
Automated Classification of Phonetic Segments in Child Speech Using 
Raw Ultrasound Imaging 

Saja Al Ani1, Joanne Cleland2 and Ahmed Zoha1 
1James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K. 

2School of Psychological Sciences and Health, University of Strathclyde, Glasgow, U.K. 

Keywords: Ultrasound Tongue Imaging, Child Speech, Texture Descriptor, Convolutional Neural Networks. 

Abstract: Speech sound disorder (SSD) is defined as a persistent impairment in speech sound production leading to 
reduced speech intelligibility and hindered verbal communication. Early recognition and intervention of 
children with SSD and timely referral to speech and language therapists (SLTs) for treatment are crucial. 
Automated detection of speech impairment is regarded as an efficient method for examining and screening 
large populations. This study focuses on advancing the automatic diagnosis of SSD in early childhood by 
proposing a technical solution that integrates ultrasound tongue imaging (UTI) with deep-learning models. 
The introduced FusionNet model combines UTI data with the extracted texture features to classify UTI. The 
overarching aim is to elevate the accuracy and efficiency of UTI analysis, particularly for classifying speech 
sounds associated with SSD. This study compared the FusionNet approach with standard deep-learning 
methodologies, highlighting the excellent improvement results of the FusionNet model in UTI classification 
and the potential of multi-learning in improving UTI classification in speech therapy clinics. 

1 INTRODUCTION 

Speech sound disorder (SSD) is a common condition 
in early childhood, with a range of speaking 
difficulties affecting intelligibility (Shahin et al., 
2019). Current approaches to the assessment and 
treatment of SSD rely on the perceptual skills of the 
treating clinicians, but this is known to be subject to 
difficulties with reliability and time-consuming. 
Technical solutions to this problem are required, 
particularly the automatic classification of images 
into specific speech sounds, for assessment and 
tracking progress in speech therapy. Utilising 
ultrasound tongue imaging (UTI) to visualise the 
movement and deformation of the tongue is currently 
a prominent technique in clinical phonetics that 
shows promise for the assessment and treatment of 
SSDs. This approach can image tongue motion at a 
relatively high frame rate of 60 Hz or higher, allowing 
for the observation of subtle and quick movements 
during speech production. Recent developments in 
the field of UTI have focused on feature selection and 
contour extraction (Xu et al., 2016). Despite these 
enhancements, accurate interpretation remains a 
challenge characterised by high-level speckle noise 

and information loss during dimension reduction 
(Zhu et al., 2018). 

In response to these obstacles, researchers have 
made remarkable advances in deep learning using 
Convolutional Neural Networks (CNNs). CNN has 
become the method of choice for researchers 
investigating UTI processing, offering a solution that 
addresses tasks such as contour segmentation, feature 
selection, and tongue image classification, which are 
critical for enhancing the accuracy and efficiency of 
UTI analysis (Hueber et al., 2007) and, in turn, its 
clinical application in speech therapy clinics. 

However, the efficiency of deep learning models 
requires a sufficient amount of labelled data, which is 
difficult to acquire in practice owing to the cost of 
labelling. Therefore, using multimodal learning with 
image and texture features can be beneficial, 
particularly in the healthcare sector, where the 
integration of medical images with another source of 
information can lead to more precise diagnoses and 
treatment recommendations. In this study, we 
explored UTI classification using a multi-learning 
data approach, including our proposed FusionNet 
model. This model combines UTI data with extracted 
texture features, utilising a combination of image and 
texture feature processing layers to enhance the 
analysis and classification of UTI. For the 
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classification task, we employed various sets of deep-
learning methodologies. This included CNN and 
DNN models, as well as pre-trained models, such as 
ResNet50 and Inception V3. Our inclusive approach 
involved the FusionNet model along with these 
established methods to demonstrate the efficacy of 
various techniques in UTI classification. 

