
A Comprehensive Framework for

Semantic Annotation of Web Content

Manuel Fiorelli1, Maria Teresa Pazienza2 and Armando Stellato2
1Department of Civil Engineering and Computer Science, 2Department of Enterprise Engineering,

University of Rome, Tor Vergata, Italy

{fiorelli, pazienza, stellato}@info.uniroma2.it

Keywords: Semantic Annotation, Semantic Web, User Interface, Software Engineering

Abstract: Studies on Semantic Annotation reveal how trying to match heterogeneous requirements leads to divergent

methodologies, models and processes for annotation management and exchange. Community efforts

towards the development of shared solutions are important to reduce the “entropy” of the field; nonetheless,

any agreement on the ultimate annotation system is unlikely to be achieved. We propose a solution to this

problem by defining a comprehensive framework, unbound to any specific design/annotation model, and

instantiable into concrete system implementations, to meet different requirements. Towards this goal, we

commit to fairly general assumptions, valid across disparate systems and not excessively constraining.

Firstly, most systems deal with combined management of ontologies and Web content. Secondly, these

systems can be described through a common behavioural model, in terms of an assignment of handlers to

predetermined events. This behavioural model can be then enriched through progressive levels of

specification, thus fostering a convention-over-configuration approach in detailing its characteristics. Then,

recurring design fragments can be identified, in order to provide abstractions and specifications for the

definition of concrete handlers.

1 INTRODUCTION

In the envisioned Semantic Web (Berners-Lee, et al.,
2001) the meaning of resources, possibly including
services (Payne & Lassila, 2004), is captured
through annotations with respect to well-defined
ontologies. Formalized knowledge is believed to
allow software agents to better interact with Web
resources and perform intelligent tasks on behalf of
humans, such as buying a vacation package from a
virtual travel agency.

Beyond research on knowledge representation
and automatic reasoning, the deployment of the
Semantic Web required further investigation on
pragmatic aspects related to the publication and the
reuse of disparate knowledge on the Web. This line
of development eventually flowed into the Linked
Open Data movement which elaborated a collection
of best-practices (Heath & Bizer, 2011) aimed at
better connecting the Semantic Web to the
architecture of the Web. Detractors criticized that
Linked Open Data is nothing but a rebranding of the
Semantic Web, perhaps aimed at revitalizing the
interest on the field as a whole. Tom Heat addressed
these concerns in his famous blog post (Heath, 2009)

where he stated that “Linked Data isn’t about
rebranding the Semantic Web, it’s about clarifying
its fundamentals”.

The Linked Open Data principles apply
uniformly to any kind of data, including statistics
and spatial features, which are considered valuable
in their own, regardless their connection to a
possibly unstructured resource, as in traditional
meta-data.

Nonetheless, the interest on data in general is
complementary to the idea of annotating traditional
information resources (documents, images, audio
and video material), since the former provides a
sound technological and methodological framework
supporting the latter. For example, the W3C
introduced the SKOS vocabulary (W3C, 2009) as a
means to establish a link between the Linked Open
Data cloud and the world of Knowledge
Organization Systems (Hodge, 2000), historically
employed by museums, libraries and other large
organizations to better manage and use their large
body of resources.

So far, systems for annotating information
content with respect to formal representations of
knowledge have followed different and occasionally
contrasting theories. These theories differentiated in

many aspects: the primary focus of the annotation
(e.g. is the traditional content which needs to be
annotated with respect to a generic category, as a
class in an ontology, or are specific ontological
resources to be grounded on existing
documentation?), the granularity of the information
to be reported, and the nature of the annotated
elements. Therefore, even the offer of Semantic
Annotation applications is variegated, and it is often
difficult to see all of the requirements for a particular
usage scenario satisfied by a single system.

We propose here a framework for supporting the
development of systems for combined management
of ontological knowledge and Web content,
including, but not limited to Semantic Annotation
Systems. The framework is a subsystem of Semantic
Turkey (Pazienza, et al., 2012), a fully-fledged
environment for knowledge management and
acquisition based on RDF technologies (W3C,
2004), with a user interface deployed as a browser
extension. Such an offer guarantees to end
applications a high level of integration among
browsing capabilities, ontology editing and cross-
boundary features concerning both.

