
Geosci. Model Dev., 15, 7017–7030, 2022
https://doi.org/10.5194/gmd-15-7017-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

RavenR v2.1.4: an open-source R package to support
flexible hydrologic modelling
Robert Chlumsky1, James R. Craig1, Simon G. M. Lin1, Sarah Grass2, Leland Scantlebury1,3, Genevieve Brown4, and
Rezgar Arabzadeh1

1Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
2GeoProcess Research Associates, Edmonton, AB, Canada
3Hydrologic Sciences Graduate Group, University of California, Davis, Davis, CA, USA
4Northwest Hydraulic Consultants Ltd, North Vancouver, BC, Canada

Correspondence: Robert Chlumsky (rchlumsk@uwaterloo.ca)

Received: 1 October 2021 – Discussion started: 19 November 2021
Revised: 29 July 2022 – Accepted: 10 August 2022 – Published: 16 September 2022

Abstract. In recent decades, advances in the flexibility and
complexity of hydrologic models have enhanced their utility
in scientific studies and practice alike. However, the increas-
ing complexity of these tools leads to a number of challenges,
including steep learning curves for new users and issues re-
garding the reproducibility of modelling studies. Here, we
present the RavenR package, an R package that leverages
the power of scripting to both enhance the usability of the
Raven hydrologic modelling framework and provide comple-
mentary analyses that are useful for modellers. The RavenR
package contains functions that may be useful in each step of
the model-building process, particularly for preparing input
files and analyzing model outputs. The utility of the RavenR
package is demonstrated with the presentation of six use
cases for a model of the Liard River basin in Canada. These
use cases provide examples of visually reviewing the model
configuration, preparing input files for observation and forc-
ing data, simplifying the model discretization, performing re-
alism checks on the model output, and evaluating the per-
formance of the model. All of the use cases are fully repro-
ducible, with additional reproducible examples of RavenR
functions included with the package distribution itself. It is
anticipated that the RavenR package will continue to evolve
with the Raven project and will provide a useful tool to new
and experienced users of Raven alike.

1 Introduction

Hydrologic models are used for numerous applications, in-
cluding streamflow prediction, flood forecasting, reservoir
level forecasting, and in a scientific capacity to advance
our understanding of hydrologic systems. Historically, most
hydrologic models have been designed with a fixed model
structure comprised of a predefined set of environmental pro-
cesses, whereas the input data and model parameters may
vary from watershed to watershed. While these fixed model
structures (e.g., GR4J; Perrin et al., 2003) may provide suf-
ficient performance in some catchments, they are not ade-
quate in all catchments, environments, or hydrologic appli-
cations (Hoey et al., 2014). Numerous studies have called
this fixed structure paradigm into question and have instead
called for the development of flexible modelling frameworks
(Leavesley et al., 2002; Clark et al., 2011; Fenicia et al.,
2011), which would allow the modeller to possess more con-
trol over the model-building process. This has resulted in the
emergence of flexible modelling frameworks in the literature
(e.g., Orellana et al., 2008; Clark et al., 2008; Kavetski and
Fenicia, 2011; Clark et al., 2015; Knoben et al., 2019; Coxon
et al., 2019; Craig et al., 2020), and recent studies have been
extensively supported by the use of these frameworks (Pilz
et al., 2020; Remmers et al., 2020; Chadalawada et al., 2020;
Knoben et al., 2020; Spieler et al., 2020; Mai et al., 2020;
Chlumsky et al., 2021b).

The power contained in these flexible hydrologic models is
limited in part by the modeller’s ability to take advantage of

Published by Copernicus Publications on behalf of the European Geosciences Union.

7018 R. Chlumsky et al.: Supporting flexible hydrologic modelling

it. In an ideal setup, a modeller would find converting their
system conceptual model to a numerical model a seamless
process; in actuality, however, setting up a numerical model
often involves data wrangling and other tedious tasks, with
decisions ranging from those with relatively little impact on
the final modelling results (e.g., how to combine dozens of
text files) to potentially problematic and highly impactful de-
cisions (e.g., time series interpolation or model structure ad-
justments). Few hydrologic models offer the ability to eas-
ily deploy and compare successive model runs, resulting in a
potentially large amount of time devoted to relatively trivial
tasks, such as organizing model files and comparing succes-
sive model runs.

In order to address some of these challenges, new tools
must be developed to bridge the gap between complex, cus-
tomizable tools and the ability for modellers (in particular,
new users) to fully understand and deploy these tools. In-
creasingly, freely available, open-source scripting languages,
such as Python (Van Rossum and Drake, 2009) and R (R
Core Team, 2021), are being employed by modellers to cre-
ate, visualize, and evaluate their models (Jackson et al., 2019;
Slater et al., 2019; Astagneau et al., 2021). The use of these
scripting languages also improves the reproducibility of sci-
entific studies, which is a noted challenge in hydrology (Hut-
ton et al., 2016). R, in particular, has gained significant
ground in hydrology, entering the toolbox of many in both
consulting and academia (Anderson et al., 2018; Slater et al.,
2019; Astagneau et al., 2021).

Here, we introduce an R package with a collection of tools
to aid a modeller in preparing, running, and post-processing
results from custom hydrologic models developed with the
hydrologic modelling framework Raven. Many of the tools
are not solely Raven-specific: functions exist to plot time se-
ries, analyze yearly patterns, and compute relevant statistics.
However, the package importantly contains a robust suite
of functions for creating, reading, and manipulating Raven
model files. Specific attention has been paid to supporting
the testing, comparison, and diagnosis of models built with
variable model structure; many of these tools are unique. The
intended purpose of the RavenR package is to enable mod-
ellers to simplify, automate, and document their model cre-
ation process; effortlessly facilitate model visualization and
evaluation; and to expand the flexibility of the Raven hydro-
logical modelling framework through scripting.

2 Methods

2.1 The Raven hydrologic modelling framework

Raven is an open-source software framework that can be used
to build models from a selection of more than 100 available
process algorithms (Craig et al., 2020). It is estimated that
at least 8 × 1012 different hydrologic model configurations
may be set up using Raven (Mai et al., 2020), and this num-

ber is continuously increasing as new options are added to
the software. Raven is built for flexibility, not only in pro-
cess representation but also in enabling multiple numerical
schemes, discretization schemes, input data types, and in pro-
viding the user control over output options. Raven is a fully
object-oriented code written in C++ (Stroustrup, 2013), and
it is typically run from a command line. The input and out-
put files are generally stored as text files (.txt or .csv) or in
NetCDF (Network Common Data Format). This allows all
model files to be stored as non-proprietary formats as well as
to be read and processed with any number of available tools
for manipulating files.

The primary input files required for Raven (listed by file
extension) include the following:

1. .rvi, which is a primary input file that defines the model
structure, time step, duration, and a number of addi-
tional options;

2. .rvp, which comprises model parameter specification as
well as soil, vegetation, land use, and other class defini-
tions;

3. .rvh, which comprises model discretization, including
all subbasin and hydrologic response unit (HRU) infor-
mation;

4. .rvt, which comprises time series data, including forc-
ing and observational data, and often points to other .rvt
files with data sets for various stations and locations;

5. .rvc, which contains the initial conditions for the model
run.

Raven provides complete control over its output genera-
tion (Craig et al., 2020) – a relatively uncommon feature in
hydrologic modelling software. Additionally, it also allows
for custom outputs to be generated for a given statistical,
spatial and temporal specification and state variable, such as
the monthly average of daily snow depth for a particular set
of subbasins (Craig et al., 2020). This flexibility of Raven
over the modelling process provides the modeller with a lot
of power in configuring and running their hydrologic model,
but it also provides some challenges with respect to prepar-
ing files and working with the many possible outputs. The
command-line execution of the program and the lack of a
user interface can present a learning curve for new users, but
it also enables scripting languages to easily interface with
Raven and for Raven to be deployed in high-performance
computing environments.

