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Abstract: The prediction of protein secondary structure is a topic that has been tackled by many researchers in the 
field of bioinformatics.  In previous work, this problem has been solved by various methods including the use of traditional 
classification neural networks with the standard error back-propagation training algorithm. Since the traditional neural 
network may have a poor generalisation, the Bayesian technique has been used to improve the generalisation and the 
robustness of these networks. This paper describes the use of optimised classification Bayesian neural networks for the 
prediction of protein secondary structure.  The well-known RS126 dataset was used for network training and testing. The 
experimental results show that the optimised classification Bayesian neural network can reach an accuracy greater than 
75%.  
    

 
1 INTRODUCTION 

The accurate prediction of protein secondary 
structure is an important step to understand protein 
folding. A large number of papers have tackled this 
problem, with the most common approach being the 
use of various machine learning methods to learn the 
connection between amino acid sequences and 
secondary structure. Some of these approaches use 
the amino acid states directly as the input data to 
learning, whereas other methods have used the 
biophysical features of amino acids, sequence 
homology, pattern matching and statistical analyses 
of proteins of known structures (Rost and Sander, 
1993a), (Rost and Sander, 1993b). 

The standard way of presenting this task as a 
machine learning problem is as a classification 
problem, where each data instance consists of a 
number of predictor features (e.g. the neighbouring 
amino acid values) and a class drawn from the set 
{helix, strand, coil}. The aim of the learned model is 
to be able to predict this class for examples not seen 
during training.  

According to (Holley and Karpus, 1989), the 
maximum accuracy of predicting three states 

(helices, strands and coils) has a limit, due to the 
amount of data available and/or that the secondary 
structure is determined by tertiary interactions not 
included in the local sequence. Nonetheless, models 
have been learned that can predict the class with 
reasonable accuracy (65% for simple methods, rising 
to around 92% for more sophisticated methods that 
use additional data about similar proteins) (Lee et 
al., 2012) 

This paper describes the use of classification 
Bayesian neural networks for the prediction of 
protein secondary structure. In the past, 
classification Bayesian neural networks have been 
proven to be useful for several classification tasks 
(Nguyen at all, 2004), (Nguyen at all, 2006), (Penny 
and Robert, 1999) and (Thodberg, 1996). Unlike the 
traditional neural network training, the Bayesian 
neural network training does not require a validation 
set separated from the training subset. As a result, all 
of the available data set can be divided into only two 
subsets: the training subset and the test subset 
(Mackay, 1992a), (Mackay, 1992b). The Bayesian 
neural network training also encourages 
generalisation as the values of the weight decay 
parameters, sometimes known hyper-parameters, 
can be well adjusted during the network training 



 

phase. Moreover, Bayesian neural networks allow 
users to rank and compare different networks with 
different architectures. Therefore, the optimal 
network architecture can be easily found based on 
evaluating the log evidence of candidate networks 
with the Bayesian framework (Penny, 1999), 
(Mackay, 1992b).  

The structure of the paper is organised as 
follows. Section II provides an overview of protein 
secondary structure prediction and classification 
neural networks. In Section III, the formulation of 
classification Bayesian neural networks is briefly 
described. In Section IV, the paper gives the 
assessment methods for the obtained results. Section 
V presents how to train and optimise classification 
Bayesian neural networks for predicting three states: 
helices, strands and coils. Finally, Section VI 
provides a conclusion.  

2 PROTEIN SECONDARY 
STRUCTURE PREDICTION AND 
CLASSIFICATION NEURAL 
NETWORKS 

Protein structure prediction is the foundation of 
protein structure biology. Proteins are 
macromolecules made of chains of 20 different 
amino acids, which fold into a particular three-
dimensional structure that is distinctive to that 
protein. This three-dimensional structure is what 
determines the function of a protein. The ultimate 
goal is to understand the function of proteins, and 
therefore an important step towards this 
understanding is to understand the protein structure 
and how this relates to its sequence. Biochemists 
distinguish four distinct aspects of a protein’s 
structure: Primary structure, Secondary structure, 
Tertiary structure and Quaternary structure. Protein 
Secondary Structure Prediction (PSSP) means 
predicting which parts of a protein will form the 
large-scale structures known as α-helix, β-strand and 
coils, based on the amino acid sequence of a protein 
(Mottalib et al, 2010).  