2 BACKGROUND

We can shortly state that an annotation establishes a
link between two resources, asserting that one is
“somewhat” about the other. The nature of this
association is heavily domain and application
dependent. For instance, informal free-text
annotations are usually found as comments in a
document to drive its edition, while structured
annotations are the output of numerous NLP tasks,
including named entity recognition and relation
extraction. These scenarios depend on different
assumptions regarding the nature of the annotations,
their granularity, their level of formality and the use,
if any, of formal ontologies.

Early works on the annotation of Web resources
include Annotea (Kahan & Koivunen, 2001), which
aimed at establishing a framework for the
collaborative annotation of Web resources. Initially
thought for supporting the collaborative
development of specifications within the W3C, the
project aimed at establishing standards for textual
annotations of marked-up documents.

Later initiatives within the bioinformatics
community, Annotation Ontology (Ciccarese, et al.,
2011) and Open Annotation Model (Sanderson &
Van de Sompel, 2010), had a wider breath, aimed at
the annotation of any media type possibly with
respect to a supplied ontology. Those projects
flowed into the Open Annotation W3C community
project, whose mission is to develop an RDF based

model for the annotation of digital artefacts. The
Domeo annotation system developed by (Ciccarese,
et al., 2012) supports the Annotation Ontology and it
is expected to adopt the results of the novel W3C
Community Group. With respect to early attempts, it
is worth of notice that a shared data model is
deemed sufficient, whereas dedicated protocols for
querying and manipulating the annotations are no
longer considered necessary, thanks to the
availability of standards for performing such tasks
developed meanwhile (e.g. SPARQL
(Prud'hommeaux & Seaborne, 2008)).

In the context of these RDF models an
annotation is established though the assertion of at
least a statement relating a resource (the target) to
another (the body) which represents the desired
attachment. In case of Semantic Annotation the
latter is found within a formally defined ontology.
The choice of a domain/application ontology should
reflect the particular point of view behind the
annotation process. (Ma, et al., 2011) introduced a
higher order semantics for capturing the meaning of
semantic annotations with respect to the ontological
nature of the attached resource and the property
relating it to the target. They also show how
different levels of analysis (i.e. linguistic and
semantic) can cooperate, for example to suggest
annotations or highlight possible errors.

Beyond the problems inherent to the
representation of annotations, there is need for a
clear process to create and maintain them.
According to (Staab, et al., 2000), this process
should cope with the evolution of the domain
ontology and the presence of mirrors or altered
version of the annotated resources.

The production of annotations by human users is
often regarded as the bottleneck limiting the scale of
the annotation process. (Kiryakov, et al., 2004)
discussed the design issues related to an holistic
system integrating semantic annotations, indexing
and (semantically powered) retrieval. This vision
was implemented by the platform KIM (Popov, et
al., 2003), which was heavily tested for the
automatic annotation of news stories. These works
reengineered state-of-the-art NLP tools for
automatically producing semantic annotations with
respect to a lightweight upper ontology, called
KIMO. The existence of a reference upper ontology,
possibly extensible to address domain and
application specific needs, is a distinctive feature,
while most works assume that semantic annotations
are taken against any arbitrary domain ontology.

Finally, (Uren, et al., 2006) provided an
overview of Semantic Annotation systems by
comparing them on the basis of a set of requirements
that the authors consider key-features for the
annotation task.

3 MOTIVATION

In the previous section we outlined the main
research lines in the field of Semantic Annotation,
showing how conflicting requirements demand
diverging design decisions, making the definitive
annotation system unlikely to appear.

Even a strong agreement on a universal data
model for annotations is difficult to achieve: recent
proposals cover a plethora of common usage
scenarios, yet there are still corner cases – not well
covered by those models – which might be very
important for some communities.

