
A proposal for an Internet of Things-based monitoring
system composed by low capability, open source and open

hardware devices
Jesús Rodríguez-Molina, José-Fernán Martínez, Gregorio Rubio, Vicente Hernández

Research Center on Software Technologies and Multimedia Systems for Sustainability (CITSEM—Centro de Investigación en
Tecnologías Software y Sistemas Multimedia para la Sostenibilidad)

Technical University of Madrid (U.P.M.)
La Arboleda, Campus Sur UPM. Ctra. Valencia, Km 7, 28031. Madrid, Spain

Abstract— The Internet of Things makes use of a huge
disparity of technologies at very different levels that help one to
the other to accomplish goals that were previously regarded as
unthinkable in terms of ubiquity or scalability. If the Internet of
Things is expected to interconnect every day devices or
appliances and enable communications between them, a broad
range of new services, applications and products can be foreseen.
For example, monitoring is a process where sensors have
widespread use for measuring environmental parameters
(temperature, light, chemical agents, etc.) but obtaining readings
at the exact physical point they want to be obtained from, or
about the exact wanted parameter can be a clumsy, time-
consuming task that is not easily adaptable to new requirements.
In order to tackle this challenge, a proposal on a system used to
monitor any conceivable environment, which additionally is able
to monitor the status of its own components and heal some of the
most usual issues of a Wireless Sensor Network, is presented here
in detail, covering all the layers that give it shape in terms of
devices, communications or services.

Keywords— Internet of Things; monitoring; application;
middleware; architecture.

I. Introduction
The Internet of Things (or the IoT) offers an extensive

cluster of possibilities unlike any other previously existing
system. The number of functional electronic devices that are
present in the world are but ever-increasing at a high rate
along with the willingness to interconnect them, thus
establishing communications where data ca be shared in an
efficient and seamless manner. The number of applications or
research projects related with the IoT has boomed, going from
Near Field Communications in Peer-to-Peer transactions [1] to
applications related with cloud computing [2], to name but a
few. A significant amount of proposals revolve around the
concepts of either providing services for human users so that
their quality of life will be improved or supplying somewhat a
sort of machine-to-machine communication (M2M) within a
system. Incidentally, it is only natural the state of things turns
out to be like that, as Mark Weiser, the forerunner of
ubiquitous computing, claimed that machines would end up
being so integrated within an environment that they would just
recede to the background [3]. Therefore, electronic appliances
must communicate one to the other requiring as little user
intervention as possible. To accomplish this duty, many
systems have been conceived and designed that are somewhat
making features from the vision of the IoT (context awareness,
ubiquitous computing, always-on connectivity, environment
integration, etc.) to become an actual and genuine
characteristic of a deployment.

Among the most usual IoT-related applications, the ones
involving system monitoring and surveillance are rather
common; unfortunately, they often share several flaws: these
applications are restricted to a very specific area of usability
(e-health, industrial monitoring, agricultural infrastructures,
etc.) and if yanked out of it they do not seem to adapt with
easiness to any other surroundings. What is more, even if their
natural environment remains the same, should any other new
service be included as part of a system update, they do not
offer enough flexibility to make that service usable from the
very first moment. Finally, despite many solutions offer an
impressive performance as far as their actions are concerned,
they tend to fare poorly whenever there is any kind of defect in
the deployed system (faulty network nodes, damaged sensors).
In this paper, we are presenting a proposal able to diagnose
and self-heal most common issues that spring up in domains
typical of an IoT system –as Wireless Sensor Networks,
distributed middleware or embedded systems-. Plus, not only
is our proposal able to provide services to human users as any
other system, but also provides information of the most
prominent characteristics to be taken into account from the
system elements (battery level, transmission power, etc.).
Additionally, rather than having a system tailored to work in
only a specific area, we have designed one able to be adapted
for different purposes, with very little effort required in order
to do any adaptation to new circumstances.

II. An overview of the designed system
The major components that are present and their tasks are

as follows:

Device layer. This layer is comprising all the hardware and
all the appliances required to do the measuring and surveying
the system. It will be responsible for gathering all the required
context data whenever a request is taking place. In our
suggested proposal, the system will be using Sun SPOT motes
[4], MEMSIC Iris motes [5] and Arduino Uno boards [6]
conveniently equipped with extra sensors, which may be
equipped by the motes as well.