In the last two decades, a huge number of 
approaches have been taken to the PSSP. In these 
works, the probabilistic approaches were the first to 
be used. The first attempt at using neural networks 
for PSSP was done by Qian and Sejnowski in 1988, 
and they obtained an accuracy of 64.3% (Qian and 
Sejnowski, 1988). More recent neural network based 

approaches have achieved accuracies greater than 
70%  (Rost and Sander, 1993a), (Jones, 1999). The 
most important improvement in these approaches is 
to modify the input set to the neural network by 
finding similar proteins from a large database, and 
forming an input based on the proportion of amino 
acid values at each position in the sequence. The aim 
of this is to provide more information to the network 
about the kind of protein, and to eliminate the 
influence of an uncharacteristic amino acid at a 
particular position. 

This part of the paper will describe how 
classification neural networks are used for PSSP. 
The primary sequences are used as the network 
input. In order to read the input, a moving window 
through the sequences needs to be created. 
According to (Qian and Sejnowski, 1988), the size 
of the moving window should be chosen to be 13 as 
this window size has given the best performances 
when testing the trained network on the test subset—
this window size has also been found in many 
subsequent papers.  

In this work, the define secondary structure of 
proteins (DSSP) method is used. According to this 
method, the secondary structure of each residue 
classifies into 8 classes, namely H (α-helix), G (310-
helix), I (π-helix), B (isolated β-bridge), E (extended 
β-strand), T (hydrogen bonded turn), S (bend), and  
C (not HBEGIT or S). The prediction methods are 
assessed for only 3 standard classes associated with 
α helices (H), β-strands (E) and coils (C). Hence, 8 
classes are reduced to 3. In the literature, there are 
four main mappings to perform the reduction 
process (Sepideh et al., 2008). These are: 
1. H,G → H 

E → E  
S,T,B,I,C  → C 

2. H  → H 
E  → E 
G,S,T,B,I,C  → C 

3. H,G,I  → H 
E,B → E 
S,T,C  → C 

4. H,G  → H 
E,B → E 
S,T,I,C  → C 

Here, the method 2 is adopted in this research as 
it is considered as the strictest criterion.  In order to 
encode the secondary structure classes for the 
classification, three output units are assigned in our 
neural network as binary values as follows 
H=[1,0,0], E=[0,1,0], and C=[0,0,1] 
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Figure 1: The PSSM matrix: (a) the raw matrix values, (b) 
the matrix values normalised with the standard logistic 
function. 
 

The prediction of protein secondary structure 
based on a multiple alignment profile of protein 
instead of a single sequence has been adopted as a 
way to improve the prediction accuracy in several 
papers (Rost and Sander, 1993a), (Rost and Sander, 
1993b). The aim of this is to improve predictive 
power by finding proteins that are similar to the 
protein being examined, and modifying the input to 
be a mixture of the original protein information and 
that of these similar proteins. 

There are two kinds of multiple alignment 
profiles: 1) the multiple sequence alignment profiles 
(MSAP), 2) the position-specific score matrices 
(PSSM) (Sepideh at al, 2008). In this research, the 
PSSMs for the RS126 dataset are used and they can 
be easily obtained from (Jpred 3), which is a simple 
and accurate protein secondary structure prediction 
method incorporating two feed-forward neural 
networks. The profile matrix has 20xL elements, 
where L is the length of the target sequence as 
shown in Figure.1.  As the values of the feed-
forward neural network inputs can only accept 0 to 
1, the raw PSSM needs to be normalised using the 
logistic function as shown in equation (1). 
                                                      

                           (1) 

 
where  is the raw matrix value. 

As the window size is 13 with 20 amino acids, 
there are 13x20 + 1 = 261 neural network inputs (the 
last input for the bias term). There are three output 
units corresponding to three states (helix, strand and 
other structures (sometimes known as loops or 
coils)). The network has a single hidden layer, as 

one hidden layer is sufficient to solve every problem 
including regression and classification (Bishop, 
1995). The optimal number of hidden nodes is 
theoretically determined based on the Bayesian 
inference discussed in details in Section III. 

 
 

3 CLASSIFICATION BAYESIAN 
NEURAL NETWORKS 
 

Bayesian learning of multi-layer perceptron 
neural networks is performed by considering 
Gaussian probability distributions of the weights 
which give the best generalization (Mackay, 1992a), 
(Mackay, 1992b). In particular, the weights  in 
network  are adjusted to their most probable 
values given the training data . Specifically, the 
posterior distribution of the weights can be 
computed using Bayes’ rule as follows 

 

               (2)           

 
where  is the likelihood function, which 
contains information about the weights from 
observations, and the prior distribution  
contains information about the weights from 
background knowledge. The denominator, , 
is known as the evidence for network X given data-
set D. 