2 RELATED WORK 

Inspired by advancements in deep learning, 
researchers have studied various supervised and 
unsupervised learning techniques to distinguish 
between ultrasound tongue motion. For instance, 
Hueber et al. and Cai et al. (Hueber et al., 2007), (Cai 
et al., 2011) recommended applying principal 
component analysis (PCA) and discrete cosine 
transform (DCT) to extract features in their 
classification tasks for silent speech synthesis and 
recognition. However, these feature representations 
may lose important details from the UTI during the 
overall dimension reduction procedure. Xu et al.(Xu 
et al., 2017) are an outliner because they use CNN to 
analyse tongue gesture classification from ultrasound 
data. However, this study only focused on two 
speakers, with generalisation to a third. Furthermore, 
an automatic approach for extracting the contour of 
the tongue from ultrasound data has been presented 
by Fabre et al. (Fabre et al., 2015). Using data from 
eight speakers for training and one held-out speaker 
for evaluation, the system was assessed in the 
speaker-independent mode. In each of these studies, 
a significant decrease in accuracy was observed when 
speaker-independent systems were used compared to 
speaker-dependent systems. You et al. discussed 
strategies for using several unlabelled UTI datasets to 
enhance the effectiveness of the UTI classification 
challenge (You et al., 2023). Using masking 
modelling, they investigated self-supervised learning. 
Their approach increased the classification accuracy 
in four different circumstances by an average of 
13.33% compared with earlier competing algorithms. 

In these studies, CNN models have been widely 
employed owing to their effectiveness and significant 
generalisation capacity. Achieving this robustness 
requires a sizable training dataset, which is rarely 
available when researchers employ their dataset. This 
study explored a multi-learning approach using two 
types of inputs. By combining the two types of inputs, 
the feature selection process can be significantly 
enhanced, leading to more promising results. 

3 EXPERIMENTAL SETUP 

3.1 Image Dataset 

In this work, we utilised the Ultrax Typically 
Developing dataset (UXTD), which was obtained 
from the openly accessible UltraSuite repository 
(Eshky et al., 2018). This dataset was previously used 
in studies by (Ribeiro et al., 2019) and (Xiong et al., 
2022). The dataset consists of a combination of 
phrases with words and phoneme speech data. For 
this study, only type A (semantically unrelated 
words) and type B (non-words) utterances were 
selected. Nine children's raw scan line data that 
represents the target utterances were extracted and 
transformed into  600x480x3 PNG images and four 
classes were determined to classify utterances: 

1) bilabial and labiodental phones (e.g. /v/, /p/, 
/b/). 

2) dental, alveolar and postalveolar phones 
(e.g. /th/, /d/, /t/, /z/, /sh/).  

3) velar phones (e.g. /g/, /k/). 
4) alveolar approximant /r/. 

3.2 Texture Features Dataset 

Texture analysis in ultrasound imaging plays a key 
role in the analysis of surface defect discovery (Xie, 
2008) and image-based medical diagnosis 
(Castellano et al., 2004). In image processing, textural 
images refer to a specific pattern of distribution and 
dispersion of the intensity of the pixel illumination 
repeated sequentially throughout the image (Fekri-
Ershad, 2019).  

The process involves extracting features from an 
image based on its textural appearance and 
subsequently utilising these features for 
classification. In the current study, a Local Binary 
Patterns (LBP) operator was employed to 
demonstrate texture feature analysis. LBP is one of 
the textural image descriptors that can identify the 
local spatial structure and the local contrast of the 
image or part of it. It has become a broadly used 
texture descriptor due to its high classification 
accuracy in the implementation and extraction of 
proper features. This descriptor works by analysing 
each pixel with its neighbouring pixels by comparing 
them to a threshold value of its grayscale (Zhenhua 
Guo et al., 2010). The pixel serves as a centre of 
reference, and its grayscale level determines the 
classification of its neighbours as either 0 or 1. The 
centre pixel is then assigned a value which is a 
calculated sum of its binary neighbours: 
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(1)

The above equation involves the grey levels of the 
centre and neighbouring pixels (gc and gp), the total 
number of neighbourhood pixels (p), the radius (R), 
and binary values from thresholding. Figure 1 
displays examples of the original UTI and the UTI 
after the LBP operator has been applied. 
 

 
(a)                                     (b) 

Figure 1: (a) original UTI, (b) UTI after performing LBP. 

3.3 Classification Models 

For the classification task, several deep learning 
methodologies have been developed, such as CNN 
and DNN models, which were adopted by Ribeiro et 
al. (Ribeiro et al., 2019). Furthermore, pre-trained 
models including ResNet50 and Inception V3 were 
involved, along with our proposed method, the 
FusionNet model. 