Communications layer. This Layer is in charge of all the
communications that may take place between the different
devices. There are two domains where communication
operations happen; initially, there is a regular domain, with
connections based on Internet Protocol at the network layer
and Transmission Control protocol or User Datagram Protocol
at a higher level. On the other hand, there will be another
domain where 802.15.4, an IEEE standard designed for low
capability devices, will be used as the wireless protocol of
choice. IEEE 802.15.4 is considered here to be used for the
monitoring system domain, as well as for internode

communications, while the usual network architecture works
on the application layer that will employ a web browser.

Middleware layer. Up until this point the presented layered
model is a unity, despite having different objectives. However,
since the applications that are going to be run are implying
different areas of usefulness, it is advisory to split the higher
levels of the architecture in order to better deal with challenges
related with lower level communications. While information
transfer will be made in usual terms as far as user web browser
requests are concerned, management will take a very different
approach. In the latter environment, requests and responses are
done with an ad hoc middleware layer that has been named
Request and Response Adapter Protocol (RRAP). This
middleware level will establish a protocol –effectively
standardizing communications under the scope of the
management part of the system- used for data traffic aimed to
get data related with the status of the system. Additionally,
messages will be sent to the upper layer if any important event
comes up, so that the human user will be aware of relevant
changes in the system.

Application layer. This level is splitted in two parts of
equal level but fulfilling different functionalities: a web
browser that, regardless of the different ones available
(Mozilla, Chrome, Opera, IE, Safari, etc.) will process the
requests done by the human user that is controlling the device
where requests are launched (a PC, a tablet, etc.), and a
Graphical User Interface especially made for the management
part of the system. This GUI will come in handy both for
status requests and notifications.

The system has been portrayed as a layered architecture in
Figure 1. The layers appearing at the generic system
architecture have been particularized in the proposal that is
being presented in this document. User part is made for user
requests and responses, while management part is bent on
monitoring the system itself.

Figure 1: a holistic view of the whole architecture

After introducing the most important features of the
proposal, each of the designed layers will be described in
detail in the following sections.

III. Device Layer
Whenever a data request has to be fulfilled, device layer is

the one with the suitable components to obtain the requested
information. Being at the bottommost part of our proposal, it
is therefore implied that this layer will deal with hardware,
sensors and actuators more profusely than any other. There are
three kinds of devices that are regarded as best-fitting for our
proposal: two of them are motes –which are low capability

devices frequently used as nodes in Wireless Sensor Networks
with several built-in sensors and actuators- of different
vendors –Oracle Sun SPOT and MEMSIC Iris- and the third
one is the Arduino Uno board, a popular device for open
hardware and software developments. The main features of
these devices are displayed in Chart 1.

Device
name

Processor
clock
speed

RAM/Flash
memory

Remarkable
feature

Oracle Sun
SPOT

400 MHz 1Mbytes/
8Mbytes

Capable of
running
HTTP

MEMSIC
Iris

8 MHz 8 Kbytes/128
Kbytes

Java or
nesC
languages

Arduino
Uno

16 MHz 2 Kbytes/32
Kbytes

Sensor
flexibility

Chart 1: device layer components relevant data

 All in all, the device layer must be understood as a
Wireless Sensor Network with the following components:

a) Base station/Sink, which is directly connected to the
device that has the web browser and the Graphical User
Interface installed and running. Base station/Sink must be
capable of managing information at the application layer, as
HTTP requests about service information will have to be
attended by it and sent to the devices that cannot handle
information at layers as high as this. Since this node will
behave as a bridge between the HTTP and the IEEE 802.15.4
domain, most of the petitions can involve obtaining data of
different nature. Among the already mentioned devices, Sun
SPOT Base station/Sink usage is mandatory here, for it is the
only device present in our proposal with a HTTP client able to
successfully get involved in HTTP communications. Besides,
as it must be always attached to a computer to be powered, it
remains unaffected by energy issues typical of Wireless
Sensor Networks.