A number of utilities exist to support the usage
of Raven models, including RavenPy (https://github.com/
CSHS-CWRA/RavenPy, last access: 15 September 2021)
for creating, running, and post-processing Raven models
within Python, and Hydroglyph (http://raven.uwaterloo.ca/
hydroglyph/, last access: 15 September 2021) for visualizing
Raven time series output data. Hydrologic model support is

Geosci. Model Dev., 15, 7017–7030, 2022 https://doi.org/10.5194/gmd-15-7017-2022

https://github.com/CSHS-CWRA/RavenPy
https://github.com/CSHS-CWRA/RavenPy
http://raven.uwaterloo.ca/hydroglyph/
http://raven.uwaterloo.ca/hydroglyph/

R. Chlumsky et al.: Supporting flexible hydrologic modelling 7019

also provided by many model-independent packages, such as
the CSHS-hydRology package (Anderson et al., 2018). How-
ever, RavenR is the most comprehensive tool for preparing
input files and performing a range of analyses with Raven
output files.

2.2 RavenR software description

2.2.1 RavenR overview

The RavenR package is developed in R and is a collec-
tion of tools to aid the modeller in preparing, running, and
post-processing files associated with a hydrologic model de-
veloped using Raven (Craig et al., 2020). Unlike other soft-
ware implementations, such as SuperflexPy (Dal Molin et al.,
2021), in which the model code is contained within R or
Python, the RavenR package is independent of the Raven
model code and operates only on related model input/output
files and/or calling the compiled Raven executable. This al-
lows for the parallel development of the Raven project and
the RavenR library while avoiding the technical challenge
of continuously compiling Raven C++ code in R with each
build.

The available functions within RavenR can be broadly
categorized by their utility into five main categories:
(1) preparing input files, (2) running Raven, (3) reading out-
put files, (4) tools for hydrologic analyses, and (5) support
utilities (e.g., time series processing and water year analy-
sis). The typical workflow for RavenR is closely related to
the workflow required for the development and use of any
hydrologic model, including one developed with Raven. This
includes the collecting and processing of data for the model,
determining the model structure, creating model input files in
the format required by the modelling software, executing the
model, and analyzing the results of the model for hydrologic
consistency and performance. This can include exercises in
model calibration and validation, uncertainty analysis, iden-
tifiability analysis, and project-specific simulations or adjust-
ments to the model runs.

The typical workflow for developing a hydrologic model
and examples of RavenR functions that may be used to sup-
port each step are provided in Table 1.

Although the model-building process is listed in Table 1 as
a series of steps, it is not linear in practice; rather, it is itera-
tive and cyclic. For example, a model diagnostic (step 7) may
show that inadequate model performance can be remedied by
the inclusion of additional forcing data, requiring new data
to be written to file (step 1). It is also recommended or com-
mon practice in modelling to begin with a simpler model and
proceed to a more complex one (e.g., Fenicia et al., 2008),
which may require iteration on steps 2–6 to potentially mod-
ify the structure (e.g., the spatial and temporal discretization
and the hydrologic processes) after a basic model has been
established. Model calibration would typically involve an it-
eration upon steps 4–6 with a calibration algorithm, and a

calibration that includes model structure (e.g., Spieler et al.,
2020; Chlumsky et al., 2021b) would effectively iterate upon
steps 3–6. The iterative need for these model-building steps
emphasizes the benefit of tools (including those in RavenR)
that can reduce the overhead in simple but repetitive tasks,
such as producing figures and writing data to a specific file
format.

The functions within the RavenR package are named,
where appropriate, by the three letter Raven file name or
short abbreviation corresponding to the output file that they
interact with, e.g., rvn_rvi_connections for process-
ing the .rvi file structure or rvn_res_read for reading
the output ReservoirStages.csv file. Other functions sim-
ply use illustrative names to convey their purpose (e.g.,
rvn_budyko_plot). This naming convention provides
some navigability of the package functions to the new user,
even before the package documentation is reviewed (see
Sect. 2.2.2).

The RavenR package has a number of preferred data for-
mats and related package dependencies. Most plots are gen-
erated using the ggplot2 (Wickham, 2016) and related
libraries from the so-called “tidyverse”, including dplyr
(Wickham et al., 2021a) and tidyr (Wickham, 2021) for
data manipulation. This allows all plots to be exported as
plot objects and further manipulated by the user as de-
sired, and it also removes the need for all plot options to
be wrapped into RavenR functions. Time series handling is
done through the lubridate (Grolemund and Wickham,
2011) and xts (Ryan and Ulrich, 2020) packages, where
the extensible time series (xts) format is generally expected
for time series data. Finally, support for network analysis
is done through the igraph package (Csardi and Nepusz,
2006), which primarily supports the organization of water-
shed discretization connections (.rvh file) and the network of
model structure connections (.rvi file), including the related
plot functions (e.g., rvn_subbasin_network_plot
and rvn_rvi_process_diagrammer).

2.2.2 Installation and documentation

The package is developed as a free and open-source
software tool, which is ideal for maintaining trans-
parency and reproducibility in workflows related to hy-
drologic modelling and all steps involved. The sta-
ble package version is available for download through
CRAN, which can be installed in R using the com-
mand install.packages("RavenR"). The develop-
ment version of the package is available on GitHub (https:
//github.com/rchlumsk/RavenR, last access: 20 July 2022)
and may be installed using the devtools library (Wick-
ham et al., 2021b) as devtools::install_github
("rchlumsk/RavenR"). Both installation commands
resolve the dependencies associated with the package.

The RavenR package is fully documented and con-
tains a description of inputs and outputs, with a usage ex-

https://doi.org/10.5194/gmd-15-7017-2022 Geosci. Model Dev., 15, 7017–7030, 2022

https://github.com/rchlumsk/RavenR
https://github.com/rchlumsk/RavenR

7020 R. Chlumsky et al.: Supporting flexible hydrologic modelling

Table 1. Typical workflow table for building hydrologic models and connection to RavenR.

Step Activity Description RavenR functions

1 Collect/prepare
data

Preparation and quality control of Raven input files (e.g., .rvi
files from template, .rvt files), often from public data sources

rvn_rvi_write_template,
rvn_rvt_tidyhydat,
and 19 others

2 Discretize
watershed

Quality control of implemented discretization scheme and
further simplification (e.g., aggregating very small or similar
HRUs)

rvn_rvh_clean_hrus and
rvn_subbasin_network_plot

3 Identify and
describe
processes

Model structure development and process algorithm selection rvn_rvi_connections,
rvn_rvi_process_diagrammer,
and rvn_rvi_process_ggplot

4 Parameterize
the model

Model parameter definition and parameter value specification rvn_rvi_get_params

5 Execute
the model

Running the Raven (or other hydrologic) model rvn_download and
rvn_run

6 Processing
model outputs

Reading and processing model output files for analysis rvn_hyd_read,
rvn_custom_read,
and seven others

7 Plots and model
diagnostics

Checking model performance with a number of analyses,
realism checks, and diagnostics (often in conjunction with
model calibration and validation)

rvn_annual_peak_flow,
rvn_monthly_vbias,
and 24 others

8 Report
results

Generating quality graphics and workflows to communicate
results

Functions from step 7 and addi-
tional R libraries (e.g., ggplot2 and
rmarkdown)

ample for each function consistent with the standards for
CRAN packages. In addition to the package documenta-
tion, an introductory vignette Introduction to RavenR, is in-
cluded with the package, which discusses getting started
with the package and how it may be used in a manner
that is more useful to new users of Raven and RavenR.
The introductory vignette is available with the command
install.packages("RavenR").

2.2.3 Sample data sets

In the interest of reproducible examples, the RavenR pack-
age contains a number of sample data sets and raw data
files embedded within the package which are used within
the function examples. Sample data are embedded directly
as imported data (accessible with the data function in R)
for a number of file output types (e.g., hydrograph and wa-
tershed storage) as well as sample data for the tidyhydat
and weathercan packages. The latter sample data allow
the function examples to run without a dependency on the
mentioned data-retrieval packages. Raw data files are also
included (accessible with the system.file function in
R), which allow for the testing of reading raw data directly.
The examples where raw data files are first read into R us-
ing RavenR functions may be more helpful than examples

which call sample data directly with the data command, as
the workflow will be closer to the one applied in practice.

