗 ∈ I :
𝜄 𝑗 ≻ 𝜄𝑖 }.

Next, we introduce our ranking criterion based on a dual

adjustment aggregation. The first adjusts the individual utilities

to treat the group members equally, while the second adjusts the

obtained values so that items that are highly liked (resp. disliked)

by most group members are preserved (resp. disfavored).

Definition 2.3 (Target). The target of a given user 𝑢𝛼 , denoted

by 𝑡 (𝑢𝛼 ), is defined to be the best rating 𝑢𝛼 can achieve. i.e.,

𝑡 (𝑢𝛼 ) = max
𝑛
𝑖=1

𝜄𝑖 .𝑢𝛼 .

Definition 2.4 (Utility Ratio). Given an item 𝜄𝑖 and a user 𝑢𝛼 ,

the utility ratio of 𝜄𝑖 to𝑢𝛼 , denoted by 𝜏 (𝜄𝑖 , 𝑢𝛼 ), captures the ratio
of satisfaction of 𝑢𝛼 if 𝜄𝑖 is the item selected by the group. i.e.,

𝜏 (𝜄𝑖 , 𝑢𝛼 ) = 𝜄𝑖 .𝑢𝛼
𝑡 (𝑢𝛼 ) .

Definition 2.5 (Item Score). The score of a given item 𝜄𝑖 , de-

noted by 𝑠 (𝜄𝑖 ), is an aggregation of the utility ratios of the group

members w.r.t. 𝜄𝑖 as follows: 𝑠 (𝜄𝑖 ) = 1

𝑚

∑𝑚
𝛼=1 𝜏 (𝜄𝑖 , 𝑢𝛼 )𝜆 , where

𝜆 ≥ 1 is an emphasis parameter, penalizing low individual utility

ratios and privileging high ones.

Definition 2.6 (𝑘-dual adjustment unanimous skyline). The 𝑘-
dual adjustment unanimous skyline, denoted by 𝑘-DAUS, is the

set of 𝑘 items belonging to the unanimous skyline with the high-

est recommendation scores. i.e., 𝑘-DAUS = {S ⊆ US | |S| =
min(𝑘, |US|) ∧ ∀𝜄𝑖 ∈ S, �𝜄 𝑗 ∉ S : 𝑠 (𝜄 𝑗 ) > 𝑠 (𝜄𝑖 )}.

Returning to our example, Table 4 shows the utility ratios and

scores (setting 𝜆 = 2) for all items. Recall that the unanimous sky-

line comprises items 𝜄1, 𝜄2 and 𝜄3. Thus, a 2-DAUS query returns

items 𝜄1 and 𝜄3, instead of items 𝜄1 and 𝜄2 (cf. Section 1). As can be

Table 4: Items’ Scores

Item Utility Ratio Score
𝑢1 𝑢2 𝑢3

𝜄1 0.8 1 0.75 0.734

𝜄2 1 0.78 0.69 0.692

𝜄3 0.75 0.72 1 0.695

𝜄4 0.8 0.97 0.75 0.716

𝜄5 0.9 0.67 0.25 0.439

𝜄6 0.6 0.56 0.38 0.270

seen, our score takes into account the fact that users may have

manners of rating (i.e., some users are generous while others are

harsh). This is formally expressed with the following property.

Property 2.1 (Users’ Ratings Neutrality). Users with dif-
ferent manners of rating, are equally important.

Proof. It is apparent from the ranking scheme definition,

since it does not consider the absolute rating, but considers for

each user a relative relevance to her best rating. □

We now provide the formal definition for the 𝑘-dual adjust-

ment unanimous skyline problem.

Problem statement. Given a set of items I, a set of users U and
a parameter 𝑘 , compute the 𝑘-dual adjustment unanimous skyline.

3 ALGORITHMS FOR k-DAUS
In this section, we showhow to adapt prior algorithms to compute

the 𝑘-dual adjustment unanimous skyline, and we then present

our proposed algorithm. In addition, we perform a theoretical

analysis to study the average time complexity of each algorithm.

3.1 Skyline First Algorithm
The 𝑘-dual adjustment unanimous skyline problem can be di-

vided into two sequentially ordered computational problems: (1)

computing the unanimous skyline and (2) computing the top-𝑘

items. We call this strategy: Skyline First Algorithm (SFA). SFA

has the advantage of calculating the recommendation score of

only the items belonging to the unanimous skyline.

Note that to compute the recommendation score of a given

item, we need the rating of each user for this item as well as the

target of each user. To avoid computing the target of each user

each time we need to compute the recommendation score of a

given item, it is important to first compute the target of all users

and maintain them throughout the execution of the algorithm.

We make the observation that the target of each user can be

computed by iterating over the items in the unanimous skyline,

instead of the entire dataset. This avoid iterating over all items

after computing the unanimous skyline. This observation can be

expressed formally using the following lemma.

Lemma 3.1. For any user 𝑢𝛼 , there exists an item 𝜄𝑖 in the unan-
imous skyline having the best rating of 𝑢𝛼 . i.e., ∀𝑢𝛼 ∈ U, ∃𝜄𝑖 ∈ US :

𝑡 (𝑢𝛼 ) = 𝜄𝑖 .𝑢𝛼 .

Proof. Assume a unanimously dominated item 𝜄 𝑗 and suppose

that 𝑡 (𝑢𝛼 ) = 𝜄 𝑗 .𝑢𝛼 . Since 𝜄 𝑗 is unanimously dominated there

exists an item 𝜄𝑖 such that ∀𝑢𝛼 ∈ U : 𝜄𝑖 .𝑢𝛼 ≥ 𝜄 𝑗 .𝑢𝛼 . That is

𝜄𝑖 .𝑢𝛼 ≥ 𝑡 (𝑢𝛼 ). Meaning that either 𝜄𝑖 .𝑢𝛼 = 𝑡 (𝑢𝛼 ), in this case

𝜄𝑖 .𝑢𝛼 is also a target for 𝑢𝛼 or 𝜄𝑖 .𝑢𝛼 > 𝑡 (𝑢𝛼 ), which leads to a
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Algorithm 1: Skyline First Algorithm (SFA)

Input: set of items I, set of users U, integer 𝑘

Output: 𝑘-dual adjustment unanimous skyline 𝑘-DAUS

1 US← ∅, 𝑘-DAUS← ∅
2 compute US of I // using an existing algorithm

3 foreach 𝑢𝛼 ∈ U do
4 compute 𝑡 (𝑢𝛼 ) in US // Lemma 3.1

5 foreach 𝜄𝑖 ∈ US do
6 compute 𝑠 (𝜄𝑖 )
7 if |𝑘-DAUS| < 𝑘 then
8 insert 𝜄𝑖 into 𝑘-DAUS

9 else
10 if 𝑠 (𝜄𝑖 ) > worst score in 𝑘-DAUS then
11 remove the worst item from 𝑘-DAUS

12 insert 𝜄𝑖 into 𝑘-DAUS

13 return 𝑘-DAUS

contradiction since the target of a user is defined to be its best

rating. □

The pseudocode of SFA is depicted in Algorithm 1. SFA main-

tains two sets US and 𝑘-DAUS, containing respectively the unan-

imous skyline and the set of intermediate 𝑘-dual adjustment

skyline items sorted in non-ascending order of their score. Ini-

tially, both sets US and 𝑘-DAUS are empty (line 1). Then, SFA first

computes the unanimous skyline US using an existing skyline

computation algorithm, e.g., BNL [9], SFS [12, 13] or SaLSa [5, 6]

(line 2). Afterwards, by Lemma 3.1 it computes the target 𝑡 (𝑢𝛼 )
of each user 𝑢𝛼 using only the items in US (loop in line 3). Af-

ter that, SFA iterates over the items in US (loop in line 5) for

computing the score of each unanimous skyline item 𝜄𝑖 (line 6),

and updates the 𝑘-DAUS set so that it contains the 𝑘 best items

with the largest score (lines 7–12). After examining all items, SFA

returns 𝑘-DAUS (line 13).