Divergent methodologies have been proposed to
support manual annotation rather than automatic
generation of annotations. The latter can benefit, as
shown by KIM, of the reuse of state-of-the-art IE
tools; this entailing complex integration challenges.

Incompatible design decisions tend to cumulate,
leading to very different system architectures and
implementations. Therefore, pursuing the goal of
realizing the ultimate annotation system appears to
be fruitless, while it appears reasonable to aim at the
definition of a comprehensive framework supporting
alternative designs.

Analogously, designing a framework unbound to
any prior assumption makes no sense as well,
because an architecture is always based on some
grounding which characterizes its offer to the user.

Therefore, our contribution narrows its scope to
Semantic Web annotation systems and, in general,
any application combining ontological knowledge
with Web content. This is a fairly general model
which avoids any commitment to specific goals,
interaction patterns, methodology (e.g. human
labour vs machine learning) or presentation
mechanisms.

For what concerns the scope of our architecture
(RDF and Web Documents), RDF is by no means
the only formalism to capture semantics, though it is
now widely spread and there are different W3C
recommended vocabularies supporting different
modelling needs. The choice for supporting Web
documents is mostly a starting point (which does not
contradict the generality of the approach), and future
evolutions may foresee extensions for other kind of
sources, different in format or media type.

4 SYNTHESIS OF

REQUIREMENTS

In order to design the architecture of a
comprehensive framework for Semantic Annotation,
we have both analysed state-of-the-art systems, and

taken into consideration principles for their design
acquired from literature.

While we take into account the results of the
discussed standardization efforts (see section 2), we
decided not to commit to a specific model, and have
instead an agnostic approach, which starts from the
mere annotation acts and allows for the adoption of
arbitrary models.

We have thus adopted and incremented the
feature classification provided by (Uren, et al.,
2006), and positioned the class of systems that can
be realized with our framework, with respect to
those requirements:

 Standard formats: RDF(S), OWL and SKOS

for the representation of semantic descriptors;

pluggable models for Semantic Annotation

(most notable models provided by default as

libraries); concrete implementations for

different ranges should be provided as

component libraries (e.g. offset or XPointer

(DeRose, et al., 2002) based ranges).

 User centered/collaborative design: the UI for

ontology editing/annotation should be

deployed as a web browser extension, while

the browser itself hosts the web content. This

combines the best of both web and desktop

solutions, by providing at the same time an

environment the user is well acquainted with

(the browser) and extending it with annotation

capabilities.

 Ontology support: the framework should

support the editing of arbitrary ontologies to

be used as domain for annotations;

 Support of heterogeneous document formats:

it is indeed a desirable feature, though

currently our framework is tailored to Web

documents; however, this is a technological

limitation of the current implementation and

not a theoretical choice.

 Document evolution: different choices in the

annotation format and in data preservation

may be more or less prone to degradation with

respect to the evolution of the annotated

content; the framework should permit to retain

metadata about the target document to be able

to detect changes. Option for XPointers

guarantees better resilience to changes than

plain offsets;

 Annotation storage: as noted in the (Uren, et

al., 2006), there is no universally winning

choice for storing the annotation content: the

framework should thus allow annotations to

be stored separately from the annotated

resources (offline annotations), or to be

embedded into them.

 Automation: hosting of components for

automatic annotation of content should be

supported, as well as productive exploitation

of their results and suitable interaction with

the user for validating and refining these

results.

 Granularity: both coarse grain and fragment

level;

5 ARCHITECTURE

This section is organized as follows: we introduce
by first the concepts that have driven the synthesis of
the architecture; we then detail specific design
choices; finally, we describe the end-user
customizability.

5.1 Concept

The proposed framework has to support applications
interacting with Web content. (Kahan & Koivunen,
2001) distinguish two strategies to meet this
requirement: whether dedicated capabilities are
injected into the browser, or into the content
provided by a proxy. Our research effort focuses on
the first approach, by relying on the extensibility of
modern Web browsers to develop the additional
capabilities. The user experience with the browser
does not change in traditional web navigation, and is
only minimally affected when users explicitly
trigger one of the extended annotation capabilities.
On the other side, despite its tightly coupling with
the Web, a browser extension is under all aspects a
desktop application, with all the advantages deriving
in terms of robustness, integration with the local
system, and customizability.