b) Slave nodes, which are connected to the Base
station/Sink wirelessly by using communications standard
IEEE 802.15.4. These nodes receive the requests that are
meant to be answered by them; the requests will be sent by the
Base station/Sink as soon as there is a petition at the web
browser-enabled device. One very important feature of Slave
nodes is that they can notify several issues that they may be
suffering from; RRAP has a specific PDU that will be sent
from a Slave mote to the most powerful-emitting node if it
detects any performance strangling issue (as the most
repeating, the battery is almost completely depleted). It must
be taken into account that although nodes are physical devices,
roles –at the end of the day, provided services- are purely
made up by software, and their functionalities can be
transferred from one node to another. According to the
capabilities of the used devices, roles can be either activated if
they are dormant (a more efficient option if energy
consumption is taken into account) or being programmed
Over-The-Air (OTA programming). In this case, either Sun
SPOT motes or MEMSIC Iris ones can be used, as application
layer features are not required at this part of the topology.
Having equipment from different vendors communicating to
each other at the same level can be a feature especially prone
to interoperability issues: as Akribopoulos et al. mention in
their research work [7], there may be incompatibilities due to
payload sizes, addresses lengths, or some other derived from
the particular platform of choice, regardless of claiming that

they are all using the same standard, as IEEE 802.15.4.
Fortunately, any trouble that may be encountered should have
been solved before by the RRAP implementation, and the
work done at that point will be interesting to be considered for
future interoperability challenges.

c) Auxiliary sensing devices. Nodes are made by actual
devices that have several built-in sensors and actuators used
for information provisioning; nevertheless, if they can be
expanded so as to supply some information of different nature,
then the system will be enriched and the end users will have
more information at their disposal when the proposal is used.
Interestingly enough, it is not difficult to augment the system
capacities by using electronic devices with low capabilities, as
the only requirement for them will be measuring
environmental data and delivering it to its requester, without
any other need of routing it anywhere. Consequently, available
interfaces of the nodes can behave as ports for external data
coming from other sensors and/or actuators alien to the node

More specifically, Arduino Uno boards are a very suitable
option for this challenge; their capabilities are low enough to
guarantee that they will not require a huge amount of power
but, at the same time, will be able to store any small program –
or sketch, as they are referred to- able to retrieve data.
Provided that the needed elements –photoresistors,
thermoresistors, etc- are available, obtaining readings from
them can be done by plugging any element to a breadboard,
mapping power references (power supply and ground) to the
breadboard and getting the element reading as an analog or
digital input for the Arduino Uno, provided that the pin
mapping has been previously programmed. For example, as
displayed in Figure 2, an Arduino board can be turned into a
sensing/actuating device with ease; in the shown case, a switch
is used to change from one sensor to another and to the
actuator, thus having a LED, a photoresistor and a thermistor
taking turns to execute their actions whenever the switch is
pressed-. In the proposed system, either cabling to a port
available at a node (for example, the Universal
Synchronous/Asynchronous Receiver/Transmitter connections
available in Sun SPOT motes [4]) or, as shown in Figure 2,
adding a 802.15.4 XBee communication module can be

mounted either if a mote is wanted to be augmented with an
Arduino board -as it may come in handy to test a service of
similar nature in devices placed differently, and soldering may
not be required- or the Arduino-built sensing/actuating device
is preferred to run separately, as it will effectively turn into a
low-cost mote.

 In the end, the topology of the Wireless Sensor Network
should look as how is displayed in Figure 3a.

Figure 3a: proposal system network topology

IV. Communications layer
In contrast with the particularity of the physical one,

communications layer uses several standard and proven
technologies, and has no ad hoc elements. As far as
networking is concerned, there are two kinds of domains in the
proposal to be taken care of: internode communications and
web communications.