A CNN is a specific type of neural network created 
to address image recognition problems. 
Convolutional layers are important because they can 
learn localized characteristics with a much smaller 
number of parameters. A collection of compact, 
locally receptive filters that convolve the entire input 
image are used in these layers. These filters are highly 
effective at detecting local characteristics because 
they analyse the relationships between pixels in 
smaller image areas. Pooling layers reduce spatial 
information by calculating averages over small 
regions in each feature map, thereby reducing the 
computational costs. Furthermore, fully connected 
are fed into the classification layer with fewer 
parameters, and therefore, less computing 
complexity.   

The next model is the DNN, which is based on the 
perceptron model (Rosenblatt, 1958). Each node 
encounters several weighted inputs that are added to 
an activation function to produce the output value. 
This Perceptron can be integrated into a feedforward 
network, with the outputs of all nodes in one layer 
flowing into each node in the next, resulting in a 
completely connected network.   

The ResNet50 architecture is a convolutional 
neural network with 50 layers deep (He et al., 2015). 

The main intention of using ResNet50 is the ease of 
optimisation and the fact that it has been trained on 
more than a million images from the ImagNet 
database (Krizhevsky et al., 2012), which makes it 
useful when we have limited data.  

Furthermore, the Inception V3 is a convolutional 
neural network with 48 layers (Szegedy et al., 2015). 
It is known for its efficiency in capturing features at 
multiple scales and performance in image 
classification and computer vision tasks. The final 
layer of both pre-trained models was adapted to be 
compatible with the number of classes. 

Finally, our proposed multi-learning method uses 
the FusionNet model. This model consists of two 
main parts: image processing layers for handling 
visual information, and texture descriptor processing 
layers for including additional texture-related 
features. The image layers utilise convolutional 
operations and max pooling for hierarchical feature 
extraction, whereas the texture layers comprise fully 
connected neural network segments. The outputs 
from these parts were concatenated and passed 
through fully connected layers with dropout 
regularization, leading to the final classification 
output. This architecture allows the model to leverage 
both visual and texture information to improve the 
performance in classification tasks. 

All network architectures used in this study were 
optimised for 50 epochs using the stochastic gradient 
descent (SGD) optimiser at a learning rate of 0.001 
and 32 mini-batches. After the training phase, the 
testing procedure begins by loading the test data. A 
dataset of randomly selected images and texture 
features is created to test the models. These data 
inputs were fed into the proposed models to predict 
the test dataset. Comparisons were made between the 
outcome values of each model testing phase. 

3.4 Learning Scenarios 

To compare our approach with other deep learning 
algorithms, we utilised data from nine speakers 
sourced from the UXTD dataset, a dataset previously 
employed by (Ribeiro et al., 2019) in their research. 
In our experiments, several scenarios were 
considered. First, it is speaker-dependent, where the 
training process is customised based on the unique 
samples of an individual speaker. Second, in the 
multi-speaker scenario, the system was trained using 
a dataset that included UTI samples from multiple 
speakers. The goal is to develop a model that can 
recognise and adapt to a variety of speakers. Third, 
speaker-independent systems aim to be more 
adaptable by being trained on a broader range of 
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speaker samples; however, the main objective is to 
develop a model that can generalise well across 
speakers without being specifically tuned to any 
speaker's characteristics. 

Three training and testing stages were performed. 
In step 1, only the UTI input using the DNN and CNN 
models was employed. In step 2, we further refined 
the CNN and DNN model architectures to enhance 
the model performance and utilise the pre-trained 
ResNet50 and Inception models. Finally, in Step 3, 
we investigated the performance of our proposed  
FusionNet model, which combined images and 
texture features as an input to train a deep learning 
model. 

4 RESULTS  

We trained five models at different stages using two 
different training input setups. For each stage, we 
present the results for every network structure to 
demonstrate how different architectures may vary the 
performance of the proposed deep learning model. 