The sample Raven output files and data that are distributed
with the RavenR package were generated from a model of
the Nith watershed, which is located immediately west of
Kitchener–Waterloo in Ontario, Canada. The Raven model
of the Nith watershed can be found in full on the Raven web
page (http://raven.uwaterloo.ca/downloads.html, last access:
20 July 2022) in the “Tutorial Files # 1–4” download set.
Numerous additional Raven models are available from this
page, including the model of the Liard River basin (Brown
and Craig, 2020), which is used in the RavenR case studies
in this paper (Sect. 3).

3 Use cases of the RavenR package

In this section, we present a number of use cases of the
RavenR package. These cases are not intended to be a com-
prehensive review of all the applications for the RavenR
package; they serve only to provide the reader with a partial
demonstration of how the package may be used in conjunc-
tion with Raven. The cases are discussed in the context of hy-
drologic modelling with flexible frameworks more broadly,
and they provide cases and checks that are likely to be use-

Geosci. Model Dev., 15, 7017–7030, 2022 https://doi.org/10.5194/gmd-15-7017-2022

http://raven.uwaterloo.ca/downloads.html

R. Chlumsky et al.: Supporting flexible hydrologic modelling 7021

ful when deploying both Raven and non-Raven hydrologic
models.

The use cases are presented in approximate order of the
model-building process (Table 1), beginning with the gener-
ation of model input files and proceeding to the analysis of
output files. These use cases include examples and discus-
sion of most of the steps in the model-building process, with
additional examples available in the use cases markdown file.

All R code and model files required to generate the results
and figures in this section are provided in an open-source
Zenodo repository (https://doi.org/10.5281/zenodo.5534817;
Chlumsky et al., 2022a) and utilize RavenR version 2.1.4
(Chlumsky et. al., 2021a).

3.1 Liard River basin

The use cases presented here utilize the Liard River basin
model built with Raven. The Liard River basin is located in
northern Canada, spanning the Yukon Territory, Northwest
Territories, British Columbia, and Alberta. The Liard River is
the largest tributary to the Mackenzie River, with a total con-
tributing area of 275000 km2 (Brown and Craig, 2020). The
basin includes a variety of landforms, including mountain-
ous regions and wetland-dominated regions. There are vary-
ing degrees of difficulty when trying to accurately represent
these various landforms in a hydrologic model. Additional
details on the Liard River basin, as well as the correspond-
ing hydrologic model developed for the basin with Raven,
can be found in the publication by Brown and Craig (2020),
which also describes the manual calibration process that was
undertaken for the model.

3.2 Input file processing

3.2.1 Model configuration

The Raven User’s and Developer’s Manual (Craig and the
Raven Development Team, 2022) provides the templates for
a number of model structures, which can be used as a start-
ing point for constructing a customized hydrologic model.
These are largely based on emulations of published hydro-
logic models in the literature (e.g., the University of British
Columbia Watershed Model, UBCWM, and the Hydrologi-
cal Model of École de technologie supérieure, HMETS), al-
though some are based on research models that have been
developed within Raven (e.g., the Canadian Shield model).
Once a base model has been selected, components of the
model may be modified using the many process options
available within Raven, which are documented in the Raven
User’s and Developer’s Manual (Craig and the Raven Devel-
opment Team, 2022). The large number of process options
available to the user provide no shortage of model structure
tweaks to customize their model.

A critical step in making these adjustments to model struc-
ture is understanding the structure and ensuring that it is con-

sistent with the modeller’s conceptual understanding of the
system (step 3 in Table1). While Raven itself does not cur-
rently have a user interface deployed that can visualize the
model structure, functions within the RavenR package can
generate a model schematic from the contents of the model
input (.rvi) file. The ability to visualize this structure can be
critical in understanding the model structure and ensuring the
conceptual understanding is consistent with the implemented
structure. This can also be used to check for state variables or
storage units with an improper number of connections, such
as a soil layer with no outflow mechanism.

The general workflow within RavenR to generate a model
.rvi file and visualize the contents is as follows:

1. A template model structure is selected and written to file
using the rvn_rvi_write_template function.

2. The file may be manually modified in consultation with
the Raven User’s and Developer’s Manual (Craig and
the Raven Development Team, 2022).

3. The file may be read into R using the rvn_rvi_read
function.

4. The process connections from the file can be processed
using the rvn_rvi_connections function.

5. The process diagram can be generated either in ggplot
format, using the rvn_rvi_process_ggplot
function, or as a diagrammer plot, using the
rvn_rvi_process_diagrammer function.

6. The “:CreateRVPTemplate” command can be used to
generate a template .rvp (parameter) file when Raven is
executed. (This step is optional.)

7. The rvn_rvi_get_params function may be used
to obtain a data frame of parameters, ranges, and de-
fault parameter values for parameters that are included
in the hydrologic model, based on the model structure
configuration. (This step is optional.)

An example of the process diagram is provided for the
Liard River basin in Fig. 1. From this figure, the direc-
tional connections between water storage compartments in
the model can easily be ascertained and verified, allowing
both modellers building a new model and modellers inher-
iting a model to quickly understand the movement of water
in their current setup. For instance, in the Liard model, we
can see that the model has the capacity for precipitation to
enter specific wetland and depression compartments, snow
can melt and refreeze, and fast and slow (upper and lower)
reservoirs exist to represent groundwater processes at differ-
ent timescales (Brown and Craig, 2020). A single-layer top-
soil compartment is used to connect the surface water and
subsurface domains in the model along with a vadose zone
reservoir to help represent a karst structure within the model.

https://doi.org/10.5194/gmd-15-7017-2022 Geosci. Model Dev., 15, 7017–7030, 2022

https://doi.org/10.5281/zenodo.5534817

7022 R. Chlumsky et al.: Supporting flexible hydrologic modelling

We can see that all processes that move water to glacier are
conditional based on the HRU type (glacier HRU). Ponded
water is moved to depression storage under the condition of
being a wetland, and surface water only directly evaporates to
the atmosphere if the HRU is a lake. The karst groundwater
structure which was implemented in the model is only appli-
cable to a subset of the HRUs which accounts for the condi-
tional connections between the top soil layer (SOIL[0]), sur-
face water, the vadose reservoir, and the fast and slow reser-
voirs. Reviewing and verifying these conditional exceptions
along with the connections between other state variables can
help ensure that the model is appropriately structured.

Typically, diagrams such as these are arduous to produce
for highly flexible modelling software such as Raven. Here,
the function has been automated to create publication-ready
diagrams for most model setups.

3.2.2 Forcing data

Meteorological forcings (e.g., precipitation, temperature, and
wind speed) drive the hydrologic model responses. When not
collected as part of a project, these data are often obtained
from online, freely available public sources that are generally
collected, processed, and maintained by local and/or public
agencies. These data are likely to require some quality con-
trol before ingestion into the model, such as addressing data
flags, removing erroneous data, and converting units (step
1 in Table 1). This process can be quite tedious, especially
when combining multiple data sets with various formats,
time steps, and quality levels. The RavenR package offers
the rvn_rvt_write_met function for writing forcing
data directly to the Raven .rvt format: the function defaults
are configured to accept outputs from the weathercan R
package, which automatically downloads data for Canadian
meteorological stations maintained by Environment Canada
(LaZerte and Albers, 2018). For meteorological data sources
outside of those obtained with weathercan, substantial
data processing may be required to prepare the data into the
correct format for use with RavenR.

In this use case, daily meteorological data for a 20-year pe-
riod are downloaded, interpolated, and written to Raven .rvt
format. The weathercan R package is used to search for
stations within 500 km of Fort Liard that have data records
spanning from 1985 to 2005. A subset of stations meeting
these criteria is downloaded for preprocessing. Missing val-
ues in the meteorological data are then interpolated using
data from nearby stations, and a fix is also applied to any in-
terpolated data where the maximum daily temperature is less
than the daily minimum. The data from five of the selected
stations are then written to Raven .rvt format. This workflow
would require substantial time and effort if performed manu-
ally or if scripts for this task were adapted with each new ap-
plication; in this use case, the entire workflow is performed
with two main functions from the weathercan package

and two from the RavenR package. The code required to
accomplish this is provided in Algorithm 1.