As already mentioned, the first domain is interconnected
by using IEEE 802.15.4 standard. It has been found more
useful than any other due to several advantages that other
protocols lack: it consumes a low amount of energy and the

Figure 2: an Arduino-built, 802.15.4-enabled sensing/actuating device

available bandwidth, although somewhat scarce (only up to
250 KBps), is more than enough for what is expected to be
done by low capability devices in Wireless Sensor Networks.
Plus, many of these devices are already equipped with
antennae enabled with the standard; Sun SPOT and Iris motes
are 802.15.4 compliant, and almost any Arduino board can be
equipped with a shield using a XBee module; there are even
research products that are made of those components, as the
Squidbee mote [8]. IEEE 802.15.4 standard is divided in two
different layers: a physical one and a Medium Access Control
(MAC) one. The former deals mostly with the channels
available for transmission (usually, there are sixteen channels
available in the 2450 MHz band, ten at the 915 MHz and one
at the 868 MHz band, which is the one commonly use in
Europe) and their frequencies, while the latter is involved in
tasks typical of a MAC layer, as implementing a mechanism
based on ARQ (Automatic Repeat Request) so as to guarantee
error correction [9]. It must be mentioned at this point that,
although frequently mentioned as the same concept, Zigbee is
not IEEE 802.15.4; rather than that, it is a consortium devoted
to the application layer services that may be able to be built
upon the physical and MAC layers of IEEE 802.15.4,
resembling in a way the similarities and differences between
Wi-Fi Alliance and IEEE 802.11 standards.

The second domain that is present in our proposed system
is a regular TCP/IP architecture. This domain has been placed
higher in the layered architectural model as communications
from the application layer will be transferred through an
implementation supported on TCP/IP, while IEEE 802.15.4
communications are not expected to be routed as the TCP/IP-
based ones are. Data transfer is done as usual in a network of
these features: information regarding requests and responses is
routed through a packet switched network and, depending on
whether TCP or UDP has been chosen as the transport layer
protocol, data transport will be done either at a slightly slower
but more reliable way, enabling error correction and data
retransmission (TCP) or at a more real time-like pace, risking
the loss of information in the process (UDP). Judging from the
data requirements of our system, it is considered that UDP is
good enough, as it is important to get information quickly and
chances of having data segments dropped should be fairly low.
Considering how communications will be tackled, as well as
which areas are using one architecture or another, network
topology can be separated now in different areas involving
different communication domains, as it has been portrayed in
Figure 3b.

Figure 3b: network topology separated by communication domains

V. Middleware layer
Middleware is envisioned as fulfilling an extremely

important task as far as the IoT or Wireless Sensor Networks
are concerned, for it will adapt all the heterogeneity of the
device layer components, and all the hardware disparity, into a
homogeneous-looking collection of operations and interfaces.
Noha Ibrahim, which provides a taxonomy on middleware
architectures, claims that “They have evolved from simple
beginnings - hiding network details from applications – into
sophisticated systems that handle many important
functionalities for distributed applications - providing support
for distribution, heterogeneity and mobility” [10]. In this case,
middleware will provide the Graphical User Interface
positioned at the application layer with several operations in
terms of management and status report. The middleware layer
has been deliberately left outside the user architecture part
because the services and functionalities present at this side of
the architecture stack are considered to be tackled by regular
layered components, and it is in our interest designing a model
where Web Services and Wireless Sensor Network-oriented
ones can coexist under the same system. Nevertheless, since
the management part is accessing to the
Wireless Sensor Network nodes and, by proxy, to the data
provided by the Arduino Uno boards, it would be possible to
obtain data from the network regarding sensor readings.

The middleware layer that has been designed is named
Request Response Adapter Protocol (RRAP). It is an accurate
name to give because it is going to adapt all the requests that
are made from the GUI to a specific Processing Data Unit
(hereinafter, PDU) format flowing through the Wireless
Sensor Network, and responses will be treated the same way,
albeit on the opposite direction (from the Wireless Sensor
Network to the GUI). There are several PDUs that have been
designed, according to the different functionalities that are
expected to be retrieved from the middleware architecture.
While there are several different types of them, they are
managed in a way that human operators do not perceive the
disparity under any circumstance; their variety is due to the
fact that the top design criterion was using as few data in radio
transmission as possible, as radio messages are the most
energy-demanding operation in a Wireless Sensor Network by
far, as shown by Abdelmalik Bachir et al. [11].

RRAP will be responsible for tackling several actions that
must be performed, as they have been depicted in the use case
diagram presented in Figure 4.