In our usage scenario (see Figure 1), the
traditional browser frame for visualizing the web
content is complemented with a dedicated panel
showing the reference domain model (e.g. an OWL
ontology or a SKOS concept scheme).

Possible interactions fall into three main
categories, with respect to the resources they affect.
The first category comprises the interactions devoted
to the navigation of the Web, for instance, activating
a hyperlink to reach another Web page. As discussed
in section 3, those interactions are completely
managed by the hosting browser. The user might as
well modify the domain model through interactions
falling into the second category. Finally, there are
interactions that encompass both realms: for

instance, when the user drags a selection of text
from a Web page and drops it onto a resource, as
common in most annotation systems.

Our work develops from this scenario, by
identifying a framework for realizing applications
tied to both ontological resources and Web content,
and not necessarily limited to semantic annotation.

In our setting, we envision unlimited binding
possibilities between annotated content fragments,
their originating sources and the resources belonging
to the domain model. This should allow, for
instance, to generate new ontology individuals while
annotating their occurrences within web pages, to
create and annotate relationships between
individuals, etc..

The framework abstracts a collection of events
out of gestures involving concrete user interface
elements. These events are, to an extent,
independent from the underlying presentation
mechanism and the supporting technology. The
framework dispatches events to suitable handlers,
which implement application dependent logic. Event
handlers must implement a given signature, whereas
there is no prescription on their internal structure.

Within this framework, collections of event
handlers define concrete applications, which might
be characterized through a variety of (possibly
orthogonal) dimensions, including, but not limited
to, the following:

 annotation model;

 presentation mechanism;

 relevant ontological resources.

While two applications might differ along a few
of those dimensions, they could be very close to
each other along others. Therefore, applications are
rarely completely orthogonal and in most cases share
part of their user interface, behaviour and data
management.

The paradigm based on the assignment of
handlers to events meets the requirement of
minimum commitment to the application goals.
Nonetheless, the fact that most applications have
overlapping designs would force the developers to
implement the same user interfaces and behaviours
multiple times. Therefore, a collection of ready-to-
use components for common design fragments is
required.

5.2 Design

In the previous section we have motivated the basic
assumptions underpinning the work.

In the forthcoming we refer to a combination of
an annotation model, events and related handlers as
an annotation family, and by a slight abuse of

language we will identify possible applications with
distinct annotation families. We discuss here three
different levels for characterizing a family.

Currently, the framework (see Figure 2) declares
the following events:

 selectionOverResource

fired when a selection from a Web page is

dropped onto an ontological resource

 resourceOverContent

fired upon gestures for the association of Web

content with an ontological resource

regardless of their occurrence in the text

 contentLoaded

triggered when Web content is loaded, in

order to execute presentation related activities,

e.g. highlighting the annotated fragments

So far, this basic set of events provides a core
specification, which is sufficient to implement the
entire machinery for an annotation system: handlers
for the first two events encapsulate the logic for the
creation of new annotations, whilst a handler for the
third event is in charge of retrieving and properly
visualizing annotations for a Web content (and for
injecting the code to manage them). For instance,
operations such as the deletion of annotations can
actually be invoked by code which is injected into
the content by handlers intercepting the

contentLoaded event, thus leaving the specification
of these functions opaque to the framework.

The framework treats different genera of RDF
resources (e.g. classes, individuals, and properties)
in a uniform manner, by declaring events concerning
only generic resources. The uniform treatment of
resources entails that the same event might be
handled differently on the basis of the target
resource. Moreover, applications might foresee the
binding of multiple distinct handlers (see Figure 2)
to an event related to a single resource, each handler
implementing a distinct way for consuming that
event. A handler can then be guarded by a filter over
the event, to filter out irrelevant events, e.g. by
observing the resource type.