The advantages of this workflow are (1) the ease of imple-
mentation, which can process any number of stations with
only a few lines of R code, and (2) the transparency and re-
producibility of the .rvt file generation, which is useful for
both review of the data and possible future corrections to all
.rvt files (e.g., extending the time series to incorporate more
recent data). The code may be extended to any supplied set
of stations and any meteorological variable that is recognized
by Raven. The function also assumes standardized Raven pa-
rameter units for all meteorological variables (see reference
tables in Appendix C of the Raven User’s and Developer’s
Manual; Craig and the Raven Development Team, 2022).

3.2.3 Observation data

Observation data, such as streamflow records, are generally
not required to run hydrologic models; an exception to this
may be for truncated model domains, where the model sim-
ulates a portion of the watershed and is supplemented by up-
stream measured flow data. However, observed time series
are the key to evaluating model performance (history match-
ing) in both calibration and validation exercises and may also
be used to enable data assimilation in forecasting applica-
tions.

Similar to the use of the weathercan R pack-
age for downloading Canadian meteorological data, the
tidyhydat R package may be used to download stream
gauge data from Canadian stations maintained by the Wa-
ter Survey of Canada (Albers, 2017). RavenR provides the
rvn_rvt_tidyhydat function to process tidyhydat
inputs directly by wrapping the rvn_rvt_write function,
which can write any non-meteorological time series to .rvt
format. Possible types of time series supported by Raven .rvt
files include reservoir inflows, irregular observations, obser-
vation weights, and temporal reservoir operation rules. The
entire list of available formats can be found in the Raven
User’s and Developer’s Manual (Craig and the Raven De-
velopment Team, 2022).

In this use case, the tidyhydat package is used to
prepare .rvt files of observed streamflow for nine speci-
fied stations (consistent with the stations listed in Table 2
of Brown and Craig, 2020) used in the Liard model. The
daily streamflow data for these stations are downloaded using
tidyhydat from 1985 to the present day, and they are writ-
ten to .rvt format using the rvn_rvt_tidyhydat func-
tion (a wrapper for the rvn_rvt_write function). The
code required to accomplish this is provided in Algorithm 2.
Raven will automatically exclude any missing values from
the calculation of diagnostics; thus, missing values in obser-
vation data generally do not need to be interpolated or infilled
in the same manner that meteorological forcing data need to
be processed. However, the user may still wish to be aware
of and avoid large gaps in observation data that may bias the

Geosci. Model Dev., 15, 7017–7030, 2022 https://doi.org/10.5194/gmd-15-7017-2022

R. Chlumsky et al.: Supporting flexible hydrologic modelling 7023

Figure 1. The model configuration of the Liard River basin, generated from the Liard model .rvi input file with the
rvn_rvi_process_diagrammer function. Solid grey lines indicate connections between state variables, and dashed orange lines indi-
cate conditional connections.

Algorithm 1 Minimum code required for the use case described in Sect. 3.2.2 of downloading, interpolating, and writing
meteorological data into Raven .rvt format using the weathercan and RavenR R packages. The pipe operator (%>%) from
the dplyr package is used for readability. Additional code comments are provided in the accompanying repository.

fort_liard <- c(60.241711, -123.467377)
stns <- weathercan::stations_search(

coords = fort_liard,
dist = 500,
interval="day",
starts_latest = 1985,
ends_earliest = 2006)

weather_dl(stns$station_id[1:10],
interval="day",
start="1985-10-01",
end="2005-10-01") %>%

rvn_met_interpolate(
cc=c("max_temp", "min_temp", "total_precip"),
key_stn_ids = stns$station_id[1:5]) %>% rvn_rvt_write_met()

calculation of diagnostic metrics (e.g., consistent winter gaps
or multi-year gaps).

The same rvn_rvt_write function may be used to
write other .rvt data types by adjusting the rvt_type pa-
rameter, which may be useful for writing the observation
weights generated from the rvn_gen_obsweights func-
tion to exclude certain data periods from Raven diagnostics,
as was done in the Liard model for winter periods with unre-
liable data records (Brown and Craig, 2020).

3.2.4 Model discretization file

The development of distributed and semi-distributed mod-
els requires the discretization of a basin into homogeneous
units representing hydrologically similar areas. This is typi-
cally completed through overlaying a number of spatial data
sets which have a dominant effect on the hydrological re-
sponse of the basin, such as land use, elevation, or soil in-
formation (step 2 in Table 1). In overlaying the spatial data
sets, a large number of small computational units, insignif-

https://doi.org/10.5194/gmd-15-7017-2022 Geosci. Model Dev., 15, 7017–7030, 2022

7024 R. Chlumsky et al.: Supporting flexible hydrologic modelling

Algorithm 2 Minimum code required for the use case described in Sect. 3.2.3 of downloading and writing observed flow data
into Raven .rvt format using the tidyhydat and RavenR R packages. The pipe operator (%>%) from the dplyr package is
used for readability. Observation station IDs and associated model subbasin IDs are provided in the “observation_stations.csv”
file for brevity. Additional code comments are provided in the accompanying repository.

obs_stns <- read.csv("observation_stations.csv")
tidyhydat::hy_daily_flows(
station_number = obs_stns$stnID,
start_date = "1985-01-01") %>%
rvn_rvt_tidyhydat(hd, subIDs=obs_stns$subID)

icant to the model function, can be created. As the model
runtime is scaled with the number of HRUs, these small
areas can increase computational and calibration runtimes
and are not necessary to simulate the dominant hydrologi-
cal response of the basin. The RavenR package offers a way
to effectively eliminate small computational units using the
rvn_rvh_cleanhrus function. This function may merge
units based on a set area threshold and can also merge sim-
ilar HRUs based on similarity in HRU properties such as
land cover, slope, elevation, and aspect. HRUs that are sig-
nificant to the model can be locked or protected. Locked
HRUs cannot be removed from the model or increase in size,
and protected HRUs cannot be removed but may increase
in size (to maintain the total watershed area) if other HRUs
are removed. This is useful in cases where a point observa-
tion is available at a given location (snow survey data) or
if the HRUs are part of a significant hydrological response
(glaciers).

In this use case, the reduction in the number of model
HRUs is demonstrated for a subset of the initial HRUs
within subbasin 3 only (initially with 172 HRUs). In the
“basic” reduction of HRUs, a simple area threshold is ap-
plied. In subsequent examples, HRUs that are of land use
type “GLACIER” are locked HRUs (i.e., cannot be removed
or change in size), and HRUs that are either “WETLAND”
or “WATER” are protected (i.e., cannot be removed but can
still increase in size if other HRUs are removed). This opera-
tion is applied using area thresholds of 0.5 % (with no locked
or protected HRUs), 0.5 %, and 2.0 % of the subbasin area,
resulting in 56, 87, and 44 HRUs, respectively. The impact of
this operation on land use distribution within the subbasin is
summarized in Fig. 2.

In the figure, the total area of the GLACIER type de-
creases in the basic application, but otherwise remains the
same when it is locked. The WATER and WETLAND land
use types either decrease or reduce to zero in the basic ap-
plication; otherwise, they increase slightly with each indi-
vidual cleaning, relative to their proportion of the total area
and the total area of removed HRUs based on the respec-
tive area threshold. The literature has shown that hydrologic
areas such as wetlands that are small in size can still have
a disproportionately large effect on the hydrologic and bio-
geochemical response of the watershed (McLaughlin et al.,

Figure 2. A bar plot of total areas by land use for three sets
of HRU configurations, including (1) prior to any “cleaning”,
(2) following a “basic” 0.5 % area threshold merging criteria
with the rvn_rvh_cleanhrus function with no locked or pro-
tected HRUs, (3) following the same operation but with locked
and protected HRUs specified, and (4) following a 2.0 % area
threshold merging criteria. The example is done for a single sub-
basin in the watershed for demonstration purposes, and it shows
how the land use in the subbasin changes when the removal of
subbasins below the area percentage threshold is performed, as
well as when locked/protected HRUs are introduced, using the
rvn_rvh_cleanhrus function.