Given a set of candidate networks  having 
different numbers of hidden nodes, the posterior 
probability of each network can be expressed as 

 

                   (3)           

 
If the networks are assumed to be equally 

probable before any data is observed, then  is 
the same for all networks. Since  does not 
depend on the network, then the probable network is 
the one with the highest evidence . 
Therefore, the evidence can be used to compare and 
rank different candidate networks. 

The weights and biases of the Bayesian neural 
network are grouped into a single vector and 
determined as follows 

 



 

                       (4)           
  
where is the weight vector at the training 

iteration , is the weight vector at the 

training iteration , is the adaptive learning rate 

at the training iteration  and  is the search 
direction at the training iteration . The adaptive 
learning rate is adjusted during the training phase 
based on the Scaled Conjugate Gradient method 
(Moller, 1993). In this research, the search direction 
is predefined to be the negative gradient . 

Regularisation is used to prevent any weights 
becoming excessively large, which can lead to poor 
generalisation. For a multi-layer perceptron neural 
network classifier with  groups of weights and 
biases, a weight decay penalty term proportional to 
the sum of squares of the weights and biases is 
added to the data error function  to obtain the 
cost function  

 

                          (5) 

          (6) 

 
where  is called the cost function,  is a non-

negative scalar, sometimes known as a 
hyperparameter, ensuring the distribution of weights 
and biases in group  and  is the vector of 
weights and biases in group . 

In network training, the hyperparameters are 
initialised to be arbitrary small values. The cost 
function is then minimised using the Scaled 
Conjugate Gradient method. When the cost function 
has reached a local minimum, the hyperparameter 

 ( ) is re-estimated. This task requires 

computing the Hessian matrix of the cost function: 
 

                           (7) 

 
where  is the Hessian matrix of  and  is 
the identity matrix, which selects weights in the th 
group. The number of ‘well-determined’ weights 

 in group  is calculated based on the old value 

of  as follows: 

 
     (8) 

 
The new value of the hyperparameter  is then 

re-estimated as 
 

          (9) 

 
The hyperparameters need to be re-estimated 

several times until the cost function value ceases to 
change significantly between consecutive re-
estimation periods. After the network training is 
completed, the values of parameters  and  are 

then used to compute the log evidence of network 
 having  hidden nodes as follows (Penny and 

Robert, 1999):  
 

(10)       
 

where  is the number of weights and biases in 

group , and  is set to be (Thodberg, 1996). 
However,  is a minor factor because it is the same 
for all models and therefore does not effect to the 
relative comparison of log evidence of different 
network architectures. Equation (10) is used to 
compare different networks having different 
numbers of hidden nodes. The best network will be 
selected with the highest log evidence. 
 
 
4    EVALUATION METHODS 

A useful accuracy evaluation for classification 
neural networks is well-known three state overall 
residue accuracy percentage defined as follows 
 

           (11) 



 

 
where , and  are the number of 

correctly predicted -helix, -sheet and loop, 
respectively. is the total number of residues in a 
given protein sequence. 

Another widely used accuracy measurement is 
the Matthew’s correlation coefficients. In the case of 

helix, this coefficient is determined as follows 
 

     

(12) 
 

where is the number of correctly predicted 

positive cases,  is the number of correctly 

rejected negative cases, is the number of over-

predicted cases (false positives), and is the 
number of under-predicted cases (misses). Similarly, 

 and  can be also defined for -sheet and 

loop, respectively. If the coefficients are equal to 1, 
the model predictions are 100% correct. Whereas, if 
the coefficients are equal to -1, the model 
predictions are 100% incorrect. 
 
  
5 EXPERIMENTS AND RESULTS 

The RS126 dataset was used for training and 
testing the networks (Rost and Sander, 1993a). All 
of the dataset was randomly divided into seven 
subsets. A seven fold cross-validation technique was 
applied to determine the prediction accuracy. In 
particular, six subsets were used for training 
networks and the remaining subset was used for 
testing networks. This procedure was repeated for 
the different test subsets. Bayesian neural networks 
with different numbers of hidden nodes were trained 
to select the optimal network architecture. These 
networks have the following specification, as 
discussed in detail earlier in the paper: 
• four hyperparameters , ,  and  to 

constrain the magnitudes of the weights on the 
connection from the input nodes to the hidden 
nodes, the biases of the hidden nodes, the 
weights on the connection from the hidden nodes 
to the output nodes, and the biases of the output 
nodes; 

• 261 inputs, corresponding to 20 inputs for each 
letter in the moving with the size is 13 and one 
bias term with a constant value of 1; 

• three outputs, each corresponding to one of the 
states: helix, strand and other structures. 
 
