
A Comparison of Mechanisms for Integrating Handwritten and
Generated Code for Object-Oriented Programming Languages

Timo Greifenberg1, Katrin Hölldobler1∗, Carsten Kolassa1, Markus Look1, Pedram Mir Seyed
Nazari1, Klaus Müller1, Antonio Navarro Perez1, Dimitri Plotnikov1, Dirk Reiss2, Alexander Roth1,

Bernhard Rumpe1, Martin Schindler1 and Andreas Wortmann1

1 Software Engineering, RWTH Aachen University, Germany
2 Institute for Building Services and Energy Design, TU Braunschweig, Germany

{greifenberg, hoelldobler, kolassa, look, nazari, mueller, perez, plotnikov, roth, rumpe, schindler, wortmann}@se-rwth.de,
d.reiss@tu-bs.de

Keywords: Code Generation, Handwritten Code Integration, Model-Driven Development.

Abstract: Code generation from models is a core activity in model-driven development (MDD). For complex systems
it is usually impossible to generate the entire software system from models alone. Thus, MDD requires
mechanisms for integrating generated and handwritten code. Applying such mechanisms without considering
their effects can cause issues in projects with many model and code artifacts, where a sound integration for
generated and handwritten code is necessary.
We provide an overview of mechanisms for integrating generated and handwritten code for object-oriented
languages. In addition to that, we define and apply criteria to compare these mechanisms. The results are
intended to help MDD tool developers in choosing an appropriate integration mechanism.

1 INTRODUCTION

Model-driven development (MDD) (Kleppe et al.,
2003) pursues the vision to create complex software
systems from abstract models by transforming these
into concrete implementations (France and Rumpe,
2007). However, the prevailing conjecture is that de-
riving a non-trivial, complete implementation from
models alone is not feasible (Wile, 2003). Current
MDD techniques thus require tool developers to in-
tegrate generated and handwritten code. To per-
form this code integration, various mechanisms can
be used. However, there is no best integration mech-
anism which should always be used. Instead, it de-
pends on the context in which this code integration
has to be carried out and on the concrete requirements
which integration mechanisms are best suited to be
applied.

To support MDD tool developers in selecting in-
tegration mechanisms, we examined existing mech-
anisms to integrate generated and handwritten code
for object-oriented programming (OOP) languages.
Additionally, we created a set of criteria focusing

∗K. Hölldobler is supported by the DFG GK/1298 Algo-
Syn.

on different properties of code integration mech-
anisms to assess and compare these mechanisms.
The presented criteria are based on a decade of
experiences in object-oriented software engineering
and MDD research (Rumpe, 2011; Rumpe, 2012),
code generator development and code integration re-
search (Rumpe et al., 2010; Schindler, 2012), and
experiences with MDD processes within various do-
mains including automotive (Grönniger et al., 2008),
cloud computing (Navarro Pérez and Rumpe, 2013),
robotics (Ringert et al., 2013), and smart build-
ings (Kurpick et al., 2012).

We introduce eight handwritten code integration
mechanisms and evaluate each with respect to our cri-
teria. Moreover, we show strengths and weaknesses
of each integration mechanism in the evaluation re-
sults. By means of this, we seek to increase the
comparability between the integration mechanisms.
In particular, this overview is intended to be used
by MDD tool developers to find a proper integration
mechanism on a case-by-case basis.

Please note, that the list of integration mechanisms
and evaluation criteria presented in this paper does not
claim to be complete. However, if further integration
mechanisms need to be compared or the mechanisms

[GHK+15] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir Seyed Nazari, K. Müller, A. Navarro Perez, D. Plotnikov, D. Reiss, A. Roth, B. Rumpe, M. Schindler, A. Wortmann:
A Comparison of Mechanisms for Integrating Handwritten and Generated Code for Object-Oriented Programming Languages.
In: Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development. Angers, Loire Valley, France, pp. 74-85, 2015.
www.se-rwth.de/publications

need to be evaluated with respect to additional evalu-
ation criteria, this paper can be used as a basis easily.

In summary, the contributions of this paper are:

• A list of evaluation criteria for code integration
mechanisms.

• A collection of mechanisms to integrate generated
and handwritten code.

• An evaluation of the integration mechanisms
based on the list of evaluation criteria.

In the remainder, we introduce criteria to assess
the different integration approaches (Section 2). The
code integration approaches are separated into mecha-
nisms based on specific concepts in programming lan-
guages (Section 3) and mechanisms free of such re-
quirements (Section 4). Subsequently, we summarize
and discuss the evaluation results (Section 5). After
that we elaborate on related work (Section 6) before
we conclude this contribution (Section 7).

2 EVALUATION CRITERIA

The following criteria concern different properties of
integration mechanisms and aim at helping develop-
ers in selecting a suitable mechanism. These crite-
ria are based on existing literature (Stahl and Völter,
2006; Pietrek et al., 2007), best practices in software
development (Parnas, 1972; Gamma et al., 1995), and
our experience (Rumpe, 2011; Grönniger et al., 2008;
Rumpe et al., 2010; Kurpick et al., 2012; Rumpe,
2012; Schindler, 2012; Navarro Pérez and Rumpe,
2013; Ringert et al., 2013). This list does not claim
to cover all aspects of handwritten code integration.
Nonetheless, it can be used as an initial list of crite-
ria which can be adapted to fit personal needs. The
presented criteria are not weighted on purpose since a
weighting is highly subjective and also tailored to an
application scenario, which is not intended.

C1: Separation of generated and handwritten
code. - Can generated and handwritten code be sepa-
rated into different files?
Separation of concerns is an essential design prac-
tice in software development (Parnas, 1972) and has
been proposed as a criterion to evaluate integration
mechanisms for handwritten code by (Stahl and Völ-
ter, 2006; Pietrek et al., 2007). One crucial benefit of
separating generated and handwritten code into dif-
ferent files is that it can be ensured that the generator
does not overwrite handwritten code. In case of mix-
ing generated and handwritten code in one file, the
handwritten code might not always be preserved.