3.2 Rank First Algorithm
Although SFA can indeed limit the number of computed scores,

it needs to compute the entire unanimous skyline set, which

requires a large number of unanimous dominance checks. The

second algorithm we introduce, termed Rank First Algorithm
(RFA) seeks to minimize the number of unanimous dominance

checks. The main idea is to first rank all items according to their

recommendation score and to exploit both the monotonicity

nature of this recommendation score and the transitivity property

of the unanimous dominance to avoid unnecessary comparisons

(unanimous dominance checks).

Lemma 3.2 (Monotonicity). Given two items 𝜄𝑖 and 𝜄 𝑗 , if 𝜄𝑖
unanimously dominates 𝜄 𝑗 then 𝜄𝑖 has higher recommendation score
than 𝜄 𝑗 . i.e., 𝜄𝑖 ≻ 𝜄 𝑗 ⇒ 𝑠 (𝜄𝑖 ) > 𝑠 (𝜄 𝑗 ).

Proof. The recommendation scores of 𝜄𝑖 and 𝜄 𝑗 can be written

as: 𝑠 (𝜄𝑖 ) = 1

𝑚

∑𝑚
𝛼=1 (

𝜄𝑖 .𝑢𝛼
𝑡 (𝑢𝛼 ) )

𝜆
and 𝑠 (𝜄 𝑗 ) = 1

𝑚

∑𝑚
𝛼=1 (

𝜄 𝑗 .𝑢𝛼
𝑡 (𝑢𝛼 ) )

𝜆
. Then,

𝑠 (𝜄𝑖 ) − 𝑠 (𝜄 𝑗 ) =
∑𝑚
𝛼=1

(𝜄𝑖 .𝑢𝜆
𝛼−𝜄 𝑗 .𝑢𝜆

𝛼 )
𝑡 (𝑢𝛼 )𝜆 . Since 𝜄𝑖 ≻ 𝜄 𝑗 , and the ratings

and 𝜆 are positive real numbers, we have ∀𝑢𝛼 ∈ U : 𝜄𝑖 .𝑢
𝜆
𝛼 ≥

𝜄 𝑗 .𝑢
𝜆
𝛼 ∧ ∃𝑢𝛽 ∈ U : 𝜄𝑖 .𝑢

𝜆
𝛽
> 𝜄 𝑗 .𝑢

𝜆
𝛽
. Thus, 𝑠 (𝜄𝑖 ) − 𝑠 (𝜄 𝑗 ) > 0. Hence,

𝑠 (𝜄𝑖 ) > 𝑠 (𝜄 𝑗 ). □

Algorithm 2: Rank First Algorithm (RFA)

Input: set of items I, set of users U, integer 𝑘

Output: 𝑘-dual adjustment unanimous skyline 𝑘-DAUS

1 I𝑠 ← ∅, 𝑘-DAUS← ∅
2 foreach 𝑢𝛼 ∈ U do
3 compute 𝑡 (𝑢𝛼 )
4 foreach 𝜄𝑖 ∈ I do
5 compute 𝑠 (𝜄𝑖 )
6 insert 𝜄𝑖 into I𝑠

7 foreach 𝜄𝑖 ∈ I𝑠 do
8 dominated← false

9 foreach 𝜄 𝑗 ∈ 𝑘-DAUS do // Lemma 3.2 & Property 3.1

10 if 𝜄 𝑗 ≻ 𝜄𝑖 then
11 dominated← true

12 break

13 if ¬ dominated then
14 insert 𝜄𝑖 into 𝑘-DAUS

15 if |𝑘-DAUS| = 𝑘 then
16 return 𝑘-DAUS

17 return 𝑘-DAUS

Lemma 3.2 helps reduce the number of unanimous dominance

checks. In fact, given an item 𝜄𝑖 , searching for items that may

unanimously dominate 𝜄𝑖 is reduced to the part of items with

higher score than 𝑠 (𝜄𝑖 ), i.e., those located before it after the rank-

ing phase. This is the idea behind the SFS algorithm [12, 13],

which we exploit with our scoring function.

Property 3.1 (Transitivity). Given three items 𝜄𝑖 , 𝜄 𝑗 and 𝜄𝑘 .
If 𝜄𝑖 unanimously dominates 𝜄 𝑗 and 𝜄 𝑗 unanimously dominates 𝜄𝑘
then 𝜄𝑖 unanimously dominates 𝜄𝑘 . i.e., 𝜄𝑖 ≻ 𝜄 𝑗 ∧ 𝜄 𝑗 ≻ 𝜄𝑘 ⇒ 𝜄𝑖 ≻ 𝜄𝑘 .

Proof. It is apparent from Definition 2.1. □

With Property 3.1, we can avoid useless comparisons. In fact,

if an item is unanimously dominated then it may be discarded as

it is unnecessary for eliminating other items.

The pseudocode of RFA is depicted in Algorithm 2. The algo-

rithm uses two sets I𝑠 and𝑘-DAUS containing respectively the set

of all items and the set of 𝑘-dual adjustment unanimous skyline

items; in both sets, the items are maintained in non-ascending-

order of their recommendation scores. Initially, both sets Is and

𝑘-DAUS are empty (line 1). Then, the algorithm computes the

target 𝑡 (𝑢𝛼 ) of each user 𝑢𝛼 (loop in line 2) and computes the

score of each item 𝜄𝑖 in I to fill the set Is (loop in line 4). After-

wards, RFA iterates over the sorted items (loop in line 7). At each

iteration, an item 𝜄𝑖 is examined to check whether it is (or not)

unanimously dominated (loop in line 9). From Lemma 3.2 the

items that may unanimously dominate 𝜄𝑖 is reduced to the part

of items with larger score than ℎ𝑔 (𝜄𝑖 ), i.e., those located before 𝜄𝑖
in Is and combined with Property 3.1 it is sufficient to compare 𝜄𝑖
only against the items in 𝑘-DAUS. If 𝜄𝑖 is not unanimously domi-

nated (line 13) then it is inserted into the set of the current 𝑘-dual

adjustment unanimous skyline items 𝑘-DAUS (line 14). The al-

gorithm terminates after retrieving the first 𝑘 non-unanimously

dominated items (line 15). If all items were examined and the size

of 𝑘-DAUS is lower than 𝑘 , meaning that the unanimous skyline

comprises less than 𝑘 items, then 𝑘-DAUS is returned (line 17).
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ℓ1 ℓ2 ℓ3
⟨𝜄2, 10⟩ ⟨𝜄1, 9⟩ ⟨𝜄3, 8⟩
⟨𝜄5, 9⟩ ⟨𝜄4, 8.75⟩ ⟨𝜄1, 6⟩
⟨𝜄1, 8⟩ ⟨𝜄2, 7⟩ ⟨𝜄4, 6⟩
⟨𝜄4, 8⟩ ⟨𝜄3, 6.5⟩ ⟨𝜄3, 5.5⟩
⟨𝜄3, 7.5⟩ ⟨𝜄5, 6⟩ ⟨𝜄6, 3⟩
⟨𝜄6, 6⟩ ⟨𝜄6, 5⟩ ⟨𝜄5, 2⟩

Figure 1: Sorted Lists Example

3.3 Sorted Lists-based Algorithm
Even if RFA reduces the number of unanimous dominance checks,

it requires computing the score of all items and rank them. As our

scoring function is monotone, it is well supported by the family

of top-𝑘 threshold algorithms [15, 16], which aim to reduce the

number of computed item scores; the added difficulty in our case

is that the algorithm should compute also the unanimous skyline,

which is more complex than computing the plain top-𝑘 set.