For a given number of hidden nodes, five 

networks with different initial values of the weights 
and biases were trained. The training procedure was 
implemented as follows: 
1. The weights and biases in four different groups 

were initialised by random selections from zero-
mean, unit variance Gaussians and the initial 
hyperparameters were chosen to be small 
values. 

2. The network was trained to minimise the cost 
function  using Scaled Conjugate Gradient 
training algorithm.  

3. When the network training had reached a local 
minimum, the values of the hyperparameters 
were re-estimated according to equation (8) and 
(9). 

4. Steps 2 and 3 were repeated until the cost 
function value was smaller than a pre-
determined value and did not change 
significantly in subsequent re-estimations.  

 
The performances of the trained networks were 

tested on the seventh subset. As shown in Figure 2, 
the networks having four hidden nodes is the last 
increase that produces a meaningful increase in log 
evidence. This means that four hidden nodes are 
sufficient to solve the problem. Table 1 shows the 
change of hyperparameters according to the periods 
of re-estimation of a specific network training run. 
For each period, there are 100 predefined 
trainingiterations. 

Table 2 shows the prediction accuracy and the 
Matthew’s correlation coefficients on three states 
from the classification Bayesian neural network. We 
can see that the accuracy is 75.77%. Next, a standard 
classification neural network that has the same 
structure with the classification Bayesian neural 
network was trained to obtain the three-state 
prediction accuracy. However, the prediction 
accuracy of the trained classification standard neural 
network 74.97% and the Matthew’s correlation 
coefficients, shown in Table 3, are also smaller than 
those of the trained classification Bayesian neural 
network shown in Table 2. Whilst this increase is 
small, progress in this area has typically come from  

 



 

  
 

 

 

 

 

 

Figure 2: Log evidence versus number of hidden nodes: 
The solid curve shows the evidence averaged over the five 
networks. 

 
the accumulation of small improvements, which can 
be combined together to make a larger improvement. 

 
 

6 CONCLUSIONS 

The results obtained show that Bayesian neural 
networks can be used to predict the protein 
secondary structure with the maximum accuracy of 
75.77%. This is better than the traditional neural 
network training methods. According to the obtained 
results, the use of four hidden nodes is an optimal 
choice for the network architecture. This number of 
hidden nodes can give the best generalisation of the 
trained network without the use of a validation set. 
Therefore, the available data was only divided into 
two subsets: one for training and another for testing. 
Moreover, Bayesian training for neural network can 
automatically adjust the hyperparameters during the 
training phase. 

The procedure for determining the optimal 
structure of the classification standard neural 
network (the growing and pruning technique) has 
not been mentioned in this paper as this approach 
requires a lot of statistical tasks. The main 
disadvantage of the Bayesian learning for feed-
forward neural networks is that it takes a quite long 
time on evaluating the Hessian matrix, especially 
when the number of network parameters (weights 
and biases) is relatively large. 

 
 

Table 1: The change of hyperparameters according to the 
periods of re-estimation. 

Periods     
1 31.392 1.371 0.529 0.775 
2 99.919 2.389 0.334 2.432 
3 198.498 4.055 0.231 3.949 

  

Table 2: The three-state prediction accuracy and 
Matthew’s correlation coefficients of classification 
Bayesian neural network. 

  Matthew’s Correlation 
Coefficients 

Fold      
A 75.840 0.699 0.531 0.565 
B 78.187 0.728 0.607 0.604 
C 72.422 0.635 0.510 0.524 
D 75.319 0.658 0.550 0.540 
E 74.826 0.641 0.580 0.542 
F 76.362 0.697 0.598 0.569 
G 77.462 0.696 0.578 0.604 

Average 75.774 0.679 0.565 0.564 
 

Table 3: The three-state prediction accuracy and 
Matthew’s correlation coefficients of standard 
classification Bayesian neural network. 

  Matthew’s Correlation 
Coefficients 

Fold      
A 75.927 0.689 0.543 0.565 
B 77.347 0.725 0.583 0.587 
C 71.321 0.619 0.496 0.502 
D 74.826 0.646 0.551 0.536 
E 73.812 0.622 0.571 0.521 
F 74.739 0.669 0.572 0.548 
G 76.796 0.669 0.568 0.604 

Average 74.967 0.663 0.555 0.552 
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