C2: Support for overriding generated parts. - Can
developers add handwritten parts that are used instead
of particular generated parts?
Depending on the developer’s requirements it can be
necessary to adapt particular parts of the generated
functionality. This can be done by integrating hand-
written code that refines these parts. A benefit of such
handwritten code refinements is that the code gener-
ator does not have to be changed to fit different re-
quirements.

C3: Extendability of the generated interfaces.
- Can the generated interfaces be extended with hand-
written methods?
Hiding implementation details is accepted as com-
mon practice in software development (Parnas, 1972;
Gamma et al., 1995). Accordingly, we assume that
functionality of the generated system is provided to
developers through dedicated generated interfaces
and that the system’s functionality is only accessed
by using these. Obviously, these generated interfaces
are oblivious to handwritten code. Consequently, the
generated interfaces need to be extended to allow
access to handwritten functionality.

C4: Independence of handwritten code at genera-
tion-time. - Is the generator independent of the exis-
tence of handwritten code at generation-time?
In some handwritten code integration mechanisms the
generated code needs to be adapted if handwritten
code is present. In this case the handwritten code
is processed by the generator and the generated code
is adapted accordingly. For instance, the handwritten
code is merged into the generated code and one arti-
fact is produced. If this functionality is not provided
by the generator framework, a generator developer
has to extend the generator with such functionality.
This additional effort might not be desired and can be
avoided by choosing a generator framework with sup-
port for handling handwritten code. However, then
the choice of an integration mechanism influences the
choice of the generator framework. This is not always
feasible.

C5: Independence of additional OOP language
constructs. - Can the integration mechanism be re-
alized using only default OOP language constructs?
Some of the existing handwritten code integration
mechanisms are tailored to a particular type of OOP
language that provides specific language constructs.
Consequently, such integration mechanisms are re-
stricted to generators that generate code in one of
these languages. The benefit of handwritten integra-
tion mechanisms using default OOP language con-
structs is that no additional tooling is required and the

generator is not tailored to a specific type of language.
The following language constructs are regarded as the
default OOP language constructs in this work: (ab-
stract) classes, inheritance, interfaces, object creation
facility and message-passing capability. Except for
interfaces this understanding complies with (Eliens,
1994). We are aware that not all OOP languages pro-
vide the concept of interfaces but interfaces can be
realized using classes with empty method bodies and
inheritance.

3 INTEGRATION MECHANISMS
BASED ON LANGUAGE CON-
CEPTS

In this section, we present a catalog of integration
mechanisms that presuppose certain concepts in the
target language, for instance, inheritance known from
object-oriented programming. Each presented mech-
anism is described and evaluated with the following
scenario:

Assume the input model for the code generator
is an UML class diagram (CD) containing the class
NotePad. As CDs do not model class behavior, im-
plementations of NotePad methods can be developed
manually and the resulting handwritten code needs to
be integrated with the code generated for NotePad.

The same problems arise whenever modeling lan-
guages do not support modeling of all aspects of a
system and these parts have to be developed manu-
ally. The mechanisms presented in the remainder of
this publication are not limited to CDs and a particu-
lar type of code generation. We only use CDs to give
an illustrative example.

3.1 Generation Gap

The generation gap mechanism (Vlissides, 1998;
Stahl and Völter, 2006; Fowler, 2010) assumes that
an interface and a default implementation are gener-
ated for each class in the input model. For instance,
the interface NotePad and the default implementa-
tion NotePadBaseImpl are generated for the class
NotePad. Manual extensions of specific methods or
behavior different from the default implementation
are defined in the handwritten class NotePadImpl.
Figure 1 depicts this pattern for the class NotePad.
Please note, that here and in the following «gc» de-
notes generated code and «hc» denotes handwritten
code.

In this case, NotePadImpl is the implementa-
tion that will be used by both the generated code as

«interface»

NotePad

NotePadBaseImpl

«gc»

«gc»

NotePadImpl

«hc»

CD

Figure 1: Generation gap pattern for the NotePad Example.

well as manually written code that uses the interface
NotePad.

Please note, that the generation gap mechanism re-
quires developers to create the handwritten class, no
matter whether handwritten code is inserted into that
class or not. In projects in which handwritten exten-
sions are rarely needed, this leads to bloated projects
with an unnecessary high number of artifacts.

Evaluation criteria
C1: Separation of generated and handwritten
code. Fulfilled. This criterion holds by definition of
the pattern, as the handwritten code has to be stored
in separate classes.

C2: Support for overriding generated parts. Ful-
filled. The possibility to override generated methods
is a crucial feature of the pattern.

C3: Extendability of the generated interfaces. Un-
fulfilled. This approach does not provide means to
reflect added methods in the generated interface. The
extended generation gap mechanism (see Section 3.2)
addresses this issue.

C4: Independence of handwritten code at genera-
tion-time. Fulfilled. Whether or what handwritten
code exists does not influence the code generation in
any way.

C5: Independence of additional OOP language
constructs. Fulfilled. This mechanism does not re-
quire additional OOP language constructs.

3.2 Extended Generation Gap

A mechanism that addresses two disadvantages of the
basic generation gap mechanism (see Section 3.1) -
the inability to extend the generated interface and the
necessity to create an implementation class - is the ex-
tended generation gap mechanism. Since this mecha-
nism has been developed for our particular needs, its
name is not a well-known term in MDD.

The first disadvantage is addressed by allowing to
add a handwritten interface on top of the generated
interface, as shown in Figure 2. As the generated
interface NotePad extends the handwritten interface
NotePadBase, all methods added to NotePadBase

«interface»

NotePad

NotePadBaseImpl

«gc»

«gc»

«interface»

NotePadBase

«hc»

CD

NotePadImpl

«hc»

Figure 2: Extended generation gap pattern with an addi-
tional handwritten Interface.

are also available when accessing NotePad. However,
developers do not have to add this handwritten inter-
face. Instead, the generator checks at generation-time
whether it exists. If it does exist, the generated in-
terface will extend the handwritten interface. Conse-
quently, the generator needs to be executed again after
adding a handwritten interface to reflect this change in
the generated code.