In the following, we present our new algorithm, termed Sorted

Lists-based Algorithm (SLA), for efficiently computing the 𝑘-dual

adjustment unanimous skyline. The key idea behind SLA is to

establish a sorted list ℓ𝛼 for each user 𝑢𝛼 , where ℓ𝛼 maintains the

set of items in decreasing order of the ratings of 𝑢𝛼 ; in case of

ties, by the average rating among users. Using this scheme, the

items that may unanimously dominate a given item are reduced

to the part of unanimous skyline items located before it in a list.

In addition, at each level, the algorithm creates a virtual item and

uses it to compute an upper bound score for the not examined

items, used as an early termination condition to avoid iterating

through all items that are definitely not part of the result. This

helps reduce both the number of unanimous dominance checks

and the number of computed recommendation scores, as we will

see thereafter.

Figure 1 depicts the sorted lists established for our example.

We denote by ℓ𝛼 [𝑖] the 𝑖th entry of sorted list ℓ𝛼 . For instance,

ℓ1 [1] stands for 𝜄2. Therefore ℓ𝛼 [𝑖] .𝑢𝛼 stands for the rating of

user 𝑢𝛼 for item ℓ𝛼 [𝑖]. For instance ℓ1 [1] .𝑢1 = 10.

From the sorted lists, we make the following observations,

which provide important insights to facilitate the development

of our algorithm.

Observation 3.1. The target of each user is equal to her rating
for the first entry in her list. i.e., ∀𝑢𝛼 ∈ U : 𝑡 (𝑢𝛼 ) = ℓ𝛼 [1] .𝑢𝛼 .

Observation 3.2. Given a sorted list ℓ𝛼 and an item ℓ𝛼 [𝑖] in ℓ𝛼 ,
if ℓ𝛼 [𝑖] is not unanimously dominated by any unanimous skyline
item located before it in ℓ𝛼 then it belongs to the unanimous skyline.
i.e., � 𝑗 ∈ [1, 𝑖 [: ℓ𝛼 [ 𝑗] ∈ US ∧ ℓ𝛼 [ 𝑗] ≻ ℓ𝛼 [𝑖] ⇒ ℓ𝛼 [𝑖] ∈ US.

Observation 3.3. Let 𝑣𝑖 be the virtual item at index 𝑖 having
ratings ℓ1 [𝑖] .𝑢1, ℓ2 [𝑖] .𝑢2, . . . , ℓ𝑚 [𝑖] .𝑢𝑚 (e.g., the virtual item at in-
dex 3 in our sorted lists is built with the ratings 8, 7 and 6), then
the score of 𝑣𝑖 constitutes an upper bound of the recommendation
scores of items located after index 𝑖 in all sorted lists.

The pseudocode of SLA is depicted in Algorithm 3. It operates

on the previously described sorted lists and uses the following

sets: US maintaining the set of all identified unanimous skyline

items; US1,US2, . . . ,US𝑚 , maintaining the set of identified unan-

imous skyline items in the lists ℓ1, ℓ2, . . . , ℓ𝑚 , respectively; and

𝑘-DAUS, maintaining the set of intermediate 𝑘-dual adjustment

unanimous skyline items sorted in non-ascending order of their

recommendation score. Initially, all sets are empty (line 1). Then,

Algorithm 3: Sorted Lists-based Algorithm (SLA)

Input: sorted lists ℓ1, ℓ2, . . . , ℓ𝑚 , integer 𝑘

Output: 𝑘-dual adjustment unanimous skyline 𝑘-DAUS

1 US← ∅, ∀𝛼 ∈ [1,𝑚] : US𝛼 ← ∅, 𝑘-DAUS← ∅
2 for 𝛼 ← 1 to𝑚 do
3 𝑡 (𝑢𝛼 ) ← ℓ𝛼 [1] .𝑢𝛼 // Observation 3.1

4 foreach 𝑖 ← 1 to 𝑛 do
5 if |𝑘-DAUS| = 𝑘 then
6 𝑣𝑖 ← the virtual item at index 𝑖

7 compute 𝑠 (𝑣𝑖 )
8 if 𝑠 (𝑣𝑖 ) ≤ worst score in 𝑘-DAUS then
9 return 𝑘-DAUS // Observation 3.3

10 for 𝛼 ← 1 to𝑚 do
11 𝜄𝑐 ← ℓ𝛼 [𝑖]
12 if 𝜄𝑐 was examined then
13 if 𝜄𝑐 ∈ US then
14 insert 𝜄𝑐 into US𝛼

15 else
16 dominated← false

17 foreach 𝜄 𝑗 ∈ US𝛼 do // Observation 3.2

18 if 𝜄 𝑗 ≻ 𝜄𝑐 then
19 dominated← true

20 break

21 if ¬ dominated then
22 insert 𝜄𝑐 into US

23 insert 𝜄𝑐 into US𝛼

24 compute 𝑠 (𝜄𝑐 )
25 if |𝑘-DAUS| < 𝑘 then
26 insert 𝜄𝑐 into 𝑘-DAUS

27 else
28 if 𝑠 (𝜄𝑐 ) > worst score in 𝑘-DAUS then
29 remove the worst item from 𝑘-DAUS

30 insert 𝜄𝑐 into 𝑘-DAUS

31 return 𝑘-DAUS

based on Observation 3.1, the algorithm sets the target 𝑡 (𝑢𝛼 ) of
each user 𝑢𝛼 to its rating for the first items in its list ℓ𝛼 (loop in

line 2). Afterwards, SLA starts iterating over the sorted lists in a

round robin fashion (nested loops in lines 4 and 10) as follows.