Figure 4: Use case diagram for the proposal

Service registration. In order to have functional,
retrievable services, the Base station/Sink must be aware of
them, so whenever a node is turned on, it will broadcast a
PDU with all the available services that can be obtained either
by its built-in sensors or from any Arduino Uno board (which,
at the same time, will be connected by using wires to a mote
port or work wirelessly by using a XBee module). This is the
only PDU that must be transmitted in broadcast mode rather
than unicast, as the node is unaware of where the Base
station/Sink is. Its fields will consist of: a node identifier (that
may be varying from one tailored for the system to a MAC
address, as available in Sun SPOT motes [4]) and service
identifiers for the services available at a node, along with their
parameters. The different components of this packet have been
presented in Figure 5.

Service requests. Whenever there is a query involving
management services, it will be transmitted towards the
Wireless Sensor Network from the Base Station/Sink in the
simplest possible manner. Therefore, unambiguous identifiers
will be used to do the request. To begin with, a request on the
available services from the system can be done. As it will be
the most generic and information abundant query, there is very
little need to have many particularizing fields in the PDU that
is transmitted towards the Wireless Sensor Network. In fact, if
service registration has been done without anomalies, this
request could not be mandatory, as data involving registered
services can be stored at the host application running at the
Base station/Sink. As it is displayed in Figure 5, this request
PDU (labeled as type 0) will consist of just a field
characterizing the petition, while the PDU containing the
response results will be larger, as it must include service
identifiers and parameters that are retrieved.

As the Base Station/Sink receives the available services
that were offered by specific Wireless Sensor Network nodes,
the service request message does not require a node identifier,
although the response may vary depending on whether a
reading from a single node was requested or an overall value
that can be obtained from the whole Wireless Sensor Network.
This has been conceived this way because having a flexible

way to request different information seems like a desirable
feature of the system.

For example, if power transmission is requested from all
the existing nodes, a PDU where the only feature that is
necessary for the request to be made is the manager service
identifier (e.g., in case a query made to learn the available
services is executed) is sent. When the response is obtained, it
will be done by providing the manager services and their
parameters from each of the nodes. This interchange has been
depicted in Figure 5 with a 1X-nX identifier, where 1-n acts as
the node identifier and x as the service one, as it is likely that
there are several different services running, along with their
corresponding parameters.

On the contrary, if a management reading from a single
service from a specific of the Wireless Sensor Network is
requested, then the PDU will look as presented in Figure 5: a
node identifier and a single manager service identifier are used
to address the node. As the services and the entities providing
them were registered before, the Base station/Sink is aware of
where to find the node that will satisfy the request.
Afterwards, when an answer is retrieved, only the service and
the parameters the Base station/Sink is expected to fulfill from
the single node are retrieved.

The entities that are involved in the already described
information exchanges, along with the particular exchanges,
have been depicted in Figure 6.

Failure treatment. The system is also taking into account
whenever there is a failure in the Wireless Sensor Network.
Without any unforeseen event, slave nodes may be faulty due
to three different kinds of reasons: either their battery is about
to run out of power, a service has become unavailable (for
example, a sensor has been damaged or an Arduino board
connection to a slave node has failed) or the node has become
unavailable (it is no longer able to transmit/receive data).
When one of these issues is taking place, the slave node sends
a PDU as depicted in Figure 5 to the Base station/Sink
announcing the problem. The next step will be taken by the
Base station/Sink itself: either it will put the node in a sleep

Figure 5: RRAP PDU formats

mode in order to reduce energy consumption, or the role it is
performing –that is to say, the parameters that are being
collected- will be moved to another node. As it was done
before, the entities involved in this use case are depicted in
Figure 6.

VI. Application Layer
As firstly displayed on Figure 1, the application layer will

be made by two different entities with very little actual
relation: a web browser and a Graphical User Interface. The
web browser is expected to be used from a PC, laptop or any
device capable of having a Sun SPOT base station plugged to
a USB port. It is mandatory that the appliance the base station
is plugged to is at the same time connected to the Internet, as
the appliance will be in charge of providing a reliable IP
address to the Base station/Sink from where services can be
requested; otherwise neither the Base station/Sink nor the
services from the Wireless Sensor Network can be retrieved.