When a developer adds a handwritten interface,
the handwritten implementation class (NotePadImpl
in Figure 2) has to be provided as well. If no hand-
written interface is present, the generator generates a
concrete class NotePadBaseImpl by default and an
additional implementation class does not have to be
added by developers. In this way, developers are not
forced to integrate their own implementation class.
However, if a developer adds the handwritten class
NotePadImpl, which has to extend the generated base
class NotePadBaseImpl, this class is used in the gen-
erated code and NotePadBaseImpl becomes abstract.
This integration of handwritten code requires the gen-
erator to be executed again, as it checks at generation-
time whether developers added their own implemen-
tation classes.

Other variations of the generation gap mechanism
are possible. For instance, assuming that a handwrit-
ten interface always exists. A detailed discussion is
neglected because the variations are very similar and,
as shown in the example, differ in technical details.

Evaluation criteria

C1: Separation of generated and handwritten
code. Fulfilled. See Section 3.1.

C2: Support for overriding generated parts. Ful-
filled. See Section 3.1.

C3: Extendability of the generated interfaces. Ful-
filled. The API of the generated class can be ex-
tended easily by adding the handwritten interface
NotePadBase which is extended by the generated in-
terface NotePad. Thus, method signatures which are
added to the handwritten interface are also available
in the generated one. The actual implementations of

these methods have to be added to the handwritten
implementation class NotePadImpl.

C4: Independence of handwritten code at genera-
tion-time. Unfulfilled. The generator has to check
whether a handwritten interface or a handwritten im-
plementation class was introduced, as this influences
the structure of the generated code.

C5: Independence of additional OOP language
constructs. Fulfilled. See Section 3.1.

3.3 Delegation

Delegation is a pattern of object composition in
object-oriented programming. In essence, the pattern
consists of two objects taking the roles of one delega-
tor and one delegate, respectively. The delegator del-
egates parts of its functionality to the delegate by in-
voking methods of the delegate. To this end, the dele-
gate provides an interface declaring the method signa-
tures that can be invoked. Figure 3 gives an overview
of the objects and relationships involved. Here,
NotePad is the delegator and NotePadDelegateImpl
is the delegate implementing the methods defined in
the NotePadDelegate interface.

«interface»

NotePadDelegate

NotePad

«gc»

«gc»
NotePad-

DelegateImpl

«hc»

1

1

«creates»

acts as delegator

CD

Figure 3: Delegation pattern requires a delegator for regard-
ing handwritten implementations.

The delegator is responsible for instantiating the
delegate. In this case, NotePadDelegateImpl is the
implementation that will be used by both the gener-
ated code as well as manually written code that uses
the interface NotePadDelegate.

The relationship between the delegator and its del-
egate can be unidirectional or bidirectional. In the for-
mer case, the delegate has no knowledge of its delega-
tor. All interaction takes place via its method param-
eters and return values. In the latter case, the delegate
has a reference to its delegator and may respond to
delegated tasks by invoking methods on its delegator.
In any case the delegator is in control and initiates
all interactions. The delegator can choose to keep the
same delegate instance for subsequent delegations or
to use a new instance for every single delegation.

In essence, the purpose of delegation is to out-
source functionality to a distinct object with an ex-
plicit interface specific to this functionality. This pur-

pose makes delegation naturally applicable to the in-
tegration of handwritten and generated code. The
roles of the delegators are taken by generated classes
while the roles of the delegates are taken by handwrit-
ten classes. All functionality that cannot be generated
is delegated to the handwritten delegates. The dele-
gate interfaces, thus, are well-defined and distinct in-
terfaces between generated and handwritten code. It
can be generic and handwritten or specific and gen-
erated. The choice depends on whether the delegated
functionality depends on the model or not. For in-
stance, to delegate the implementation of method sig-
natures in class diagrams to a delegate, it is appro-
priate to generate the delegate interface based on the
method signatures defined by the CD.

In general, delegation provides a higher degree of
encapsulation and cohesion compared to alternative
patterns. Moreover, it avoids inheritance in handwrit-
ten classes since delegates only have to implement an
interface. In programming languages without support
for multiple inheritance delegation allows developers
to use inheritance with handwritten classes.

Evaluation criteria
C1: Separation of generated and handwritten
code. Fulfilled. The pattern separates generated
and handwritten code by putting them into different
classes and interfaces.
C2: Support for overriding generated parts. Un-
fulfilled. In this mechanism, only designated delega-
tors can be implemented to provide handwritten code.
It is not possible to override other generated parts.
C3: Extendability of the generated interfaces. Un-
fulfilled. The generated interface can be extended by
subinterfaces and concrete delegators according for
the extended subinterface. However, the generated
delegator is not aware of these extensions.
C4: Independence of handwritten code at genera-
tion-time. Fulfilled. The existence of handwritten
delegate classes does not influence the code genera-
tion.
C5: Independence of additional OOP language
constructs. Fulfilled. The default OOP language con-
structs suffice to implement this mechanism.

Alternatives The cardinalities of the delegation re-
lationship are not necessarily restricted. Thus, an im-
plementation of the pattern may associate one delega-
tor with exactly one delegate, or one delegator with
many delegates, or many delegators with one del-
egate. The choice between these variants depends
heavily on whether the delegate is stateful or state-
less. Stateless delegates can generally be shared by

many delegators and do not need to be instantiated re-
peatedly. Moreover, combinations of delegators and
delegates can be made with different combinations of
classes for both roles. For instance, a general purpose
delegate may be appropriate for different classes of
delegators.