Let 𝜄𝑐 be the current item to examine, i.e., the 𝑖th entry of sorted

list ℓ𝛼 (line 11). If 𝜄𝑐 was already examined in another sorted list

(line 12) then two cases arise: 𝜄𝑐 was identified as a unanimous

skyline item, in this case, it is inserted into US𝛼 , i.e., the current

unanimous skyline items of sorted list ℓ𝛼 (lines 13 and 14); oth-

erwise, i.e., 𝜄𝑐 is unanimously dominated, 𝜄𝑐 is ignored. If 𝜄𝑐 is

not examined (line 15) then by Observation 3.2, the algorithm

compares 𝜄𝑐 against the unanimous skyline items of sorted list

ℓ𝛼 so far retrieved (loop in line 17) to check whether it is (or not)

unanimously dominated. If 𝜄𝑐 is not unanimously dominated (line

21) then it is inserted into both US and US𝛼 sets (lines 22 and 23),

and its score 𝑠 (𝜄𝑐 ) is computed (line 24) in order to update the

𝑘-DAUS set so that it contains the 𝑘 best items with the largest

score (lines 25–30). When the size of 𝑘-DAUS reaches 𝑘 items

(line 5), the algorithm builds the virtual item 𝑣𝑖 at each index 𝑖

(line 6) and computes its score 𝑠 (𝑣𝑖 ) (line 7). If 𝑠 (𝑣𝑖 ) is lower than
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or equal to the worst score in 𝑘-DAUS then 𝑘-DAUS is returned

since 𝑠 (𝑣𝑖 ) constitute an upper bound of all not examined items

by Observation 3.3. If all items were examined and the size of

𝑘-DAUS is lower than 𝑘 , meaning that the unanimous skyline

comprises fewer than 𝑘 items, then 𝑘-DAUS is returned (line 31).

3.4 Theoretical Analysis
The performance of the presented algorithms mainly depends on

the size of the unanimous skyline, whose expected value is [7, 17]:

Θ(ln(𝑛)𝑚−1/(𝑚 − 1)!). It is reasonable to assume that 𝑘 is lower

than this expected value. Hereafter, we calculate the average

complexity of SFA, RFA and SLA, i.e., their complexity in the

presence of ln(𝑛)𝑚−1/(𝑚 − 1)! unanimous skyline items.

Theorem 3.3. SFA has an average case complexity of O(𝑚𝑛).

Proof. The average computational cost of SFA is the sum of

three stages. The first is computing the unanimous skyline, which

takes O(𝑚𝑛) in the average case [18, 19]. The second is comput-

ing the targets. Since the expected size of the unanimous skyline

isΘ(ln(𝑛)𝑚−1/(𝑚−1)!). This step takesO(𝑚 ln(𝑛)𝑚−1/(𝑚−1)!).
The third is to iterate over the unanimous skyline for comput-

ing the scores and updating the 𝑘-dual adjustment unanimous

skyline. This stage takes O((𝑚 + 𝑙𝑜𝑔(𝑘)) ln(𝑛)𝑚−1/(𝑚 − 1)!).
O(𝑚𝑛) dominates O(𝑚 ln(𝑛)𝑚−1/(𝑚−1)!). Moreover, since 𝑘 ≤
ln(𝑛)𝑚−1/(𝑚 − 1)!, O(𝑚𝑛) dominates O(𝑙𝑜𝑔(𝑘) ln(𝑛)𝑚−1/(𝑚 −
1)!). Hence, the average computational complexity of SFA is

O(𝑚𝑛). □

Theorem 3.4. RFA has an average case time ofO(𝑚𝑛+𝑛𝑙𝑜𝑔(𝑛)).

Proof. The computational cost of RFA is the sum of three

stages. The first is computing the targets, which takes O(𝑚𝑛).
The second is computing scores and sorting the items, which

takes O((𝑚 + 𝑙𝑜𝑔(𝑛))𝑛). The last is to iterate over the items

for performing unanimous dominance checks and updating the

𝑘-dual adjustment unanimous skyline. Since, the items are al-

ready sorted according to their scores, an update costs O(1).
There are 𝑘 updates. Thus, updating the 𝑘-dual adjustment unan-

imous skyline costs O(𝑘). The number of comparisons phase can

reach O(𝑚𝑛) [19]. Thus, the computational complexity of RFA is

O(𝑚𝑛 + 𝑛𝑙𝑜𝑔(𝑛)). □

Theorem 3.5. SLA has an average case complexity of O(𝑚𝑛).

Proof. SLA first computes the targets, which takes O(𝑚).
Then it iterates over the sorted lists. The iterations involve the

following parts: computing the score of the virtual items, which

takes O(𝑚𝑛); performing the unanimous dominance checks,

which takesO(𝑚𝑛) in the average case [19]; computing the scores

and updating the 𝑘-dual adjustment unanimous skyline, which

takes O((𝑚 + 𝑙𝑜𝑔(𝑘)) ln(𝑛)𝑚−1/(𝑚 − 1)!). Using eliminations

similar to the proof of the Theorem 3.3, the time complexity of

SLA is O(𝑚𝑛). □

As can be seen, on average, RFA is dominated by both SFA

and SLA, which have the same complexity. However, in practice,

SLA is more than an order of magnitude faster than SFA as it

employs various optimization strategies for reducing the search

space (see Section 4).

Table 5: Datasets

Dataset # Items # Users # Ratings Density

MovieLens HR 10,109 2,113 855,598 0.04006

MovieLens 1M 3,706 6,040 1,000,209 0.04468

Personality 35,196 1,820 1,020,429 0.01593

Magazine 72,098 2,428 88,318 0.00050

4 EXPERIMENTAL EVALUATION
In this section, we present an extensive experimental study of

our approach. Specifically, we evaluate our approach from two

major angles. First, we investigate the benefits resulting from

the use of our proposed ranking criterion in terms of retrieval

effectiveness. Second, we consider the performance of the pro-

posed algorithms. Technically speaking, our experiments aim to

answer the following research questions.

• RQ1: How does the 𝑘-DAUS perform as compared to ex-

isting occasional group recommendation approaches?

• RQ2: How does the 𝑘-DAUS perform when varying the

problem parameters?

• RQ3: How do SFA, RFA and SLA algorithms scale with

the problem parameters?

In business, the results of our evaluation will help companies

that want to build a group recommender system to choose the

appropriate recommendation strategy. To provide accurate rec-

ommendations to their customers, is it better to design the recom-

mender system with 𝑘-DAUS or with another group recommen-

dation method? In case 𝑘-DAUS is deemed to be the appropriate

strategy, with which algorithm 𝑘-DAUS should be implemented?

SFA, RFA or SLA?

4.1 Evaluation Setup

Datasets. Four real-world datasets are used in our experiments.

The first two datasets are MovieLens HetRec 2011
1
and Movie-

Lens 1M
2
, which are two different versions of the well-known

MovieLens datasets [20]. MovieLens HR (HetRec 2011), contains

855,598 ratings, ranging from 0.5 to 5 stars, of 10,109 movies

rated by 2,113 users. MovieLens 1M contains 1,000,209 ratings

of 3,706 movies by 6,040 users; ratings vary from 1 to 5 stars.

The third dataset is Personality 2018
3
[30], containing 1,020,429

ratings, ranging from 0.5 to 5 stars, of 35,196 movies by 1,820

users. The last dataset is Magazine (Subscriptions), from Amazon

Review Data 2018
4
[31]. This dataset contains 88,318 ratings,

ranging from 1 to 5, of 72,098 magazines by 2,428 users. Table 5

summarizes the main characteristics of these datasets (Density =

#Ratings/(#Items × #Users)).

For the first three datasets (movies), a real-life example of a

group is sport team members who meet to watch a movie. For

the Magazine dataset, a concrete example of a group is residents

of a building who want to subscribe to a magazine.