The discussion above might be more accessible
through an example concerning the event
selectionOverResource. As stated previously this
event is fired when a selection from a Web page is
dropped onto a resource, regardless of its type.
Actually, this event might be processed in several
ways. By first, a handler may simply annotate an
occurrence of that resource within the Web page.
Other handling strategies include more complex
activities, which are valid only on a subset of the
events. For instance, when the target is a class, a
handler might create and annotate an existing
instance for that class, basing on the selected
content; otherwise, if the target is a SKOS concept,

Figure 1 Overview of the Annotation Framework. The Web page is annotated with concepts (insects, plants and pesticides)

and relations (isPestOf) from the thesaurus AGROVOC.

another handler might create and annotate a
narrower concept. A mechanism based on
preconditions allow for filtering handlers on the
basis of contextual information (such as the nature
of the selected RDF resource, the selected content,
the content source etc.. or further more elaborate
ones, based on the analysis of a combination of the
above). Preconditions are actually re-definable
functions which can be plugged to the framework.

By following a convention-over-configuration
approach to design, we provided a further level of
specification, consisting in a set of interfaces which,
if implemented, can be exploited by the framework
on the basis of the previously defined events. The
following abstract services can thus be implemented
for each family:

 checkAnnotationsForContent(contentID)

checks whether a given content source has

been annotated. By default, this function is

invoked by a framework predefined handler,

upon triggering of the contentLoaded event

 getAnnotationsForContent(contentID)

returns the annotations taken over a specific

content source. Actually, it returns proxies for

the annotations (which depend on the model)

exposing some framework mandatory fields,

such as the id and range of the annotations.

The implementation/serialization of these

annotation elements is left to the specific

family, and must be consistent with the other

services implemented in the family.

This function is automatically invoked by the

framework after a positive (returned value =

true) check performed by the previous

function (in the context of a contentLoaded

event).

 getAnnotationsForResource(RDFResource)

analogous to the previous one, this function

retrieves all annotations associated to a given

RDF resource.

When constructing a description for a RDF

resource in the UI, the framework may exploit

this function to produce a list of actionable

links to annotated content sources.

 decorateContent(annotations)

this is a client function for injecting elements

inside the content, usually to show the

annotations which have been previously taken

over it.

A standard text highlighting mechanism for

web documents is provided by the system and

invoked on the result of a

getAnnotationsForContent(), in the context of

a contentLoaded event. This mechanism can

be overridden by implementing this function

with custom content decorators.

 deleteAnnotation(annotID)

this function takes care of removing all the

information related to a given annotation. The

standard highlighter injects calls to this

function for each annotation shown on the

web document.

Standard preconditions are also defined and
provided with the framework. The basic
preconditions include filters based on the role of the
resource (e.g. a class, individual etc..), so that a

Figure 2 Event Based Architecture

Handlers Families

bookmarking

open annoation

(coarse grain)

open annoation

(fine grain)

Events

 selectionOverResource

 resourceOverContent

 contentLoaded

 selectionOverResource

 resourceOverContent

 contentLoaded

 selectionOverResource

 resourceOverContent

 contentLoaded

given handler may be activated only for certain
resources.

 The system thus, in line with the convention-
over-configuration paradigm, allows for high
flexibility, while reducing effort and need for
detailed specification through massive availability of
conventions (and in some cases, implementations).

5.3 Implementation

The annotation framework we presented is
embedded in the Knowledge Management and
Acquisition Platform Semantic Turkey (Pazienza, et
al., 2012), and comes out-the-box with a few
annotation families which differ in the underlying
annotation model and, notably, in the tasks they
support. The default handlers take into consideration
the annotation of atomic ontological resources, and
complex activities that are provided as macros, e.g.
the creation of new instances, the definition of new
subclasses in OWL, or of narrower concepts in
SKOS.

Semantic Turkey works on a per-project basis,
and by default, annotations are stored as further RDF
metadata inside the RDF repository of the managed
project.