3.4 Include Mechanism

Include mechanisms are based on dedicated language
constructs which allow to define that a certain file
should be included into another file at a specific point.
This idea can be easily used to integrate generated and
handwritten files as either a generated file includes
handwritten files (see Figure 4) at designated places
or vice versa. In general, the effect of using an in-
clude statement is equivalent to injecting the content
of the included file to the corresponding location in
the including file. Specific languages may offer in-
clude mechanisms with different meanings, but this
will not be discussed in the following as the focus is
on the general idea of include mechanisms.

NotePad

include

include

part

part

«gc»

«hc»

«hc»

Figure 4: The include mechanism adds include statements
to the generated file to consider handwritten artifacts.

By including handwritten files in generated files,
the generator can define the required structure of the
files and developers merely need to introduce selected
handwritten files, which are included properly with-
out the developer having to worry about it. This is ad-
vantageous if developers should not be able to deviate
from this generated structure, as they can only pro-
vide the handwritten files which are included. Thus,
developers are guided in which files to provide. On
the other hand, if developers need more flexibility and
should be able to deviate from such a generated struc-
ture, including generated files in handwritten files is
more appropriate. This variant is, of course, accom-
panied by the risk that developers forget to include the
proper generated files at the proper places.

Evaluation criteria
C1: Separation of generated and handwritten
code. Fulfilled. No matter whether generated files
include handwritten files or vice versa, generated and
handwritten parts are separated into different files.

C2: Support for overriding generated parts. Un-
fulfilled. It is not possible to integrate handwrit-
ten code which is used instead of generated code as
handwritten code can only be included and, therefore,
added.

C3: Extendability of the generated interfaces.
Conditionally fulfilled. To fulfill this criterion, a pro-
gramming language has to allow include statements
inside of interfaces to extend the signature. Even
though we are not aware of a language that supports
this, the concept itself does not forbid it. Therefore
this criterion might be fulfilled, depending on the spe-
cific target language.

C4: Independence of handwritten code at genera-
tion-time. Fulfilled. The generation of the include
functionality does not depend on the existence of
handwritten code.

C5: Independence of additional OOP language
constructs. Unfulfilled. The mechanism requires in-
clude constructs which do not belong to the default
OOP language constructs.

3.5 Partial Classes

Partial classes facilitate splitting class implementa-
tions into several source code files. These parts
are merged in a pre-compilation phase. The result
contains the union of all methods, fields and super
types of all its partial definitions. In contrast to
aspect-oriented programming (see Section 3.6), par-
tial classes are concerned with only one class rather
than multiple.

The partial classes mechanism suits well for inte-
grating handwritten and generated code. Each gener-
ated partial class can be extended by adding handwrit-
ten code in its own partial class in a separate source
file. The resulting generated and handwritten code
is integrated automatically by merging them. This
merging can either be done by applying naming con-
ventions, i.e., partial classes with the same name are
merged, or by explicit notations. How and which par-
tial classes are merged is defined by the used lan-
guage.

The CD in Figure 5 illustrates the partial class
mechanism. In this case, the generated code is
stored in the partial class NotePadBaseImpl and the
handwritten code is stored in a separate partial class
NotePadBaseImpl.

Evaluation criteria

C1: Separation of generated and handwritten
code. Fulfilled. The handwritten and generated par-

«partial»

NotePadBaseImpl

«gc»

«partial»

NotePadBaseImpl

«hc»

«interface»

NotePad

«gc»

Pre-compiler

NotePadBaseImpl.java

Figure 5: Partial classes mechanism merges the handwritten
and the generated implementation to one single artifact.

tial classes can be located in different source code
files.

C2: Support for overriding generated parts. Con-
ditionally fulfilled. In general, the partial classes
mechanism does not forbid to override methods’ im-
plementations. However, depending on the used pro-
gramming language that supports partial classes, this
criterion may not be fulfilled.

C3: Extendability of the generated interfaces.
Conditionally fulfilled. The concept of the partial
classes mechanism can be applied to interfaces, too.
Thus, the additional method signatures can be added
to the handwritten partial interface which is merged
with the generated partial interface. However, if a re-
alization of the partial class mechanism supports par-
tial classes but not partial interfaces, this criterion is
not fulfilled.

C4: Independence of handwritten code at genera-
tion-time. Fulfilled. Handwritten code does not have
to exist at generation-time, because its existence does
not influence the code generation process. Hand-
written code only has to be available when the pre-
compiler merges the generated and handwritten code.

C5: Independence of additional OOP language
constructs. Unfulfilled. This mechanism requires
support for partial classes which is not regarded as
a default OOP language construct in this work.

3.6 Aspect-Oriented Programming

Aspect-oriented programming (AOP) (Kiczales et al.,
1997) addresses crosscutting concerns - functionality
or features scattered across several classes causing du-
plication - by encapsulating duplicated code in one
place. Although integrating handwritten code with
generated code does not necessarily deal with cross-
cutting concerns, AOP can be used for this integra-

tion (Schindler, 2012). One advantage in this con-
text is that the generated code does not need to offer a
specific architecture to be extendable by handwritten
code. Instead, the handwritten code is added by so
called aspects.

An aspect reacts to a predefined event (pointcut)
during the program execution. Such a predefined
event can be, for instance, a method call of a specific
method in a specific class. The action that is executed
when a pointcut is reached is implemented in an ad-
vice. Such an advice can be executed before, after or
instead of the according event.

The integration of handwritten code can, thus, be
performed by implementing an advice that is executed
instead of a specific generated method. Accordingly,
handwritten code could be executed before or after
executing particular generated code, by using a be-
fore or after advice. All these cases, of course, require
the generator to create at least a dummy implementa-
tion of the corresponding method so that the hand-
written advice can be executed instead of that gener-
ated method.

NotePadBaseImpl

«gc»

«aspect»

NotePad

«hc»

Aspect Weaver

NotePadBaseImpl

«gc+hc»

Figure 6: Overview of an aspect-oriented integration mech-
anism for a part of a generated software system.