For the construction of the groups, we consider two main

factors: group size and group affinity, i.e., how similar are group

members in their ratings. In particular, we generate groups of

sizes 10, 15, 20, 25 and 30. As for affinity, to cover a large number

1
https://grouplens.org/datasets/hetrec-2011/

2
https://grouplens.org/datasets/movielens/1m/

3
https://grouplens.org/datasets/personality-2018/

4
https://nijianmo.github.io/amazon/index.html
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of real-life scenarios, we generate three kinds of groups: simi-
lar, random and diverse. In order to generate these groups, we

compute the similarities between users using the Pearson correla-

tion coefficient. A similar group is created by randomly selecting

a user and then progressively adding the most similar user to

the group. A diverse group is generated in the same way, but

by adding the less similar user to the group at each iteration.

Random groups are formed by picking users uniformly. Similar

to previous work [3, 4, 25, 35, 36, 39, 41] we adopt collaborative

filtering [1] to fill in the missing ratings in the datasets. In par-

ticular, we use the Singular Value decomposition (SVD) matrix

factorization technique. To focus only on how group recommen-

dation methods aggregate individual ratings, we assume that

the estimated ratings are correct. This means that the effective-

ness values obtained are lower than those expected in business.

For the retrieval effectiveness evaluation, we naturally compute

the set of unanimously preferred items for each group (since

unanimously dominated items are inappropriate, as argued in

Section 1) and set the ground truth of each group member to

her 𝑘 favorite items among them. Meaning that, for a given user,

ideally, the system retrieves her top-𝑘 items.

ComparedMethods. To answerRQ1 andRQ2, we compare the

retrieval effectiveness of our approach, i.e., 𝑘-dual adjustment

unanimous skyline (𝑘-DAUS), with eleven state-of-the-art group

recommendation methods. AVG and MIN apply respectively

the average and the minimum score aggregation strategies [4].

MUL andMAX employ respectively the multiplicative and the

maximum score aggregation strategies [28]. SDP subtracts from

the average aggregation the standard deviation as a penalty [23].

CRD is the consensus method from [3] combining the group

relevance and the group disagreement. GRF corresponds to the

group rating fairness of [35, 36]. SPG and EFG implement respec-

tively the single proportionality and envy-freeness greedy algo-

rithms [41].GRV implements the greedy variance algorithm [25].

XPO corresponds to the 𝑥-level Pareto Optimal aggregation ap-

proach [39].

It is worth noting that for a fair comparison, for all approaches

we consider only the unanimously preferred items when retriev-

ing the top-𝑘 recommendations. Also, note that the choice of

algorithm for computing the 𝑘-DAUS is not important for effec-

tiveness, i.e., RQ1 and RQ2, as the three algorithms, i.e., SFA,

RFA and SLA, deliver the same result. Indeed, this is the purpose

of RQ3.
To answer RQ3, we investigate the performance, in terms of

the amount of time required to produce the 𝑘-dual adjustment

unanimous skyline, of five algorithms: SFA-BNL, SFA-SFS and

SFA-SaLSa are the implementation of SFA (Algorithm 1) using

respectively BNL [9], SFS [12, 13] and SaLSa [5, 6] algorithms for

computing the unanimous skyline; RFA (Algorithm 2); and SLA
(Algorithm 3). Notice that for both SFA-SFS and SFA-SaLSa, we
do not consider the preprocessing time.

Effectiveness Metrics.We evaluate the retrieval effectiveness

of the group recommendation methods with three widely used

metrics: Precision, Average Precision and Normalized Dis-

counted Cumulative Gain (NDCG). Each metric quantifies the

relevance of a recommended list 𝑟𝑒𝑐 to each user’s ground truth

list 𝑟𝑒𝑙𝑢 . Precision indicates the proportion of relevant recom-

mended items from the total number of recommended items.

Then, the precision w.r.t. a user 𝑢 is 𝑃 =
|𝑟𝑒𝑙𝑢∩𝑟𝑒𝑐 |

𝑘
. The average

Table 6: Parameters and Examined Values

Parameter Examined Values Default

Group size (𝑚) 10, 15, 20, 25, 30 20

# recommendations (𝑘) 10, 15, 20, 25, 30 20

Emphasis factor (𝜆) 2, 4, 6, 8, 10 6

precision w.r.t. a user 𝑢 measures the average of precision val-

ues calculated after each relevant item for 𝑢 is retrieved in the

recommended list, i.e., 𝐴𝑃 =
∑𝑘
𝑟=1

𝑃@𝑟 ·𝑟𝑒𝑐 [𝑟 ]
𝑘

, where 𝑃@𝑟 is the

precision at rank 𝑟 and 𝑟𝑒𝑐 [𝑟 ] is an indicator equaling 1 if the

recommended item at rank 𝑟 belongs to 𝑟𝑒𝑙𝑢 , and 0 otherwise.

NDCG measures how well a method can rank the best relevant

items higher. Similar to [25, 39], we use the Borda semantics

and set the relevance of an item at rank 𝑟 , which we denote by

𝑟𝑒𝑙𝑢 [𝑖], in the ground truth 𝑟𝑒𝑙𝑢 of a user 𝑢 to 𝑘 − 𝑟 + 1. The
discounted cumulative gain is defined as: 𝐷𝐶𝐺 =

∑𝑘
𝑟=1

𝑟𝑒𝑙𝑢 [𝑟 ]
𝑙𝑜𝑔 (𝑟+1) .

The ideal discounted cumulative gain (IDCG) is defined to be

the DCG achieved when the relevant items are ranked as in the

ground truth. Then, the Normalized Discounted Cumulative Gain

is calculated as the ratio of DCG over IDCG, i.e., 𝑁𝐷𝐶𝐺 = 𝐷𝐶𝐺
𝐼𝐷𝐶𝐺

.

We average the metric values across group members to obtain

relevance to a group. For all three metrics, higher values indicate

better recommendations.

Implementation and Parameter Setting. All group recom-

mendation methods and 𝑘-DAUS algorithms are implemented

in python 3. We employ the SVD algorithm from Surprise li-

brary
5
[22] for generating the missing ratings. We investigate

different problem settings. The involved parameters and their

examined values are summarized in Table 6. Due to space con-

straints, we choose MovieLens HR as a primary dataset since it

has a good compromise between the number of items (to evalu-

ate the scalability of the algorithms) and density. Higher density

implies a more accurate estimation of individual ratings by the

collaborative filtering algorithm. In all experiments, we inves-

tigate the effect of one parameter, while we set the remaining

ones to their default values. For the remaining datasets, we report

only the results of the default execution. All experiments were

conducted on a 2.9 GHz Quad-Core Intel Core i7 processor with

16 GB 2133 MHz LPDDR3 memory, running macOS Catalina.

Reported values are averages of 100 generated groups.

4.2 Retrieval Effectiveness (RQ1 & RQ2)
4.2.1 Results on Movielens HR. We study the effect of the

problem parameters on the retrieval effectiveness of the group

recommendation methods using Movielens HR.

Effect of𝑚. In this experiment, we study the effectiveness of

the group recommendation methods w.r.t. the group size𝑚. Par-

ticularly, we vary the group size𝑚 from 10 up to 30, asking for

the top-20 recommendations, and measure the precision, average

precision and NDCG. Figure 2, Figure 3 and Figure 4 show the

results of this experiment for similar, random and diverse groups,

respectively.