2014); thus, retaining particular HRUs or HRU types may be
critical in the cleaning of the HRUs. Finally, the plot shows
how the other land use types change with these operations.
The “FOREST” type increases in each case, suggesting that
the proportion of small forested HRUs may be small and
that forested HRUs tend to be larger in size. The “SHRUB-
LAND” HRUs decrease with respect to the represented pro-
portion in each case. This type of analysis could be repeated
for other HRU properties (e.g., slope, aspect, and vegetation
type). This analysis should be done in conjunction with the
use of the rvn_rvh_cleanhrus function to ensure that
the reduction in the number of HRUs does not unexpectedly
alter the overall representation of HRUs within the model and
inhibit the ability of the model to capture the dominant hy-
drologic response.

Geosci. Model Dev., 15, 7017–7030, 2022 https://doi.org/10.5194/gmd-15-7017-2022

R. Chlumsky et al.: Supporting flexible hydrologic modelling 7025

3.3 Output file processing and analysis

A number of functions within RavenR are included to han-
dle the reading of common Raven output files, such as the
Hydrographs file (rvn_hyd_read), the WatershedStorage
file (rvn_watershed_read), and other output files (e.g.,
forcings and custom output). In addition, functions to ana-
lyze the output data with typical hydrologic checks and di-
agnostics are included in the package. While these functions
are built to work with the Raven-specific read functions, they
are otherwise not specific to Raven and may be used for any
hydrologic model given that a means of reading time series
output is provided.

This section provides use cases where the realism of the
Liard model is assessed. These checks provide the modeller
with an understanding of the model dynamics and provide
more confidence that the model is functioning as expected
without model compensation errors (step 7 in Table 1). This
section also provides a demonstration of tools for evaluating
model performance.

3.3.1 Evaluation of model realism

The flexibility of Raven in the generation of model outputs,
including customized outputs that may be specified by the
user, can be leveraged to undertake rigorous checks of the
hydrologic model. Tools have been built into the RavenR
package to capitalize on this feature and facilitate a set of
model realism checks. Here, we define model realism as the
model’s ability to replicate and be consistent with anticipated
hydrologic behaviour, such as reproducing snowpack mea-
surements and producing reasonable evapotranspiration and
runoff coefficients. This definition echoes the one provided
in the literature by Euser et al. (2013). These checks can be
considered semi-automatic, as a script may be deployed to
generate the figures but they still require interpretation by a
modeller with an understanding of both the natural system
and the developed model. Here, the focus is on the realism of
the model to ensure that it is providing hydrologically plausi-
ble results; the actual performance of the model with respect
to streamflow is discussed further in Sect. 3.3.2.

The checks that are applied to the Liard River basin in
this use case include the following: (1) plotting the Budyko
curve (Budyko, 1974) for the annual average watershed in-
dices, (2) plotting the annual regime curve with monthly av-
erages, (3) examining the stationarity of moisture content in
soil storage layers, and (4) plotting the model performance
with respect to snowpack storage as the snow water equiv-
alent (SWE). Additional checks supported (but not demon-
strated here) include the following: plotting the forcing func-
tions to understand how the inputs may be influencing the
model results (i.e., wet and dry years, erroneous temperature
readings, etc.), checking the annual water balance, examin-
ing baseflow characteristics by comparing modelled and es-
timated baseflow from baseflow separation techniques, plot-

ting annual hydrographs in an overlay (i.e., spaghetti plot),
and checking the modelled hydrographs and reservoir levels,
if any reservoirs or lakes are included in the model.

The four plots associated with the stated checks performed
in this example are provided in Fig. 3.

The Budyko plot in Fig. 3a was generated using
the rvn_budyko_plot function. The Budyko curve
(Budyko, 1974) shows the relationship that quantifies how
mean annual precipitation is partitioned into discharge or
evapotranspiration (ET), where the aridity index is plotted
on the x axis, and the evaporative index is plotted on the
y axis. The Budyko pattern has been observed in multiple
catchments around the world (Vereecken et al., 2015). Cer-
tain catchment characteristics, such as significant basin stor-
age or the presence of wetlands (which are present in the
Liard model), can cause deviations from the Budyko curve.
Deviation from the line may also indicate that actual evap-
otranspiration is underestimated, which may prompt further
examination of the model.

The regime curve can be used to examine the quantities
and timing of some of the key model functions. For example,
Fig. 3b shows that the potential evapotranspiration (PET) in
the Liard model peaks at the same time as the actual evapo-
transpiration (AET) in June, and the simulated and observed
flows (sim and obs variables, respectively) are close in value
– both peaking prior to the peak in precipitation. This aligns
with the fact that peaks in the Liard River basin are typically
freshet driven. Mismatches in elements of the regime curve
would provide a point of investigation and validation into the
model.

The soil storage information can be retrieved from
Raven in either the WatershedStorage.csv file (generated
with the :WriteMassBalanceFile command) or
with the custom output options for specific soil layers
(e.g., :CustomOutput DAILY AVERAGE SOIL[0]
ENTIRE_WATERSHED). Plots such as Fig. 3c may be
applied to any storage compartment in the model to verify
the general assumption of long-term stationarity in storage
within the hydrologic model, such as lake or reservoir
storage. The stationarity assumption for a continuous
simulation model is that the soil storage should reach a
quasi-equilibrium over a long duration, oscillating around
a steady mean. Therefore, a continuous simulation model
which is continuously accumulating soil moisture during the
simulation period may indicate that, for example, there is
insufficient evapotranspiration or baseflow, resulting in the
soil storage continuously increasing to compensate for this
deficiency.

The snow plot provides a method to evaluate the snow
balance representation in the model for a particular station.
The simulated snow series is produced in Raven with the
custom output command (e.g., :CustomOutput DAILY
AVERAGE SNOW BY_HRU), and it is compared against the
observed snow course measurements. The plot in Fig. 3d was
generated for the Frances River station. The snow plot pro-

https://doi.org/10.5194/gmd-15-7017-2022 Geosci. Model Dev., 15, 7017–7030, 2022

7026 R. Chlumsky et al.: Supporting flexible hydrologic modelling

Figure 3. Multiple diagnostic plots generated from the RavenR package that may be useful in evaluating the realism of any hydrologic
model: (a) Budyko curve with annual average data points for the watershed; (b) a series of regime curves including actual evapotranspiration
(aet), observed flow (obs), potential evapotranspiration (pet), precipitation (precip), and simulated flow (sim); (c) soil storage time series
showing the stationarity in long-term storage within soil layers; and (d) plots of observed and simulated snowpack measurements at the
Frances River. All data are generated from the Raven model averaged at the watershed scale unless otherwise indicated (i.e., snowpack
SWE).

vides a visual representation of the model’s ability to repre-
sent the snow processes and compares it directly to obser-
vations. The model provides a reasonable representation of
the snowpack SWE with no consistent bias in estimation. A
similar custom output request for any state variable over a
specified temporal and spatial resolution may be produced
by Raven at the user’s request and processed using RavenR.

3.3.2 Evaluation of model performance

The RavenR package provides a broad suite of tools for an-
alyzing the results of any Raven hydrologic model, includ-
ing many tools that can be considered model independent
(step 7 in Table 1). For example, hydrograph plots, calcu-
lation of runoff coefficients, and flow duration curve plots
are available within RavenR but may be computed for any
time series of flows. The calculation of diagnostics, such as
the commonly used Nash–Sutcliffe efficiency (Nash and Sut-
cliffe, 1970) and Kling–Gupta efficiency (Gupta et al., 2009)
metrics, are not included in the RavenR package, as they can
be calculated directly within Raven and are also available
comprehensively in existing packages such as hydroGOF
(Zambrano-Bigiarini, 2020).