The extensibility of Semantic Turkey allows the
deployment of third-party annotation families, or the
enrichment of existing ones by the addition of
further handlers. The hosting platform offers to the
implementers a wide choice of reusable capabilities.
The browser provides technologies for the definition
of user interfaces, the manipulation of information
resources and the interaction with the Web. An
annotation family might exploit them to support
inline annotations (annotations included in the

document itself), which can then be saved in a
updated copy of the web page. An annotation family
may depend on core services provided by Semantic
Turkey as well as define new ones for dealing with
the specifics of its annotation mechanism. There is
however no limit (thanks to the hosting platform) to
the features that can be provided by adding new
services: dedicated export mechanisms, ontology
evolution management etc.. can all be added as
dedicated functionalities for a given family.

5.4 End-user Customizability

Developers of third party applications based on
our framework may either create new families, or
extend the existing ones with new annotation
functions. At the same time, for any given family of
annotations, even final users (i.e. human annotators)
may customize their experience to some extent, with
no need of coding intervention nor of performing
complex configuration on the system.

Concretely, a user can customize a family (see
Figure 3) by enabling only a portion of the
annotation functionalities associated to each event,
or by refining the preconditions of its associated
handlers. Most usage scenarios in fact, only concern
with a subset of the possible interactions which a
given family may offer, and users may want to
enable only those actions which they are using in
their setting. Users are normally prompted with the
list of suitable handlers (obviously, well presented
through appropriated descriptors) after they trigger
an event as a consequence of performing an action;
as an automatic shortcut, when such a list reduces to
a single handler, it is executed without prompting
the user.

Figure 3 End-user Customization: handlers are enabled for a given event and can then be filtered – by editing

their preconditions – when that event is fired.

Figure 3 Customization of an annotation family

6 CONCLUSIONS AND FUTURE

WORKS

The proposed framework has been experimented in
its evolution, through the development of several
concrete applications for semantic annotation
(Fallucchi, et al., 2008; Pazienza, et al., 2009;
Pazienza, et al., 2012). These experiences have
helped us in understanding the features which a core
framework for semantic annotation should exhibit,
and the right trade-off in flexibility which should be
granted to system developers, while still benefiting
them with concrete support from the software.

Evaluation of frameworks in general is difficult
to perform and is based on non-standard
considerations (e.g. the set of features must be
decided arbitrarily), which are inherently highly
biased by the aspects being put into examination.
However, we plan for the future to offer an overall
view of the features offered by most notable
annotation systems at the current state of the art, and
observe if these can be enabled in our framework.
By emphasizing the amount of development effort
necessary when developing a system with specific
features, and the effort that is required to master our
framework and build those same features over it, we
can obtain a fair map of the improvements and
benefits in adopting it. Regarding further evolutions,
while the framework seems to us general enough in
its basic assumptions, we want to improve it in terms
of concrete support to developers. We will thus
increment the set of available conventions and create
template libraries for recurring annotation patterns.
These libraries will provide partial implementations,
which can be bound to specific needs through
dedicated extension points. Our interest in semi-
supervised processes for knowledge acquisition
(Fiorelli, et al., 2010) motivates our attention to
integrating automatic extraction engines and to
combining them with proper human interaction, into
more virtuous acquisition workflows. We have
already explored this approach in (Pazienza, et al.,
2012), with the development of a text analytics
system for the discovery of new semantic relations
among concepts belonging to the AGROVOC
thesaurus (Caracciolo, et al., 2012). We plan to
integrate this system to the proposed framework and,
in the meanwhile, extend its scope to the projection
of arbitrary information onto an ontology.

REFERENCES

Berners-Lee, T., Hendler, J. A. & Lassila, O.,
2001. The Semantic Web: A new form of Web

content that is meaningful to computers will unleash
a revolution of new possibilities. Scientific
American, 279(5), pp. 34-43.