Figure 6 illustrates the idea underlying the inte-
gration of handwritten code using AOP. In this case,
handwritten code is added to an advice in an aspect.
An aspect weaver then takes the instructions given
in the aspect and produces a combined artifact (e.g.
a source code file) in which the advice implementa-
tion is woven into the code of the generated classes.
This means that the advice instructions are introduced
into the proper locations in the generated classes. In
the example given in Figure 6, the implementation of
a generated method in NotePadBaseImpl would be
replaced by the advice implementation, if the aspect
contains one advice for one method.

Besides the additional overhead of weaving the as-
pects into the source code, a major drawback of AOP
is that it is more difficult to understand the program
flow as it is influenced by aspects. Moreover, refac-
torings in the source code may lead to invalid aspects,
known as the fragile pointcut problem (Kellens et al.,
2006).

Evaluation criteria

C1: Separation of generated and handwritten
code. Fulfilled. AOP offers a clear separation of
the handwritten and the generated code. The gener-
ated code is not aware of the aspects, which contain
the handwritten code and which are stored in separate
files.

C2: Support for overriding generated parts. Ful-
filled. As described above, an advice can be imple-
mented such that it is called instead of a particular
event in the generated class. By means of this, the ex-
ecution of a generated method can be prevented and
instead the handwritten implementation is executed.

C3: Extendability of the generated interfaces. Ful-
filled. Concepts in aspect-oriented programming al-
low to extend interfaces and classes. Consequently,
the API can be extended.

C4: Independence of handwritten code at genera-
tion-time. Fulfilled. The generator and the generated
code is not aware of handwritten code at all.

C5: Independence of additional OOP language
constructs. Unfulfilled. In order to be able to use this
mechanism, the generated code needs to conform to a
programming language that supports aspect-oriented
programming or contains aspect-oriented extensions.
This is not provided by OOP languages by default.

Alternatives If the target language does not support
aspect-orientation, hook points can be created in the
generated code. Every hook point is called at the be-
ginning and end of a method execution. By using in-
heritance, these hook points can be used to add behav-
ior before or after the actual method execution. The
behavior can be changed completely by overriding the
method representing the hook point (see generation
gap in Section 3.1). To some extent, this mechanism
simulates aspects in AOP but it is not able to extend
the API.

4 GENERAL INTEGRATION
MECHANISMS

Besides integration mechanisms that rely on language
concepts, integration approaches free of this restric-
tion are presented in this section. In compliance with
Section 3, these approaches are evaluated with respect
to the criteria described in Section 2.

4.1 PartMerger Mechanism

A PartMerger is a component that is capable of merg-
ing multiple files of a specific type, e.g., Java files,
into one file. Obviously, this idea fits well to integrate
handwritten and generated parts, as these parts can be
separated into different files and later be merged by
the PartMerger as shown in Figure 7.

The PartMerger mechanism is a generalization of
the partial classes mechanism (see Section 3.5). In
contrast to partial classes, the PartMerger can also
deal with non-source code artifacts. For instance, the
DSL tool bench MontiCore (Grönniger et al., 2008;
Krahn et al., 2010) uses this mechanism to merge gen-
erated and handwritten Eclipse plugin.xml files and
Eclipse manifest files.

Java PartMerger

NotePad.java

«gc»

NotePad.java

«hc»

NotePad.java

Figure 7: The PartMerger mechanism merges source code
artifacts (e.g. Java source code) to one artifact.

Without any restriction on how to merge differ-
ent files, the PartMerger mechanism is very flexi-
ble. To consider handwritten code, a PartMerger can
give higher priorities to handwritten extensions when
merging two files. Furthermore, there are different
strategies for invoking the PartMerger and for defin-
ing the files to be merged. A simple strategy is to in-
voke the PartMerger automatically for files conform-
ing to a specific naming convention on the artifact
level, e.g., files with the same file name in specific
folders or files with a common pre- or postfix. An-
other strategy is to let the developers configure which
files should be merged.

A drawback of the PartMerger mechanism is the
lack of tool support when integrating handwritten
code. The reason for this is that common function-
alities such as code completion are not directly avail-
able to access parts of the generated code due to the
strict separation of the generated and the handwritten
source code files. Developers need to implement such
tooling on their own, if they want to take advantage
of such tooling. This is an advantage of applying par-
tial classes (see Section 3.5). The according tooling
for this does not have to be implemented by the de-
veloper but it is already provided.

The PartMerger mechanism is very similar to the
partial classes mechanism. The main difference is

rooted in the language support for partial classes. In
other words, a language that supports partial classes
provides concepts to define what language parts are
merged. The compiler takes care of the merging. In
contrast, the PartMerger approach is based on a dedi-
cated configurable tool that merges different artifacts,
e.g. Java source code artifacts. Consequently, the
PartMerger mechanism is not tailored to a particular
language. However, the realization of the PartMerger
might be tailored to particular languages.

Evaluation criteria
C1: Separation of generated and handwritten
code. Fulfilled. The separation of artifacts is a pre-
condition for this approach.

C2: Support for overriding generated parts. Ful-
filled. A PartMerger component can be implemented
in such a way that it assigns a higher priority to hand-
written parts so that certain generated parts are sub-
stituted by handwritten parts in the merged artifact.
In this way, the handwritten code will be executed in-
stead of the generated code.

C3: Extendability of the generated interfaces. Ful-
filled. Extending the API of a generated component
is easily possible. To accomplish this, a handwritten
interface provided by developers needs to be merged
with the generated interface.

C4: Independence of handwritten code at genera-
tion-time. Fulfilled. Handwritten artifacts do not
have to exist at generation-time, because they do not
influence the generation-process. Instead, handwrit-
ten artifacts only have to be available when the Part-
Merger merges the generated and handwritten arti-
facts. This takes place after the code generator has
finished.

C5: Independence of additional OOP language
constructs. Fulfilled. This mechanism does not re-
quire any kind of OOP language construct at all.

4.2 Protected Regions

Protected regions are designated regions located in
generated code that allow to add handwritten code
(see Figure 8). A common use case for applying pro-
tected regions is to generate method signatures from
input models and to insert protected regions into the
corresponding method bodies.