Meanwhile, at the Wireless Sensor Network, Sun SPOT
motes will have an HTTP server installed that will be listening
to any request done from the web, and whenever there is an
invocation it will be sent to the suitable node. For example, if
luminosity from a node placed in a room numbered as 45 at
the second floor in an industrial facility, then the service could
be requested as:

http://192.168.10.25:1267/spot-
79E3/luminosity/industrial/2nd/45

In this example, the fields present at the Uniform Resource
Identifier (URI) are:

1. 192.168.10.25 as the IP address of the device the
Sun SPOT base station is connected to (which in fact
behaves as a gateway from/to the Wireless Sensor
Network).

2. 1267 is the port used for the communications.

3. luminosity is the name of the requested service.

4. spot-79E3 is a predictable part; spot simply
represents the name of the devices manufactured by
the vendor, while 79E3 are the last four digits of the
MAC address that is displayed at the motes on their
translucent plastic radio antenna protector [4].

5. The last part of the URI (industrial/2nd/45) is the
path that has been established to reach the specific
device, which will be defined at the implementation
stage

Responses can be watched at the device the Base
station/Sink is plugged to in a variety of formats. If data is to
be given any sort of hierarchy, XML or JSON formats suit
fine for this purpose. Iris motes not executing HTTP petitions
will be communicating to Sun SPOTs via 802.15.4 data
interchange whenever a service only the former are able to
provide is queried.

Figure 6: Entities involved in data transfers and failure treatment

At the same time, a Graphical User Interface must be
enabled for the monitoring of the current capabilities of the
Wireless Sensor Network. Using a Java-based Base
station/Sink that is able to run Java applications as if it was a
communications host, a GUI can be developed where all the
important parameters that ought to be born in mind for the
correct performance of the system can be requested. One
example of that GUI is illustrated in Figure 7, with the
available options and fields to be filled up with information.

Figure 7: example of a system Graphical User interface

VII. Use case scenarios

There are many environments where this monitoring
system can be used, provided that devices at the Wireless
Sensor Network that has been designed are guaranteed certain
acceptable environmental conditions. Usually, whenever there
are data to be collected or monitored the proposed system is
likely to come in handy. The main scenarios where the system
can be applied are:

Agricultural facilities. In this field, several parameters that
can be easily measured by the proposed system (Sun
luminosity, environmental temperature, humidity) are of
critical importance for crops development or cattle care.
Additionally, chemical sensors can be added to the Arduino
Uno boards so as to measure parameters that are not available
by default in the measuring motes.

Infrastructure monitoring. Material stress or infrastructural
wobbling can be surveyed by this proposal as well by making
use of either built-in mote sensors or any other that may have
to be added to the Arudino Uno boards.

Industrial processes. Monitoring is an extremely desirable
functionality for any production process or supply chain, for
Quality Assurance in manufactures is almost mandatory for
industry-related products. For an application in this area,
thresholds may be more varying than somewhere else, as
manufacturing a metal-derived product requires facilities
widely varying in their context characteristics (pressure,
temperature, etc.).

Tertiary and domestic environments. Our proposal can be
used to improve control on how energy is spent for more
efficient heating or lighting. Storage that has to be done under
special temperature conditions may benefit from the usage of
the proposed system as well.

Mineral exploitations. Gas sensors are at its finest here;
firedamp deposits are a major concern in places where mineral
extraction is prominently made by human miners instead of
mining machines, and tunnel tilts can be measured as well for
collapse prevention (actually, Sun SPOT motes have a built-in
3-Axis accelerometer that may fit in for this purpose).

All these scenarios, along with several parameters and
useful services, have been summarized in Chart 2.

Scenario Input parameters Services
Agricultural

facilities
Temperature,
luminosity, air

quality

Parameter real-
time measurement
and/or monitoring

Infrastructure
monitoring

Vibration, 24-hour
temperature
difference

Historic statistics,
parameter real-

time measurement
Industrial
processes

Temperature,
pressure, chemical

agents

Warning and real-
time alarms,
monitoring

Tertiary and
domestic

environment

Power
consumption, air

quality

Monitoring,
consumed power

cost
Mineral

exploitations
Gas concentration,
rafter tilt, chemical

agents

Explosion
prevention, real-
time monitoring

Chart 2: scenario parameters and obtainable services

There are many other developments on how to use systems
that somewhat resemble the one described here; for example,
Weimei Zhang puts forward an Internet of Things-based
platform for digital agriculture [12], or Florian Broekaert et al.
suggests an energy harvesting Wireless Sensor Network
Application [13]. However, these proposals, compelling as
they are, do not usually become as flexible or user-friendly as
the one that has been presented in this document.