The results of step 1, UTI using CNN and DNN 
models, are shown in Figure 2, presenting an 
accuracy comparison with previously published data 
(Ribeiro et al., 2019). When comparing the model 
classifier, we observed that the CNN classifier 
outperformed all scenarios. Examining training 
scenarios, speaker-dependent systems demonstrate 
better performance at 74.30% accuracy compared to 
multi-speaker systems with 72.42% accuracy, which 
shows that the system adapted its learning to the 
unique attributes of a specific speaker. Speaker-
independent systems underachieve, which explains 
the challenge involved in generalisation to unseen 
speakers. 

 
(a)                                    (b)              

Figure 2: Accuracy scores for DNN and CNN models (a) 
previously published data[11], (b) our results. 

After modifying the CNN and DNN models in Step 
2, we reevaluated the classification. Furthermore, we 
conducted an assessment using ResNet50 and 
Inception V3 for all the speaker scenarios. Figure 3 
shows the precision results for different scenarios. In 
this case, CNN and Inception V3 consistently 
demonstrated higher precision values across speaker-

dependent, multi-speaker, and speaker-independent 
regions than DNN and ResNet50. DNN shows 
competitive precision in speaker-dependent and 
multi-speaker scenarios but experiences a significant 
drop in precision for speaker-independent scenarios.  

ResNet50 performed well in speaker-independent 
scenarios, displaying higher precision values; 
however, CNN and Inception V3 maintained 
comparable performance in multi-speaker settings. 
Inception V3 outperformed it with consistently high 
precision across various scenarios. The precision 
results across different scenarios reveal notable 
distinctions among the evaluated models for UTI 
classification, especially in scenarios with diverse 
speaker characteristics. 

 
Figure 3: Models’ precision performance. 

Owing to the observed declines in precision for 
particular models and scenarios, in step 3, an alternate 
methodology was introduced and examined to 
improve the performance of the UTI classification. 
Figure 4 presents the precision performance results of 
the proposed FusionNet model across the speaker 
scenarios. In the speaker-dependent set, the model 
demonstrated a high precision of 91.88%. For the 
multispeaker scenario, the model demonstrated 
robust performance with a precision of 92.12%. In 
particular, in a challenging speaker-independent 
scenario, the model successfully achieved a precision 
of 82.32%. 

 
Figure 4: FusionNet model precision performance. 
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The behaviour of the training and testing losses 
and accuracy for speaker-independent are shown in 
Figure 5, where the losses decrease slowly, and the 
testing accuracy reaches almost its highest accuracy 
after 45 iterations and stabilises in further iterations 
with steady improvement. 

 
Figure 5: The accuracy and loss behaviours of the training 
and testing. 

The high accuracy of the testing data is a sign 
of the success of the classifier. Confusion matrices 
were implemented to examine the performance of the 
FusionNet model further. In the confusion matrices, 
the row represents the actual utterances class, and the 
column represents the utterances class predicted by 
the model Figure 6 presents the confusion matrices 
where the model successfully achieved high accuracy 
in classifying the classes in the speaker-independent 
scenario. However, the most misclassified images in 
the dental-alveolar class scored relatively low 
accuracy compared to the other classes.  
The implementation of the FusionNet model was 
shown to be an approach to the initial performance 
challenges, leading to a significant improvement in 
precision. 

 
Figure 6: Confusion matrix for speaker-independent on the 
testing dataset. 

5 CONCLUSION 

In recent years, deep learning methodologies, 
particularly CNN, have been applied across diverse 
domains, including the diagnosis of speech disorders, 
phonetics studies, and segmentation of the tongue. 

The success of these techniques in speech fields has 
encouraged the idea of conducting this research by 
employing deep learning techniques for phonetics 
segment classification. In this study, image 
processing and deep learning algorithms have shown 
promising results in classifying UTIs from child 
speech. Accurate classification of UTI from child 
speech can be used for the automatic assessment of 
child speech. The performance of adapting different 
methodologies has been promising, although it 
degrades when evaluating previously unseen data, 
thereby emphasising the need for robust adaptability. 
An encouraging approach for improving the 
classification precision in all speaker scenarios was 
developed through the integration of multi-learning 
data. In particular, speaker-independent results 
showed excellent improvement, with a precision of 
82.32%. To provide more clarity on the reported 
findings, future research should focus on two main 
aims. First, it seeks to expand the size of the dataset 
by including more samples. Second, it investigates 
which speaker scenarios or patterns contribute to 
classification errors. 
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