A general observation is that the effectiveness of all methods

deteriorates with the increase of𝑚. This is because increasing

the number of users in a group affects the difficulty of reaching

a consensus among group members. Another observation is that

5
http://surpriselib.com/
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Figure 2: Effectiveness vs. Group size (𝑚) for Similar Groups; MovieLens HR

AVG MIN MUL MAX SDP CRD GRF SPG EFG GRV XPO k-DAUS

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10  15  20  25  30

P
re

c
is

io
n

Group Size

(a) Precision

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10  15  20  25  30

A
v
e
ra

g
e
 P

re
c
is

io
n

Group Size

(b) Average Precision

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10  15  20  25  30

N
D

C
G

Group Size

(c) NDCG

Figure 3: Effectiveness vs. Group size (𝑚) for Random Groups; MovieLens HR
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Figure 4: Effectiveness vs. Group size (𝑚) for Diverse Groups; MovieLens HR

all methods achieve higher (resp. lower) effectiveness for similar

(resp. diverse) groups since it is easier (resp. more difficult) to

find items that satisfy all group members.

In comparison, the results show that 𝑘-DAUS achieves better

retrieval effectiveness than all methods, however, there is no clear

winner among the other methods. On the other hand, observe

that the difference between 𝑘-DAUS and the other methods is

more pronounced for random and diverse groups since the prob-

lem becomes more difficult. This shows the superiority of our

approach in handling conflicting user preferences. This can be

interpreted as follows: the items that are highly liked by all group

members will be selected by almost all approaches. The problem

arises for the other selected items. Approaches carrying only on

fairness (e.g., MIN, SPF, EFG) miss items that are highly liked

by all group members except one (or a few) since unsatisfied

users have a higher impact on the final decision. The remaining

approaches include items supposedly moderately good for all

group members. The problem is that in practice, an average rat-

ing (e.g., 3 stars in a 1–5 stars rating system) is not considered

relevant for an individual user. Thus, these items are not in the

ground truth of any group member. Consequently, they do not

satisfy any group member. In contrast, 𝑘-DAUS preserves items

that are highly liked by most group members. Therefore, most

group members find items that are in their ground truth. Also,

as 𝑘-DAUS disfavors items disliked by most group members, it

does not include items that are only liked by a few members.

Effect of 𝑘 . In the next experiment, we investigate the effective-

ness of the group recommendation methods w.r.t. 𝑘 . In particular,

we fix the group size to𝑚 = 20 and vary the number of requested

recommendation 𝑘 from 10 up to 30 and measure the precision,

average precision and NDCG. The results of this experiment

for similar, random and diverse groups are shown in Figure 5,

Figure 6 and Figure 7, respectively.

Observe in Figure 5, Figure 6 that the effectiveness of the

group recommendation methods increases with higher 𝑘 for

similar and random groups. The reason is that in this kind of

groups, the preferences of group members are similar or not
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Figure 5: Effectiveness vs. 𝑘 for Similar Groups; MovieLens HR
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Figure 6: Effectiveness vs. 𝑘 for Random Groups; MovieLens HR
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Figure 7: Effectiveness vs. 𝑘 for Diverse Groups; MovieLens HR

very conflicting at worst (for random groups), thus, increasing

the number of requested recommendations increases the chance

to retrieve items that satisfy all group members. In contrast,

for diverse groups, the effectiveness of the methods decreases

with the increase of 𝑘 . In this case, the preferences of the group

members are conflicting, and thus it is difficult to find more items

liked by all group members. Roughly speaking, it is easier to find

10 items liked by the group than to find 30 items liked by the

group. On the other hand, similar to the previous experiment,

the results show that all methods achieve higher effectiveness

for similar groups.

Further, notice that 𝑘-DAUS constantly outperforms all meth-

ods. Similar to the previous experiment, there is no clear winner

among the other methods, and the difference between 𝑘-DAUS

and the other methods is more important for random and diverse

groups for the same reasons.

Effect of 𝜆. This experiment compares the effectiveness of 𝑘-

DAUS under different choices of the emphasis parameter 𝜆 (Def-

inition 2.5). Particularly, we fix the group size to𝑚 = 20 and ask

Table 7: Effectiveness of 𝒌-DAUS vs. 𝝀; MovieLens HR (%)

𝝀
Similar Random Diverse

P AP NDCG P AP NDCG P AP NDCG

2 40.17 26.88 45.87 23.76 12.90 32.52 26 15.01 40.16

4 40.79 27.31 46.85 26.41 14.65 35.71 28.60 16.94 41.49
6 41.16 27.45 47.58 27.69 15.58 37.05 28.37 16.82 40.55

8 41.28 27.41 47.95 28.4 16.05 37.6 28.1 16.56 39.70

10 41.16 27.22 48.06 28.65 16.22 37.74 27.72 16.33 39.11

for the top-20 recommendations while varying 𝜆 from 2 up to 10;

results are depicted in Table 7.

A general observation is that there is not an optimal value of 𝜆.

More precisely, for similar and random groups, higher values lead

to better effectiveness, while for diverse groups better results are

achieved with average values. Since in diverse groups it is more

likely that a given item 𝜄 is rated very good by some users and

very bad by others. Thus, with higher values of 𝜆 the value of

𝜏 (𝜄𝑖 , 𝑢𝛼 )𝜆 (see Definition 2.5), for each user 𝑢𝛼 for which 𝜄 is bad
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Table 8: Effectiveness on MovieLens 1M (%)

Method Similar Random Diverse

P AP NDCG P AP NDCG P AP NDCG

AVG 57.94 46.55 62.49 32.25 19.73 39.68 27.90 15.81 40.09

MIN 48.84 35.60 49.90 19.62 10.25 23.01 5.56 1.64 6.31

MUL 57.74 46.38 62.17 31.25 19.08 38.47 22.13 11.18 31.56

MAX 32.87 15.88 29.56 16.26 5.18 14.7 5.59 0.95 4.27

SDP 55.36 44.22 58.82 25.73 15.10 31.08 11.42 4.32 15.22

CRD 56.62 45.42 60.45 27.55 16.52 33.63 10.59 4.07 14.27

GRF 51.59 40.34 55.08 23.36 12.69 27.38 26.62 13.77 34.30

SPG 53.92 39.23 50.87 27.7 14.73 30.25 26.1 14.22 32.93

EFG 49.98 36.16 56.29 31.08 17.89 38.29 29.9 17.81 39.17

GRV 57.90 46.51 62.45 32.19 19.67 39.58 27.04 14.99 38.86

XPO 58.06 43.73 57.23 32.52 18.35 37.58 28.57 15.16 38.55

𝑘-DAUS 58.26 46.62 63.26 35.09 21.59 42.94 32.98 20.36 43.70

Table 9: Effectiveness on Personality (%)

Method Similar Random Diverse

P AP NDCG P AP NDCG P AP NDCG

AVG 55.46 45.99 62.24 27.54 18.53 32.96 14.52 5.66 21.14

MIN 44.54 35.05 50.32 17.24 10.8 20.44 2.79 0.81 3.92

MUL 55.12 45.71 61.84 26.18 17.86 31.48 10 3.55 14.79

MAX 28.27 13.73 23.49 11.12 2.73 9.44 2.48 0.26 1.68

SDP 51.16 42.21 57.51 21.81 15.64 26.6 5.81 2.14 9.36

CRD 52.82 43.78 59.3 22.69 16.18 27.56 5.28 1.99 8.67

GRF 48.60 39.87 55.94 20.32 15.08 25.24 7.74 2.46 10.82

SPG 43.05 26.31 37.97 17.71 7.84 15.97 10.18 3.07 13.42

EFG 46.87 33.53 53.76 25.32 13.68 31.74 19.22 10.44 25.31

GRV 55.4 45.94 62.2 27.49 18.47 32.89 14.47 5.52 20.92

XPO 55.55 41.90 55.58 27.81 16.51 30.57 15.41 5.48 20.88

𝑘-DAUS 56.28 46.41 63.45 31.26 20.12 37.40 22.16 11.65 29.87

Table 10: Effectiveness on Magazine (%)