In this use case, a number of diagnostic plots based on sim-
ulated and observed hydrographs are presented for the Liard
River basin model. These diagnostic plots are computed at
the outlet of the Liard River basin (at the outlet near the Wa-
ter Survey of Canada station 10ED1002) and are provided in
Fig. 4. These plots are provided for a portion of the simula-
tion period (where the plot is time based), and, in practice,
these plots may be applied in both the calibration and valida-
tion periods for comparison.

In Fig. 4a, a simple hydrograph plot for a subset of the
simulation period is provided. The hydrograph shows good
agreement with respect to the magnitude and timing of sum-
mer peaks for the years shown as well as the rising limb of
the hydrograph, which was the focus of the calibration in the
work of Brown and Craig (2020), with a tendency to over-
estimate the recession from the peak in June until late De-
cember/early January. The underestimation tends to continue
until the next peak. The hydrograph is shown for a subset
of a few years, allowing for a more critical evaluation of the
model performance, as examining the full period can obscure
the important deviations of the simulated hydrograph from
observations and mask deficiencies. A subset of a hydrograph
can also be viewed dynamically as a dygraph in RavenR

Geosci. Model Dev., 15, 7017–7030, 2022 https://doi.org/10.5194/gmd-15-7017-2022

R. Chlumsky et al.: Supporting flexible hydrologic modelling 7027

Figure 4. Multiple diagnostic plots generated from the RavenR package that may be useful in evaluating model performance: (a) a hydro-
graph plot for a subset of the simulation period; (b) a scatterplot of simulated and observed annual peak flows; (c) a plot of timing annual
peak timing errors; and (d) a plot of cumulative annual flow volumes in time. In plots (a) and (d), the observed value is plotted in black, and
the simulated value is plotted in orange.

with the rvn_hyd_dygraph function, which is supported
by the dygraphs package (Vanderkam et al., 2018).

The peak flow scatterplot (Fig. 4b) is a plot of the sim-
ulated and observed annual peak flows, calculated based
on the 1 October water year and produced using the
rvn_annual_peak function. This figure provides a vi-
sual assessment of the performance of modelled peak flow
magnitudes, including any systematic bias in over- or under-
predicting peaks as a function of peak magnitude. Here,
the model appears to estimate peaks with reasonable perfor-
mance and without systematic bias, although additional data
may be required to produce conclusions that are statistically
valid.

While Fig. 4b captures the performance with respect
to the magnitude of the flow peaks, the timing of peak
flows is not assessed. The plot in Fig. 4c assesses the
error in peak timing (rather than magnitude) with the
rvn_annual_peak_timing_error function. A per-
fect model would have all points fall along the zero line,
indicating that there is no error in the timing of predicted
peaks. The results for the Liard simulation indicate that the
model tends to predict peaks slightly later than the observed
data, while some of the larger errors in timing tend to be in
early peak prediction. In a forecasting framework, a data as-

similation technique may reduce the timing (and magnitude)
errors that are present in the continuous simulation evaluated
here. However, this tendency of the model may still be use-
ful information for forecasters. The use of multiple functions
in tandem within RavenR to examine both the peak magni-
tude and timing errors can be used to evaluate the model per-
formance more comprehensively than a single function (see
multiple RavenR functions named as rvn_annual_*).

Finally, Fig. 4d provides a comparison of cumulative flow
volumes between the simulated and observed model in time.
This plot is generated by the rvn_cum_plot_flow func-
tion. The plot for the Liard model shows that the December–
March winter period of each year is a time of deviation
in cumulative volumes, whereas the freshet-driven summer
peak periods tend to match volume quite well overall. This
is likely a result of the calibration procedure in Brown and
Craig (2020), where ice-affected flows in the winter were
not considered in the calibration procedure due to high levels
of uncertainty associated with the measurements. Additional
functions that examine the relative volumes of simulated and
observed flows, but aggregate them rather than examining
the differences in time, are the rvn_monthly_vbias and
the rvn_annual_volume functions, which provide the
monthly average volume differences and the annual volume

https://doi.org/10.5194/gmd-15-7017-2022 Geosci. Model Dev., 15, 7017–7030, 2022

7028 R. Chlumsky et al.: Supporting flexible hydrologic modelling

differences in a scatterplot for each year, respectively. The
volume is generally a useful diagnostic metric, as it integrates
the modelled hydrograph performance in time and allows
the modeller to identify periods of poor cumulative error or
systematic errors (e.g., underestimating overall volume) that
may be not clear nor obvious when only examining flows.

4 Conclusions

This paper presented the RavenR package, an R-based set
of tools that is designed to support the development, use, and
analysis of hydrologic models developed using Raven but
can be readily adapted for any hydrologic modelling output.
RavenR is a free, open-source software that is intended to
support the wealth of options in a flexible modelling frame-
work while maintaining or improving the transparency and
reproducibility of the analyses undertaken by the modeller.

The tools within RavenR may be used at any stage of the
typical modelling workflow. Although the tools are designed
for use with Raven, the analysis and utility functions may
be useful in conjunction with any hydrologic model that has
similar requirements and workflows to Raven. The RavenR
tools provide the means for preparing Raven input files, vi-
sualizing and processing input data, executing Raven, and
generating a vast array of model checks and performance-
related graphics from the Raven output files. All functions
in the package are supplemented by additional information
and examples (consistent with CRAN requirements), and the
package is further accompanied by the introductory docu-
mentation in the form of a vignette. This paper illustrates
how the RavenR functions may be used in both academic
and industrial projects, including generating model input .rvt
files, visualizing the model structure, and exploring and as-
sessing the hydrologic model results. This includes aiding
the modeller in building an understanding of and trust in the
constructed hydrologic model.

A set of RavenR use cases are presented for the Liard
River basin, for which a Raven model has previously been
built and thoroughly tested (Brown and Craig, 2020). The use
cases present how a subset of tools may be used to generate
input files for, or analyze the results of, the Raven model of
the Liard River basin. The examples are bolstered by an in-
terpretation of the functions and results, which may be use-
ful in interpreting and building confidence in any hydrologic
model. The accompanying data repository and code for this
paper can fully recreate the figures and analyses presented in
the use cases, demonstrating best practices for reproducibil-
ity in hydrologic and scientific publications.

Due to the open-source nature of the Raven project, the
code is transparent and accessible to users and is being con-
tinuously supplemented with new functionalities and im-
provements. Similarly, the RavenR package is open source
and is in active development. It is anticipated that the
RavenR project will also continue to improve and expand

its functionality in order to meet its goal of supporting Raven
users from all backgrounds and experience levels while im-
proving the reproducibility of their work.

Code and data availability. The RavenR package is free and
open-source software, and the version of the package (v.2.1.4)
used to produce the results of this paper is archived on Zen-
odo: https://doi.org/10.5281/zenodo.5525041 (Chlumsky et al.,
2021a). All R code and data used to generate the results
and figures presented in this paper are archived on Zen-
odo at https://doi.org/10.5281/zenodo.5534817 (Chlumsky et al.,
2022a) and are also available from GitHub (https://github.com/
rchlumsk/RavenR_manuscript_2021, last access: 20 July 2022).
The RavenR package is currently available on the Com-
prehensive R Archive Network (CRAN; https://cran.r-project.
org/package=RavenR; Chlumsky et al., 2022b), and the de-
velopment version of the package is available from Zenodo
(https://doi.org/10.5281/zenodo.3468441; Chlumsky et al., 2022c).
The Raven hydrologic modelling framework is open source and
may be downloaded from http://raven.uwaterloo.ca/ (Craig and the
Raven Development Team, 2022).