VIII. Conclusion and future works
In this document a proposal for a holistic architecture,

which has as objectives attending requests related with
measuring services provided by a Wireless Sensor Network –
capable of being easily augmented by means of sensor
addition and service registration- and is able to self-monitor
and self-heal itself from critical conditions that make a node
unavailable has been displayed. The different elements it has
been designed with have been described and information about
how it is expected to tackle interoperability and
interconnectivity issues, among other challenges, has been
provided too. The idea of facing difficulties for establishing
connections among devices expected to implement the same
radio standard in case of IEEE 802.15.4 is somewhat
shocking, and it only points out the urgent need to further
standardize the technologies expected to run a leading paper in
the development on Wireless Sensor Networks or the Internet
of Things in general.

On the other hand, the design presented here has the
potential of being upgraded to an extent. Semantic capabilities
would an interesting add-on, and would further guarantee the
interoperability and scalability of the system, as they would

provide an accurate description of how services should be
described. Alas, an implementation of a Graphical User
Interface powerful enough to show topology information and
node pictures for accurate description purposes would be
welcomed if real-time information belonging to the Wireless
Sensor Network is wanted to be retrieved.

References

[1] Urien, P. LLCPS: A new security framework based on
TLS for NFC P2P applications in the Internet of Things. in
Consumer Communications and Networking Conference
(CCNC), 2013 IEEE. 2013.

[2] Pereira, P.P., et al. Enabling Cloud Connectivity for
Mobile Internet of Things Applications. in Service Oriented
System Engineering (SOSE), 2013 IEEE 7th International
Symposium on. 2013.

[3] Weiser, M., The computer for the 21st century. Scientific
American, 1991. 265(3): p. 94-104.

[4] Oracle/Sun, Sun™ SPOT Main Board Technical
Datasheet, Oracle, Editor. October 2010.

[5] MEMSIC,
http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_
Datasheet.pdf, M. Inc., Editor. 2013.

[6] Arduino. Arduino Uno web site. 2013; Available from:
http://arduino.cc/en/Main/arduinoBoardUno.

[7] Akribopoulos, O., et al. Building a Platform-Agnostic
Wireless Network of Interconnected Smart Objects. in
Informatics (PCI), 2011 15th Panhellenic Conference on.
2011.

[8] Libelium. Squidbee Main Page. 2013; Available from:
http://www.libelium.com/squidbee/index.php?title=Main_Pag
e.

[9] Singh, J. and D. Pesch. Enhancement of IEEE 802.15.4
MAC layer to combat correlated channel errors. in World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2011
IEEE International Symposium on a. 2011.

[10] Ibrahim, N. Orthogonal Classification of Middleware
Technologies. in Mobile Ubiquitous Computing, Systems,
Services and Technologies, 2009. UBICOMM '09. Third
International Conference on. 2009.

[11] Bachir, A., et al., MAC Essentials for Wireless Sensor
Networks. Communications Surveys & Tutorials, IEEE, 2010.
12(2): p. 222-248.

[12] Weimei, Z. Study about IOT's application in
"Digital Agriculture" construction. in
Electrical and Control Engineering (ICECE), 2011
International Conference on. 2011.

[13] Broekaert, F., et al. Prototyping an Energy Harvesting
Wireless Sensor Network Application Using HarvWSNet. in
Architecture of Computing Systems (ARCS), Proceedings of
2013 26th International Conference on. 2013.

http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
http://arduino.cc/en/Main/arduinoBoardUno
http://www.libelium.com/squidbee/index.php?title=Main_Page
http://www.libelium.com/squidbee/index.php?title=Main_Page

	I. Introduction
	II. An overview of the designed system
	III. Device Layer
	IV. Communications layer
	V. Middleware layer
	VI. Application Layer
	VII. Use case scenarios
	VIII. Conclusion and future works
	References