Method Similar Random Diverse

P AP NDCG P AP NDCG P AP NDCG

AVG 91.29 89.74 89.20 73.34 67.26 73.12 19.05 8.54 29.21

MIN 88.54 85.61 84.30 62.24 51.23 59.18 7.6 2.79 11.72

MUL 91.26 89.72 89.2 73.28 67.16 73.04 18.3 8.18 28.45

MAX 85.74 80.87 78.95 55.02 39.36 46.69 0.9 0.14 0.52

SDP 90.85 89.21 88.69 71.69 65.05 71.22 16.18 6.24 23.75

CRD 91.08 89.52 89.04 72.64 66.37 72.36 16.78 6.79 25.14

RGF 90.92 89.35 88.83 68.71 61.85 68.79 17.65 7.6 26.44

SPG 85.52 80.04 78.55 66.38 53.54 59.42 17.75 8.35 26.84

EFG 89.08 86.74 86.84 66.96 59.55 68.25 18.78 9.54 28.58

GRV 91.27 89.73 89.20 73.33 67.23 73.10 18.78 8.42 28.97

XPO 91.3 88.81 84.03 73.33 65.16 68.98 19.08 8.36 28.24

𝑘-DAUS 91.32 89.76 89.22 73.43 67.41 73.28 19.8 9.68 31.10

tends to 0. That is, the preferences of users that rated bad 𝜄 are

neglected and therefore the selection rule becomes dictatorial.

4.2.2 Results on other Datasets. We now investigate the effec-

tiveness of the group recommendations methods for the default

setting on MovieLens 1M, Personality and Magazine datasets;

results are shown in Table 8, Table 9 and Table 10, respectively.

An important observation is that the best retrieval effective-

ness is attained by 𝑘-DAUS for all datasets, all kinds of groups

and all metrics. Also, similar to the previous experiments, the

margin is more pronounced for random and diverse groups. The

second position (underlined) is shared between, AVG and XPO for

similar and random groups, while EFG offers a good compromise

between datasets for diverse groups.

The results show also, similar to the previous experiments,

that all methods achieve higher (resp. lower) effectiveness for

similar (resp. diverse) groups.

In addition, observe that the methods attained high effective-

ness on the Magazine dataset for similar and random groups.

After analyzing the dataset, we found that it contains more than

60% of 5 stars and almost 15% of 4 stars. Thus, it is more likely to

find items satisfying all group members.

4.3 Scalability (RQ3)
4.3.1 Results on MovieLens HR. We measure the execution

time for all 𝑘-DAUS algorithms using MovieLens HR. The results

varying𝑚, 𝑘 and 𝜆 are shown in Figure 8, Figure 9 and Figure 10,

respectively.

As expected, observe in Figure 8 that the performance of all

algorithms deteriorates with the increase of𝑚. This is because, on

the one hand, the cost of unanimous dominance checks increases,

and on the other hand, increasing the number of users leads to

less unanimously dominated items. Therefore, fewer items can

be quickly eliminated.

As shown in Figure 9 the execution time of the algorithms

increases very slightly with higher 𝑘 , as more items need to be

retrieved. The difference is negligible for all SFA variants and

RFA since the time cost of these algorithms is dominated by

computing the skyline and the items’ scores, respectively.

Figure 10 shows that 𝜆 does not have any effect on all SFA

variants and RFA. However, the execution time of SLA decreases

with higher 𝜆. This is because higher values of 𝜆 penalize more

low ratings, thus it is faster to reach the termination condition.

Overall, the results indicate that SLA is consistently faster than

all SFA variants and RFA. This demonstrates that our pruning

techniques are effective. Among SFA variants SFA-BNL is the

least efficient since SFS and SaLSa skyline algorithms perform on

preprocessed data to perform less dominance checks. In addition,

note that all SFA variants outperform RFA for similar groups

since in this case there are fewer unanimous skyline items and the

time cost of algorithms is dominated by the number of computed

scores. However, for diverse groups, there are a large number of

unanimous skyline items and the time cost is dominated by the

skyline computation. This is why, in this case, RFA outperforms

all SFA variants. For random groups, which is a case in between,

SFA-SFS, SFA-SaLSa and RFA are as good as each other.

In summary, SLA is the better choice to implement the 𝑘-dual

adjustment unanimous skyline.

4.3.2 Results on other Datasets. Table 11 shows the execution
time of the 𝑘-DAUS algorithms on MovieLens 1M, Personality

and Magazine datasets, for the default setting. As in the previous

experiments, all SFA variants outperform RFA for similar groups

while RFA outperforms all SFA variants for diverse groups.

In addition, SLA performs faster than all SFA variants and RFA,

except for diverse groups on the Magazine dataset. This is due

to the distribution of this dataset. In fact, after examining the

execution of RFA, we observe that after the ranking phase, the

𝑘 first items belong to the unanimous skyline, thus the number

of unanimous dominance checks is minimal. Formally, RFA per-

forms 1 + 2 + · · · +𝑘 − 1 = (𝑘 − 1)𝑘/2 unanimous dominance checks.

This is the best case for this algorithm, assuming |US| ≥ 𝑘 . In

other words, the complexity of RFA becomes O(𝑚𝑘2 + 𝑛𝑙𝑜𝑔(𝑛))
(instead ofO(𝑚𝑛+𝑛𝑙𝑜𝑔(𝑛))). Even if this complexity is dominated

by that of SLA in the average case, i.e., O(𝑚𝑛), the complexity

is computed in the limit of 𝑛, and 𝑛 is not big enough so that

O(𝑚𝑛) will be better than O(𝑚𝑘2 + 𝑛𝑙𝑜𝑔(𝑛)).
As can be seen, SLA is more than one order of magnitude

faster than the other algorithms, except for one case where RFA is

better. However, RFA performs very badly on similar and random

groups. This confirms that SLA is the better choice to implement

the 𝑘-dual adjustment unanimous skyline.
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Figure 8: Execution Time vs. Group size (𝑚); MovieLens HR
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Figure 9: Execution Time vs. 𝑘; MovieLens HR
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Figure 10: Execution Time vs. 𝜆; MovieLens HR

Table 11: Execution Time (ms) on other Datasets

Algorithm MovieLens 1M Personality Magazine

Sim Rnd Div Sim Rnd Div Sim Rnd Div

SFA-BNL 115 437 5666 1426 4646 71038 1056 1665 299515

SFA-SFS 70 160 1773 591 774 11979 1127 1247 138340

SFA-SaLSa 99 187 1808 864 1052 12316 1618 1746 140621

RFA 266 276 291 2690 2686 2696 5047 5174 5498
SLA 13 41 271 35 92 900 613 529 14234

5 RELATEDWORK
In this section, we review relevant work in the areas of: (1) group

recommendation; (2) skyline query computation; and (3) top-𝑘

threshold algorithms.