Each protected region is typically surrounded by
comments comprising a unique identification string.
In this way, it can be differentiated between differ-
ent protected regions. Before (re)generating code, the
generator identifies protected regions in the generated

code and manages the code contained in these regions
based on the identification strings. While generating
code, it reinserts the code previously contained in a
particular protected region. As a consequence, the
identification string associated with a protected region
is crucial to be able to preserve the handwritten code
in subsequent generator executions.

NotePad

protected region

protected region

part

part

«hc»

«hc»

«gc»

Figure 8: The protected regions mechanism requires prede-
fined regions that contain handwritten code.

Different model-to-text transformation languages
provide built-in support for declaring protected re-
gions, including XPand (XPand website, 2014), Ac-
celeo (Acceleo website, 2014), Epsilon Generation
Language (Rose et al., 2008), JET (JET website,
2014) and MOFScript (Oldevik et al., 2005). Some
of these languages have different names for the pro-
tected region mechanism, e.g., protected area (Stahl
and Völter, 2006), user code block in Acceleo, user
region in JET, and unprotected block in MOFScript.

A major drawback of protected regions is that
it cannot be guaranteed that the generator preserves
handwritten implementations. The reason for this is
that handwritten code is mixed with generated code.
In addition, to support this mechanism, a guarantee
has to be given that the identification string is unique
and stable. Otherwise, handwritten code may get lost
in some situations.

Evaluation criteria
C1: Separation of generated and handwritten
code. Unfulfilled. The handwritten and generated
parts are mixed within the same files, therefore there
is no separation according to our criterion.

C2: Support for overriding generated parts. Un-
fulfilled. It is not possible to override generated code.
Only explicitly designated parts can be extended.

C3: Extendability of the generated interfaces. Ful-
filled. An extension of the API can be achieved by
generating in such a way that protected regions are
introduced into the generated interfaces. Then, meth-
ods can be added to that protected region.

C4: Independence of handwritten code at genera-
tion-time. Unfulfilled. The generator has to analyze
the previously generated code to extract handwritten
code from protected regions. Otherwise the generator

would not be able to inject that code from the pro-
tected regions back into the generated code.
C5: Independence of additional OOP language
constructs. Fulfilled. This mechanism does not re-
quire any kind of OOP language construct at all.

Alternatives The Eclipse Modeling Framework
(EMF) (Budinsky et al., 2008) applies a mechanism
to integrate handwritten code which is different to
protected regions described so far, but conceptually
comparable. In EMF, every class, method etc. that
is generated, includes a Javadoc comment that con-
tains a generated tag (Gronback, 2009). By removing
the generated tag the generated implementation can
be changed. Hence, removing the generated tag cor-
responds to introducing a protected region.

5 DISCUSSION

In this section, we summarize and discuss the evalu-
ation results shown in Table 1. A plus sign in a table
cell indicates that the approach fulfills the correspond-
ing criterion, whereas a minus sign expresses that the
criterion was not satisfied. Parentheses denote that the
criterion is fulfilled under certain conditions.

All approaches, except for protected regions, sep-
arate generated and handwritten code on the basis of
files. Thus, it is ensured that the handwritten code
is not overwritten because only the generated files are
overwritten. However, the protected regions approach
combines generated and handwritten code. Conse-
quently, without external mechanisms this approach
does not protect handwritten code from being over-
written.

Table 1 also shows that the extended generation
gap approach, the aspect-oriented programming ap-
proach and the PartMerger approach provide the most
flexibility when overriding generated parts and ex-
tending the generated interfaces. For partial classes,
it depends on the actual programming language being
used whether it is possible to override generated parts
or not. Moreover, it also depends on the program-
ming language, if besides partial classes also partial
interfaces are supported. The situation is different for
include mechanisms. Here, we are not aware of any
language allowing for includes in interfaces to extend
the generated interfaces. However, the concept itself
does not forbid such behavior. Therefore, its applica-
bility also depends on the used language.

A topic that should be discussed when allowing
to add handwritten code is the support for restrict-
ing what parts of the generated code can be over-
riden. For all approaches that are based on default

Table 1: Overview of Integration Mechanisms and Results of Analysis with respect to the Criteria.

G
en

er
at

io
n

G
ap Ex

te
nd

ed
G

en
. G

ap

D
el

eg
at

io
n

In
cl

ud
e

M
ec

ha
-

ni
sm Pa

rti
al

C
la

ss
es

A
O

P

Pa
rtM

er
ge

r

Pr
ot

ec
te

d
R

eg
io

ns

C1: Separation of generated + + + + + + + -and handwritten code
C2: Support for overriding + + - - (+) + + -generated parts
C3: Extendability of the - + - (+) (+) + + +generated interfaces
C4: Independence of hand-

+ - + + + + + -written code at
generation-time
C5: Independence of addi-

+ + + - - - + +tional OOP language
constructs

OOP language concepts restrictions can either be de-
fined by using the private or final modifier in the gen-
erated code (generation gap and extended generation
gap) or by defining a delegation interface that is to be
implemented (delegation). Other approaches only al-
low for adding handwritten code at predefined points
in the generated code (include mechanism and pro-
tected regions). For all other approaches it depends
on the compiler/framework used (partial classes and
AOP) or the implementation of the part merging (Part-
Merger) what kinds of restrictions can be defined.

All approaches but the extended generation gap
mechanism and protected regions do not need to
check for the existence of handwritten code at
generation-time. The extended generation gap ap-
proach demands the generator to check for the exis-
tence of the handwritten interface, as the generated
interface must extend this handwritten interface if it
exists. Moreover, it checks for the existence of the
handwritten implementation class, as this class is used
in the generated code if it exists. In case of protected
regions, the generator has to extract the handwritten
code from the generated code before (re)generating
to be able to reinsert it into the generated code.