Caracciolo, C. et al., 2012. Thesaurus
Maintenance, Alignment and Publication as Linked
Data - The AGROVOC Use Case. International
Journal of Metadata, Semantics and Ontologies
(IJMSO), 14 August, 7(1), pp. 65-75.

Ciccarese, P., Ocana, M. & Clark, T., 2012.
Open semantic annotation of scientific publications
using DOMEO. Journal of Biomedical Semantics,
Volume 3, pp. 1-14.

Ciccarese, P. et al., 2011. An open annotation
ontology for science on web 3.0. Journal of
Biomedical Semantics, Volume 2, pp. 1-24.

DeRose, S. et al., 2002. XML Pointer Language
(XPointer). [Online]
Available at: http://www.w3.org/TR/xptr/

Fallucchi, F. et al., 2008. Semantic Bookmarking
and Search in the Earth Observation. s.l., Springer,
pp. 260-268.

Fiorelli, M. et al., 2010. Computer-aided
Ontology Development: an integrated environment.
La Valletta, Malta, s.n.

Heath, T., 2009. Linked Data? Web of Data?
Semantic Web? WTF?, s.l.: s.n.

Heath, T. & Bizer, C., 2011. Linked data:
Evolving the web into a global data space. Synthesis
Lectures on the Semantic Web: Theory and
Technology, 1(1), pp. 1-136.

Hodge, G., 2000. Systems of Knowledge
Organization for Digital Libraries: Beyond
Traditional Authority Files. Washington, DC:
Council on Library and Information Resources.

Kahan, J. & Koivunen, M.-R., 2001. Annotea:
an open RDF infrastructure for shared Web
annotations. Hong Kong, Hong Kong, ACM, pp.
623-632.

Kiryakov, A. et al., 2004. Semantic annotation,
indexing, and retrieval. Web Semant., #dec#, 2(1),
pp. 49-79.

Ma, Y., Lévy, F. & Ghimire, S., 2011.
Reasoning with Annotations of Texts. s.l., s.n.

Payne, T. R. & Lassila, O., 2004. Semantic web
services. IEEE Intelligent Systems, 19(1), pp. 14-15.

Pazienza, M. T., Scarpato, N. & Stellato, A.,
2009. STIA: Experience of Semantic Annotation in
Jurisprudence Domain. s.l., IOS Press, pp. 156-161.

Pazienza, M. T., Scarpato, N., Stellato, A. &
Turbati, A., 2012. Semantic Turkey: A Browser-
Integrated Environment for Knowledge Acquisition
and Management. Semantic Web Journal, 3(3), pp.
279-292.

Pazienza, M. T. et al., 2012. An Architecture for
Data and Knowledge Acquisition for the Semantic
Web: The AGROVOC Use Case. In: P. Herrero, H.
Panetto, R. Meersman & T. Dillon, eds. On the

Move to Meaningful Internet Systems: OTM 2012
Workshops. s.l.:Springer Berlin Heidelberg, pp. 426-
433.

Popov, B. et al., 2003. KIM Semantic Annotation
Platform. Florida, USA, Springer-Verlag Berlin
Heidelberg, pp. 834-849.

Prud'hommeaux, E. & Seaborne, A., 2008.
SPARQL Query Language for RDF. [Online]
Available at: http://www.w3.org/TR/rdf-sparql-
query/

Sanderson, R. & Van de Sompel, H., 2010.
Making web annotations persistent over time. New
York, NY, USA, ACM, pp. 1-10.

Staab, S., Maedche, A. & Handschuh, S., 2000.
Creating Metadata for the Semantic Web—An
Annotation Environment and the Human Factor, s.l.:
s.n.

Uren, V. et al., 2006. Semantic annotation for
knowledge management: requirements and a survey
of the state of the art. Journal of Web Semantics,
4(1), pp. 14-28.

W3C, 2004. Resource Description Framework
(RDF). [Online]
Available at: http://www.w3.org/RDF/

W3C, 2009. SKOS Simple Knowledge
Organization System Reference. [Online]
Available at: http://www.w3.org/TR/skos-reference/
[Accessed 22 March 2011].