Author contributions. RC initiated the concept of the RavenR
package. RC and JRC contributed the bulk of the package scripts,
with contributions and development efforts from all authors. GB
and JRC provided the Liard River model files. The use cases were
prepared by RC, LS, SGML, SG, and GB. The article was prepared
by RC with contributions from all authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors would like to thank all those who
have contributed to the RavenR project since its inception, includ-
ing Larry (Haobo) Liu and Joel Trubilowicz. The authors would also
like to thank Paul C. Astagneau and the two anonymous reviewers
for their comments on improving our manuscript and software.

Financial support. This research has been supported by the Natu-
ral Sciences and Engineering Research Council of Canada (grant
no. CGSD3-558879-2021) and the Engineering Excellence Doc-
toral Fellowship provided at the University of Waterloo.

Review statement. This paper was edited by Wolfgang Kurtz and
reviewed by Paul C. Astagneau and two anonymous referees.

Geosci. Model Dev., 15, 7017–7030, 2022 https://doi.org/10.5194/gmd-15-7017-2022

https://doi.org/10.5281/zenodo.5525041
https://doi.org/10.5281/zenodo.5534817
https://github.com/rchlumsk/RavenR_manuscript_2021
https://github.com/rchlumsk/RavenR_manuscript_2021
https://cran.r-project.org/package=RavenR
https://cran.r-project.org/package=RavenR
https://doi.org/10.5281/zenodo.3468441
http://raven.uwaterloo.ca/

R. Chlumsky et al.: Supporting flexible hydrologic modelling 7029

References

Albers, S.: tidyhydat: Extract and Tidy Canadian Hy-
drometric Data, J. Open Source Softw., 2, 511,
https://doi.org/10.21105/joss.00511, 2017.

Anderson, E., Chlumsky, R., McCaffrey, D., Trubilowicz, J., Shook,
K. R., and Whitfield, P. H.: R-functions for Canadian hydrolo-
gists: a Canada-wide collaboration, Can. Water Resour. J., 44,
108–112, 2018.

Astagneau, P. C., Thirel, G., Delaigue, O., Guillaume, J. H. A.,
Parajka, J., Brauer, C. C., Viglione, A., Buytaert, W., and
Beven, K. J.: Technical note: Hydrology modelling R pack-
ages – a unified analysis of models and practicalities from
a user perspective, Hydrol. Earth Syst. Sci., 25, 3937–3973,
https://doi.org/10.5194/hess-25-3937-2021, 2021.

Brown, G. and Craig, J. R.: Structural calibration of
an semi-distributed hydrological model of the Liard
River basin, Can. Water Resour. J., 45, 287–303,
https://doi.org/10.1080/07011784.2020.1803143, 2020.

Budyko, M. I.: Climate and life, International Geophysics Series,
English ed. edited by: Miller, D. H., Academic Press New York,
18, xvii, 508 p., ISBN 0121394506, 1974.

Chadalawada, J., Herath, H. M. V. V., and Babovic, V.:
Hydrologically Informed Machine Learning for Rainfall-
Runoff Modeling: A Genetic Programming-Based Toolkit
for Automatic Model Induction, Water Resour. Res., 56,
https://doi.org/10.1029/2019WR026933, 2020.

Chlumsky, R., Craig, J. R., Brown, G., Scantlebury, L., Grass, S.,
Lin, S., and Arabzadeh, R.: rchlumsk/RavenR: v2.1.4 release,
Zenodo [code], https://doi.org/10.5281/zenodo.5525041, 2021a.

Chlumsky, R., Mai, J., Craig, J. R., and Tolson, B. A.: Simultaneous
Calibration of Hydrologic Model Structure and Parameters Us-
ing a Blended Model, Water Resour. Res., 57, e2020WR029229,
https://doi.org/10.1029/2020WR029229, 2021b.

Chlumsky, R., Craig, J. R., Brown, G., Scantlebury,
L., Grass, S., Lin, S., and Arabzadeh, R.: rchlum-
sk/RavenR_manuscript_2021: Initial pre-release v0.2, Zenodo
[data set], https://doi.org/10.5281/zenodo.6421692, 2022a.

Chlumsky, R., Craig, J. R., Scantlebury, L., Lin, S., Grass, S.,
Brown, G., and Arabzadeh, R.: RavenR: Raven Hydrological
Modelling Framework R Support and Analysis, R package ver-
sion 2.1.9, https://cran.r-project.org/package=RavenR, last ac-
cess: 20 July 2022b.

Chlumsky, R., Craig, J. R., Scantlebury, L., Lin, S., Grass, S.,
Brown, G., and Arabzadeh, R.: rchlumsk/RavenR: latest release,
Zenodo [code], https://doi.org/10.5281/zenodo.3468441, 2022c.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A.,
Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Under-
standing Structural Errors (FUSE): A modular framework to di-
agnose differences between hydrological models, Water Resour.
Rese., 44, 12, https://doi.org/10.1029/2007WR006735, 2008.

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method
of multiple working hypotheses for hydrological modeling, Wa-
ter Resour. Res., 47, 9, https://doi.org/10.1029/2010WR009827,
2011.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp,
D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W.,
Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen,
R. M.: A unified approach for process-based hydrologic mod-

eling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514,
2015.

Coxon, G., Freer, J., Lane, R., Dunne, T., Knoben, W. J. M.,
Howden, N. J. K., Quinn, N., Wagener, T., and Woods, R.:
DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Pre-
dictions of HydRology, Geosci. Model Dev., 12, 2285–2306,
https://doi.org/10.5194/gmd-12-2285-2019, 2019.

Craig, J. R. and the Raven Development Team: Raven: User’s and
Developer’s Manual v3.5, http://raven.uwaterloo.ca/, last access:
20 July 2022.

Craig, J. R., Brown, G., Chlumsky, R., Jenkinson, R. W., Jost, G.,
Lee, K., Mai, J., Serrer, M., Sgro, N., Shafii, M., Snowdon,
A. P., and Tolson, B. A.: Flexible watershed simulation with
the Raven hydrological modelling framework, Environ. Mod-
ell. Softw., 129, https://doi.org/10.1016/j.envsoft.2020.104728,
2020.

Csardi, G. and Nepusz, T.: The igraph software package for com-
plex network research, InterJournal, Complex Systems, 1695,
http://igraph.org (last access: 20 July 2022), 2006.

Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy 1.3.0: an
open-source Python framework for building, testing, and improv-
ing conceptual hydrological models, Geosci. Model Dev., 14,
7047–7072, https://doi.org/10.5194/gmd-14-7047-2021, 2021.

Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlen-
brook, S., and Savenije, H. H. G.: A framework to assess the re-
alism of model structures using hydrological signatures, Hydrol.
Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-
1893-2013, 2013.

Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister,
L.: Understanding catchment behavior through stepwise
model concept improvement, Water Resour. Res., 44, 1,
https://doi.org/10.1029/2006WR005563, 2008.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a
flexible approach for conceptual hydrological modeling: 1. Mo-
tivation and theoretical development, Water Resour. Res., 47, 11,
https://doi.org/10.1029/2010WR010174, 2011.

Grolemund, G. and Wickham, H.: Dates and Times
Made Easy with lubridate, J. Stat. Softw., 40, 1–25,
https://doi.org/10.18637/jss.v040.i03, 2011.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hoey, S. V., Seuntjens, P., van Der Kwast, J., and Nopens,
I.: A qualitative model structure sensitivity analysis method
to support model selection, J. Hydrol., 519, 3426–3435,
https://doi.org/10.1016/j.jhydrol.2014.09.052, 2014.

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and
Arheimer, B.: Most computational hydrology is not reproducible,
so is it really science?, Water Resour. Res., 52, 7548–7555,
https://doi.org/10.1002/2016WR019285, 2016.

Jackson, E. K., Roberts, W., Nelsen, B., Williams, G. P., Nel-
son, E. J., and Ames, D. P.: Introductory overview: Er-
ror metrics for hydrologic modelling – A review of com-
mon practices and an open source library to facilitate
use and adoption, Environ. Modell. Softw., 119, 32–48,
https://doi.org/10.1016/j.envsoft.2019.05.001, 2019.