Moreover, Table 1 illustrates that only the fol-
lowing approaches can be used without requiring
other language constructs than the default OOP lan-
guage constructs: generation gap, extended gener-
ation gap, delegation, PartMerger and protected re-
gions. All other mechanisms depend on additional
language constructs which are not provided by default
by OOP languages, e.g., include functionality or par-
tial classes.

6 RELATED WORK

To the best of our knowledge, no other publication
exists which gives a comparable overview and evalu-
ation of different integration mechanisms. However,
as most of the presented mechanisms have been de-
scribed by other authors, we give an overview of ex-
isting work in this section.

Pietrek et. al. (Pietrek et al., 2007) provide a ba-
sic introduction to MDE and list guidelines on how to
integrate generated and handwritten artifacts includ-
ing generation gap, protected regions, as well as in-
clude mechanisms. These mechanisms are also cov-
ered in (Petrasch and Meimberg, 2006).

Similarly, Stahl et. al. (Stahl and Völter, 2006)
propose and describe the adaptation of different de-
sign patterns - in particular delegation - to integrate
handwritten and generated code. These mechanisms
are also discussed in (Völter, 2003; Völter and Bet-
tin, 2004). The latter covers aspect-oriented methods
as well. This concept is also employed in (Groher
and Voelter, 2009; Völter and Groher, 2007; Kang
et al., 2009). Additionally, a brief overview of inte-
gration mechanisms is given in (Fowler, 2010). It in-
cludes different variations of the generation gap, par-
tial classes and protected regions mechanisms.

Approaches that specifically target .NET as the
target platform and thus allow special language fea-
tures including partial classes are covered in (Dollard,
2004; Greenfield et al., 2004). Both also cover pro-
tected regions, as well as generation gap and delega-
tion.

The mechanisms supported in MetaEdit+ (Tolva-
nen and Kelly, 2009) are protected regions, function-
ality externalized in separate files (similar to the in-

clude approach in our paper) as well as the direct in-
clusion of handwritten code in model files and are de-
scribed in (Kelly and Tolvanen, 2008). Direct inclu-
sion of handwritten code in model files has been left
out, because we put the focus on integrating handwrit-
ten code in generated code.

The different approaches that affect the imple-
mentation of model-driven architecture are presented
in (Frankel, 2003). They range from the unidirec-
tional code inclusion to complete round-trip engi-
neering, where code portions of handwritten code are
traced and reflected back into the model.

The code generator LLBLGen Pro (LLBLGen Pro
website, 2014) supports different target infrastruc-
tures and allows the integration of handwritten code
through protected regions, user-specific templates that
are included during the generation process, as well as
language-specific features such as partial classes.

The approach described in (Warmer and Kleppe,
2006) supports the concept of partial classes for gen-
erated object-oriented code and protected regions for
code that does not support this mechanism. Addition-
ally, Brückmann et al. (Brückmann and Gruhn, 2010)
advocate patterns such as delegation to incorporate
manually written code in generated parts.

7 CONCLUSION

In this paper, we presented eight mechanisms to in-
tegrate generated and handwritten code for OOP lan-
guages: generation gap, extended generation gap, del-
egation, include mechanisms, partial classes, AOP,
PartMerger and protected regions. To increase com-
parability between different integration mechanisms,
we proposed five evaluation criteria which address
different properties of integration mechanisms, for in-
stance, whether generated and handwritten code is
separated or whether it is possible to override gen-
erated parts. Table 1 on page 10 summarizes the re-
sults of the evaluation of the presented integration ap-
proaches with respect to this set of evaluation criteria.

Essentially, choosing a suitable mechanism for
integrating handwritten and generated code depends
on the concrete use case and the associated require-
ments. The catalog of integration mechanisms and
evaluation criteria presented in this paper provides an
overview for model-driven development tool develop-
ers that can be used to find an appropriate integra-
tion approach on a case-by-case basis. Additionally,
we discussed related issues including restricting parts
that can be overriden to point out concerns that have
to be regarded.

We are aware of the fact that the evaluation criteria

proposed in this paper might not always be sufficient
to decide which integration mechanism to use. In
addition, the list of presented integration approaches
does not claim to be complete. However, the ap-
proaches and criteria shown in this paper can be used
as a foundation that can be adapted and extended to
fit specific requirements.

REFERENCES

Acceleo website (2014). http://www.eclipse.org/
acceleo/. Last visited on 22/09/2014.

Brückmann, T. and Gruhn, V. (2010). An Architectural
Blueprint for Model Driven Development and Mainte-
nance of Business Logic for Information Systems. In
Proceedings of the 4th European conference on Soft-
ware architecture, ECSA ’10, pages 53–69. Springer-
Verlag.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and
Grose, T. J. (2008). Eclipse Modeling Framework.
Addison-Wesley, 2nd edition.

Dollard, K. (2004). Code Generation in Microsoft .NET.
Apress.

Eliens, A. (1994). Principles of Object-Oriented Software
Development. Addison-Wesley Longman Publishing
Co., Inc.

Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley.

France, R. and Rumpe, B. (2007). Model-Driven Devel-
opment of Complex Software: A Research Roadmap.
In Future of Software Engineering, ICSE ’07, pages
37–54. IEEE Computer Society.

Frankel, D. S. (2003). Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional.

Greenfield, J., Short, K., Cook, S., and Kent, S. (2004).
Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley.

Groher, I. and Voelter, M. (2009). Aspect-Oriented Model-
Driven Software Product Line Engineering. In Trans-
actions on Aspect-Oriented Software Development VI,
pages 111–152. Springer-Verlag.

Gronback, R. C. (2009). Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit. Addison-
Wesley.

Grönniger, H., Hartmann, J., Krahn, H., Kriebel, S., Roth-
hardt, L., and Rumpe, B. (2008). Modelling Automo-
tive Function Nets with Views for Features, Variants,
and Modes. In Proceedings of Embedded Real Time
Software and Systems, ERTS ’08.

Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., and
Völkel, S. (2008). MontiCore: a Framework for the
Development of Textual Domain Specific Languages.

In 30th International Conference on Software Engi-
neering, ICSE ’08, pages 925–926. ACM.

JET website (2014). http://www.eclipse.org/
modeling/m2t/?project=jet\#jet. Last visited
on 22/09/2014.

Kang, K. C., Sugumaran, V., and Park, S. (2009). Applied
Software Product Line Engineering. Auerbach Publi-
cations.

Kellens, A., Mens, K., Brichau, J., and Gybels, K. (2006).
Managing the Evolution of Aspect-oriented Software
with Model-Based Pointcuts. In Proceedings of the
20th European Conference on Object-Oriented Pro-
gramming, ECOOP ’06, pages 501–525. Springer-
Verlag.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Mod-
eling: Enabling Full Code Generation. Wiley.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-Oriented Programming. In European Confer-
ence on Object-Oriented Programming, ECOOP ’97,
pages 220–242. Springer Verlag.

Kleppe, A. G., Warmer, J., and Bast, W. (2003). MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc.

Krahn, H., Rumpe, B., and Völkel, S. (2010). MontiCore:
a Framework for Compositional Development of Do-
main Specific Languages. International Journal on
Software Tools for Technology Transfer, pages 353–
372.

Kurpick, T., Pinkernell, C., Look, M., and Rumpe, B.
(2012). Modeling Cyber-Physical Systems: Model-
Driven Specification of Energy Efficient Buildings. In
Proceedings of the Modelling of the Physical World
Workshop, MOTPW ’12, pages 2:1–2:6. ACM.

LLBLGen Pro website (2014). http://www.llblgen.
com/. Last visited on 22/09/2014.

Navarro Pérez, A. and Rumpe, B. (2013). Modeling Cloud
Architectures as Interactive Systems. In 2nd Inter-
national Workshop on Model-Driven Engineering for
High Performance and CLoud computing, MDHPCL
’13, pages 15–24, Miami, Florida. CEUR Workshop
Proceedings.

Oldevik, J., Neple, T., Grønmo, R., Aagedal, J., and Berre,
A.-J. (2005). Toward Standardised Model to Text
Transformations. In Proceedings of the First Euro-
pean conference on Model Driven Architecture: foun-
dations and Applications, ECMDA-FA ’05, pages
239–253. Springer-Verlag.

Parnas, D. L. (1972). On the Criteria to be Used in Decom-
posing Systems into Modules. Communications of the
ACM, 15(12):1053–1058.

Petrasch, R. and Meimberg, O. (2006). Model-Driven Ar-
chitecture: Eine praxisorientierte Einführung in die
MDA. Dpunkt Verlag.

Pietrek, G., Trompeter, J., Niehues, B., Kamann, T., Holzer,
B., Kloss, M., Thoms, K., Beltran, J. C. F., and Mork,
S. (2007). Modellgetriebene Softwareentwicklung.
MDA und MDSD in der Praxis. Entwickler.Press.

Ringert, J. O., Rumpe, B., and Wortmann, A. (2013). From
Software Architecture Structure and Behavior Mod-
eling to Implementations of Cyber-Physical Systems.
In Software Engineering 2013 Workshopband, pages
155–170. GI, Köllen Druck+Verlag GmbH, Bonn.

Rose, L. M., Paige, R. F., Kolovos, D. S., and Polack, F. A.
(2008). The Epsilon Generation Language. In Pro-
ceedings of the 4th European conference on Model
Driven Architecture: Foundations and Applications,
ECMDA-FA ’08, pages 1–16. Springer-Verlag.

Rumpe, B. (2011). Modellierung mit UML, volume 2nd
Edition. Springer.

Rumpe, B. (2012). Agile Modellierung mit UML : Code-
generierung, Testfälle, Refactoring. Springer.

Rumpe, B., Schindler, M., Völkel, S., and Weisemöller,
I. (2010). Generative Software Development. In
Proceedings of the 32nd International Conference
on Software Engineering, ICSE ’10, pages 473–474.
ACM.

Schindler, M. (2012). Eine Werkzeuginfrastruktur zur ag-
ilen Entwicklung mit der UML/P. PhD thesis, RWTH
Aachen University.

Stahl, T. and Völter, M. (2006). Model-Driven Software De-
velopment: Technology, Engineering, Management.
Wiley.

Tolvanen, J.-P. and Kelly, S. (2009). MetaEdit+: Defin-
ing and Using Integrated Domain-Specific Modeling
Languages. In Proceeding of the 24th ACM SIGPLAN
conference companion on Object oriented program-
ming systems languages and applications, OOPSLA
’09, pages 819–820. ACM.

Vlissides, J. (1998). Pattern Hatching: Design Patterns Ap-
plied. Addison-Wesley.

Völter, M. (2003). A Catalog of Patterns for Program
Generation, Version 1.6. http://www.voelter.
de/data/pub/ProgramGeneration.pdf. Last vis-
ited on 22/09/2014.

Völter, M. and Bettin, J. (2004). Patterns for Model-
Driven Software-Development, Version 1.4. http:
//www.voelter.de/data/pub/MDDPatterns.pdf.
Last visited on 22/09/2014.

Völter, M. and Groher, I. (2007). Handling Variability
in Model Transformations and Generators. In Pro-
ceedings of the 7th OOPSLA Workshop on Domain-
Specific Modeling, DSM ’07. ACM.

Warmer, J. and Kleppe, A. (2006). Building a Flexible
Software Factory Using Partial Domain Specific Mod-
els. In Proceedings of the 6th OOPSLA Workshop on
Domain-Specific Modeling, DSM ’06, pages 15–22.
ACM.

Wile, D. S. (2003). Lessons Learned from Real DSL Ex-
periments. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, HICSS
’03, pages 265–290. IEEE Computer Society.

XPand website (2014). http://www.eclipse.org/
modeling/m2t/?project=xpand\#xpand Last vis-
ited on 22/09/2014.