Group Recommendation. Group recommendation studies can

be divided into two main categories based on the groups types:

recommendation to persistent groups and occasional (ephemeral)

groups [37]. In the former case, there is a rich historical informa-

tion about group-item interactions and the group can be treated

as a virtual user, then personalized recommendation techniques

can be adapted to make recommendations [21, 38]. In the lat-

ter case, there is no historical information about the group-item

interactions, and recommendations must be computed by ag-

gregating the user-item interactions [3, 4]. Note that recently,

hybrid approaches are proposed [11, 44, 45] to make use of both

user-item and group-item interactions, specially to handle the

case where only a poor set group-item interactions is available.

In this work, we focus on recommendation to occasional groups,

where we assume the availability of user-item interaction only.

Making recommendations to occasional groups is much more

challenging since there is no group-item interactions. Existing

occasional group recommendation methods fall into two aggre-

gation paradigms [3]: profile aggregation and score aggregation.

Profile aggregation approaches first aggregate the profiles of

groupmembers into a single profile, thenmake recommendations

based on the generated profile; see e.g., [8, 29, 40, 46]. Score aggre-

gation strategies first predict the missing user-item interactions

(i.e., ratings) using e.g., collaborative filtering techniques [1], then

374



aggregate ratings across group members to derive group scores.

Compared with preference aggregation, score aggregation offers

better flexibility and more opportunities for improvement [3],

and thus receives more research attention. Popular score aggre-

gation strategies include the average [4, 28], offering an overall

group desirability; the minimum, a.k.a. least misery [4, 28], not

strongly displeasing any user; the multiplication, is in between;

and the maximum, a.k.a. most pleasure [28], ensuring the greatest

pleasure among group members. Under the multiplication and

least misery aggregation rules, unsatisfied users have a higher

impact on the final decision than satisfied ones. It is the reverse

under the most pleasure strategy.

There is line of work that seeks to ensure fairness in group

recommendations, so that group members have small disagree-

ment on the recommended items. [23] combines the average

aggregation with the standard deviation as a penalty that reflects

the amount of variation of individual ratings. Similarly, [3] in-

troduces the concept of consensus, which achieves a balance

between group relevance, calculated using either the average or

the least misery rules, and group disagreement computed either

with the average pairwise disagreement or the variance. [25]

defines the individual utility of a user to a list of items as the

normalized sum of ratings of all items belonging to the list, then

introduces the notion of social welfare as the overall utility of

all group members to the list, which is combined with a fairness

measure. Four fairness semantics are considered: namely, least

misery, variance, Jain’s fairness and Min-Max Ratio. The main

difference between this method and the two previous works is

that the utility is determined by how a list of items, instead of a

single item, is relevant to a user.

[39] considers the 𝑁 -level Pareto optimal set of items, which

comprises the items that are dominated by at most 𝑁 -1 other

items, and selects top-𝑁 among them by considering a large

number of ways in which a group may reach a decision. More

specifically, this procedure generates a large number of random

weight vectors, each representing a different aggregation strategy,

and counts how many times each item is ranked within the top-

𝑁 , then items are ranked based on their counts. A variant that

chooses the smallest 𝑥 ∈ [1, 𝑁 ] such that there are at least 𝑁

items in the 𝑥-level Pareto optimal set is also studied.

Some recent work focus on recommending packages, i.e., a

set of items rather than a ranked list of items. This is practical

in some cases, e.g., suggesting points of interest (museum, park,

restaurant, etc.) to a group of tourists. [35, 36] proposes proba-

bilistic models that captures the relevance of items/packages to a

group. The notion of fairness is also investigated. More precisely,

a package is fair for a group member if it comprises at least one

item ranked in the top-Δ% of the member ratings on all items,

then the fairness of a package is the proportion of members for

which it is fair. The probabilistic relevance and the fairness are ag-

gregated to identify a package that is both attractive and fair. [41]

considers two alternative definitions of fairness. The first in an

extension of the previously discussed fairness measure, called

𝑚-proportionality, which is the proportion of group members for

which at least𝑚 items in the package are in their top-Δ% items.

The second is𝑚-envy-freeness, which is the proportion of group

members for which there is at least𝑚 items in the package among

the top-Δ% ratings of all group members, in this package. This

works can be adapted to the case of single items recommendation

by setting the size of the package to 1.

Different from these prior works, our approach takes into

account the fact that the ratings are subjective and users rate

in a different manner. In addition, it preserves (disfavors) items

that are highly liked (disliked) by most group members. Further,

except for XPO [39], the produced recommendations include

unanimously dominated – and thus less relevant – items.

Skyline Query Computation. The concept of skyline query
was introduced by Börzsönyi et al. into the database community

in [9], where several algorithms were proposed. The most well-

known method is the Block Nested Loop (BNL), which iterates

over the dataset, comparing each tuple against every other, and

reports those are not dominated. Sort First Skyline (SFS) [12, 13]

improve BNL by presorting the dataset according to a mono-

tone aggregation function, reducing the number of dominance

checks. Sort and Limit Skyline algorithm (SaLSa) [5, 6] infuses

a stopping condition into SFS for early termination. Other al-

gorithms operate on precomputed indexes on the dataset, see,

e.g., Bitmap [42], Index [42], a B+ tree-based algorithm, Nearest

Neighbor (NN) [24] and Branch and Bound Skyline (BBS) [33, 34]

are R-tree bases-algorithms. However, index structures suffer

from dependency to data dimensionality, and their performance

becomes increasingly degraded with the increase of the dimen-

sionality. Even if these algorithms can be adapted to solve our

problem, they are very time-consuming as shown in Section 4.

Our algorithm employs effective pruning techniques to compute

the 𝑘-dual adjustment unanimous skyline efficiently.

Top-𝑘 Threshold Algorithms. The family of threshold algo-

rithms, which were originally proposed in a multimedia con-

text [15, 16], operates on sorted index lists and aims to retrieve

the top-𝑘 set according to a monotone scoring function with-

out scanning the whole dataset. The main idea is to maintain

the worst score among the top-𝑘 results retrieved so far, and

the best possible score for all unseen objects, which serves as a

threshold for stopping the algorithm when no unseen object

can exceed the score of the currently 𝑘th object. Since then,

threshold algorithms were adapted in many contexts, e.g., re-

lational databases [2, 14, 32], web-accessible databases [10, 27],

XML [26, 43] and so on. In this work, we draw inspiration from

this family of algorithms to procure a termination condition for

our SLA algorithm.

6 CONCLUSION
In this paper, we studied the problem of recommending items to

occasional groups. We first introduced a novel group recommen-

dation score, which measures the relevance of an item to a group

by taking into account the fact that users rate differently, using a

dual adjustment aggregation. Our score has the particularity of

preserving (resp. disfavoring) items that are highly liked (resp.

disliked) by most group members. We then proposed the notion

of 𝑘-dual adjustment unanimous skyline, which comprises the 𝑘

unanimously preferred items with the highest group recommen-

dation score. For computing the 𝑘-dual adjustment unanimous

skyline, we presented two baseline methods by adapting prior

work, and also proposed a more efficient algorithm based on ef-

fective pruning strategies. We performed a theoretical analysis to

study the average computational complexity of the different algo-

rithms. Our experimental results on real-world datasets showed

that our recommendation scheme is superior to state-of-the-art

group recommendation methods. We also investigated the scal-

ability of the 𝑘-dual adjustment unanimous skyline algorithms,

varying the problem parameters. We saw that our algorithm is

more efficient than the adapted ones.
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