Kavetski, D. and Fenicia, F.: Elements of a flexible ap-
proach for conceptual hydrological modeling: 2. Applica-

https://doi.org/10.5194/gmd-15-7017-2022 Geosci. Model Dev., 15, 7017–7030, 2022

https://doi.org/10.21105/joss.00511
https://doi.org/10.5194/hess-25-3937-2021
https://doi.org/10.1080/07011784.2020.1803143
https://doi.org/10.1029/2019WR026933
https://doi.org/10.5281/zenodo.5525041
https://doi.org/10.1029/2020WR029229
https://doi.org/10.5281/zenodo.6421692
https://cran.r-project.org/package=RavenR
https://doi.org/10.5281/zenodo.3468441
https://doi.org/10.1029/2007WR006735
https://doi.org/10.1029/2010WR009827
https://doi.org/10.5194/gmd-12-2285-2019
http://raven.uwaterloo.ca/
https://doi.org/10.1016/j.envsoft.2020.104728
http://igraph.org
https://doi.org/10.5194/gmd-14-7047-2021
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.1029/2006WR005563
https://doi.org/10.1029/2010WR010174
https://doi.org/10.18637/jss.v040.i03
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2014.09.052
https://doi.org/10.1002/2016WR019285
https://doi.org/10.1016/j.envsoft.2019.05.001

7030 R. Chlumsky et al.: Supporting flexible hydrologic modelling

tion and experimental insights, Water Resour. Res., 47, 11,
https://doi.org/10.1029/2011WR010748, 2011.

Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C.,
and Woods, R. A.: Modular Assessment of Rainfall–Runoff
Models Toolbox (MARRMoT) v1.2: an open-source, extend-
able framework providing implementations of 46 conceptual hy-
drologic models as continuous state-space formulations, Geosci.
Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-
2463-2019, 2019.

Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., and
Woods, R. A.: A brief analysis of conceptual model structure
uncertainty using 36 models and 559 catchments, Water Resour.
Res., 56, 9, https://doi.org/10.1029/2019WR025975, 2020.

LaZerte, S. E. and Albers, S.: weathercan: Download and format
weather data from Environment and Climate Change Canada, J.
Open Source Softw., 3, 571, https://doi.org/10.21105/joss.00571,
2018.

Leavesley, G. H., Markstrom, S. L., Restrepo, P. J., and Viger, R. J.:
A modular approach to addressing model design, scale, and pa-
rameter estimation issues in distributed hydrological modelling,
Hydrol. Process., 16, 173–187, 2002.

Mai, J., Craig, J. R., and Tolson, B. A.: Simultaneously
determining global sensitivities of model parameters and
model structure, Hydrol. Earth Syst. Sci., 24, 5835–5858,
https://doi.org/10.5194/hess-24-5835-2020, 2020.

McLaughlin, D. L., Kaplan, D. A., and Cohen, M. J.: A
significant nexus: Geographically isolated wetlands influence
landscape hydrology, Water Resour. Res., 50, 7153–7166,
https://doi.org/10.1002/2013WR015002, 2014.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Orellana, B., Pechlivanidis, I., Mcintyre, N., Wheater, H., and
Wagener, T.: A Toolbox for the Identification of Parsimonious
Semi-Distributed Rainfall-Runoff Models: Application to the
Upper Lee Catchment, in: International Congress on Environ-
mental Modelling and Software, https://scholarsarchive.byu.edu/
cgi/viewcontent.cgi?article=2723&context=iemssconference
(last access: 15 September 2021), 2008.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsi-
monious model for streamflow simulation, J. Hydrol., 279, 275–
289, 2003.

Pilz, T., Francke, T., Baroni, G., and Bronstert, A.: How to Tailor
my Process-based Hydrological Model? Dynamic Identifiability
Analysis of Flexible Model Structures, Water Resour. Res., 56,
8, https://doi.org/10.1029/2020WR028042, 2020.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 15 September 2021),
2021.

Remmers, J. O., Teuling, A. J., and Melsen, L. A.:
Can model structure families be inferred from
model output?, Environ. Model. Softw., 133, 104817,
https://doi.org/10.1016/j.envsoft.2020.104817, 2020.

Ryan, J. A. and Ulrich, J. M.: xts: eXtensible Time Series, r
package version 0.12.1, https://CRAN.R-project.org/package=
xts (last access: 15 September 2022), 2020.

Slater, L. J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A.,
Khouakhi, A., Prosdocimi, I., Vitolo, C., and Smith, K.: Us-
ing R in hydrology: a review of recent developments and
future directions, Hydrol. Earth Syst. Sci., 23, 2939–2963,
https://doi.org/10.5194/hess-23-2939-2019, 2019.

Spieler, D., Mai, J., Craig, J. R., Tolson, B. A., and Schütze,
N.: Automatic Model Structure Identification for Con-
ceptual Hydrologic Models, Water Resour. Res., 56, 9,
https://doi.org/10.1029/2019WR027009, 2020.

Stroustrup, B.: The C++ programming language, Addison-Wesley,
Upper Saddle River, NJ, 4th Edn., ISBN 978-0321563842, 2013.

Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, Cre-
ateSpace, Scotts Valley, CA, ISBN 1441412697, 2009.

Vanderkam, D., Allaire, J., Owen, J., Gromer, D., and
Thieurmel, B.: dygraphs: Interface to “Dygraphs” Interac-
tive Time Series Charting Library, r package version 1.1.1.6,
https://CRAN.R-project.org/package=dygraphs (last access:
15 September 2021), 2018.

Vereecken, H., Huisman, J. A., Hendricks Franssen, H. J., Brügge-
mann, N., Bogena, H. R., Kollet, S., Javaux, M., van der Kruk,
J., and Vanderborght, J.: Soil hydrology: Recent methodological
advances, challenges, and perspectives, Water Resour. Res., 51,
2616–2633, https://doi.org/10.1002/2014WR016852, 2015.

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis,
Springer-Verlag New York, https://ggplot2.tidyverse.org (last ac-
cess: 15 September 2021), 2016.

Wickham, H.: tidyr: Tidy Messy Data, r package version
1.1.3, https://CRAN.R-project.org/package=tidyr (last access:
15 September 2021), 2021.

Wickham, H., François, R., Henry, L., and Müller, K.: dplyr: A
Grammar of Data Manipulation, r package version 1.0.5, https:
//CRAN.R-project.org/package=dplyr (last access: 15 Septem-
ber 2021), 2021a.

Wickham, H., Hester, J., and Chang, W.: devtools: Tools to Make
Developing R Packages Easier, r package version 2.4.0, https://
CRAN.R-project.org/package=devtools (last access: 15 Septem-
ber 2021), 2021b.

Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit func-
tions for comparison of simulated and observed hydrolog-
ical time series, r package version 0.4-0, Zenodo [code],
https://doi.org/10.5281/zenodo.839854, 2020.

Geosci. Model Dev., 15, 7017–7030, 2022 https://doi.org/10.5194/gmd-15-7017-2022

https://doi.org/10.1029/2011WR010748
https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.1029/2019WR025975
https://doi.org/10.21105/joss.00571
https://doi.org/10.5194/hess-24-5835-2020
https://doi.org/10.1002/2013WR015002
https://doi.org/10.1016/0022-1694(70)90255-6
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2723&context=iemssconference
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2723&context=iemssconference
https://doi.org/10.1029/2020WR028042
https://www.R-project.org/
https://doi.org/10.1016/j.envsoft.2020.104817
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=xts
https://doi.org/10.5194/hess-23-2939-2019
https://doi.org/10.1029/2019WR027009
https://CRAN.R-project.org/package=dygraphs
https://doi.org/10.1002/2014WR016852
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools
https://doi.org/10.5281/zenodo.839854

	Abstract
	Introduction
	Methods
	The Raven hydrologic modelling framework
	RavenR software description
	RavenR overview
	Installation and documentation
	Sample data sets

	Use cases of the RavenR package
	Liard River basin
	Input file processing
	Model configuration
	Forcing data
	Observation data
	Model discretization file

	Output file processing and analysis
	Evaluation of model realism
	Evaluation of model performance

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

