
ar
X

iv
:1

50
1.

02
68

6v
1 

 [
cs

.M
M

] 
 1

2 
Ja

n 
20

15

Watermarking PDF Documents using Various

Representations of Self-inverting Permutations

Maria Chroni and Stavros D. Nikolopoulos

Department of Computer Science & Engineering,
University of Ioannina

GR-45110 Ioannina, Greece
{mchroni,stavros}@cs.uoi.gr

Abstract. This work provides to web users copyright protection of their
Portable Document Format (PDF) documents by proposing efficient and
easily implementable techniques for PDF watermarking; our techniques
are based on the ideas of our recently proposed watermarking techniques
for software, image, and audio, expanding thus the digital objects that
can be efficiently watermarked through the use of self-inverting per-
mutations. In particular, we present various representations of a self-
inverting permutation π∗ namely 1D-representation, 2D-representation,
and RPG-representation, and show that theses representations can be
efficiently applied to PDF watermarking. Indeed, we first present an
audio-based technique for marking a PDF document T by exploiting
the 1D-representation of a permutation π∗, and then, since pages of a
PDF document T are 2D objects, we present an image-based algorithm
for encoding π∗ into T by first mapping the elements of π∗ into a ma-
trix A∗ and then using the information stored in A∗ to mark invisibly
specific areas of PDF document T . Finally, we describe a graph-based
watermarking algorithm for embedding a self-inverting permutation π∗

into the document structure of a PDF file T by exploiting the RPG-
representation of π∗ and the structure of a PDF document. We have
evaluated the embedding and extracting algorithms by testing them on
various and different in characteristics PDF documents.

Keywords. Watermarking techniques; Text watermarking; PDF documents,
Self-inverting permutations; Representations of permutations; Embedding algo-
rithms; Extracting algorithms.

1 Introduction

Information age has altered the way people communicate by breaking the barriers
imposed on communications by time, distance, and location and has undoubt-
edly impact not only humans activities but also global industry and economy.
Communication has been greatly affected by the constant and rapid evolution of
many technologies such as fiber optic, cellular and satellite technology, network-
ing, digital transmission and compression as well as advanced computers, and

http://arxiv.org/abs/1501.02686v1


2

improved human-computer interaction. The aforementioned technologies allow
the rapid transmission, and store, of great amounts of information.

The digital era has already had extensive impacts on business, commerce,
education, services, and social life. The concepts of e-government, e-learning, e-
commerce, e-business, e-publishing, refer peoples’ interaction in the digital world.
In this world, people everyday, interact by exchanging e-mails, instant messages,
video, audio, images, and digital documents. Part of the information transmitted
is an increasing amount of sensitive information, such as personal data, medical
and financial records, business information, government data, legal documents.
Another part of information available in the web is used to promote ones’ work
or product.

Electronic document, is an extensively used medium traveling over the inter-
net for information exchange and due to the ease of copying and distributing they
are susceptible to threats like illegal copying, redistribution of copyrighted doc-
uments, and plagiarism. Subsequently, it has become more important to protect
the electronic documents from any malicious user while existing in the digital
world. Copyright protection of digital contents is such a need of time which
cannot be overlooked. In past, various methods like encryption, steganography
and watermarking has been used to solve these problems. However, digital wa-
termarking is the better solution for copyright protection than encryption and
steganography. It is well known that digital watermarking methods are efficient
enough to identify the original copyright owner of the contents.

Recall that there are many reasons why you would want to use watermarks
in digital documents: as a copying deterrent, as a means of identifying the source
of a printed document, as a means of determining whether a document has been
altered, etc.

Attacks. Any action that a user can perform on a text that can affect the
watermark, or its usefulness, is called attack. In [32] existing attacks on text
watermarking can be classified into three main categories:

◦ watermark attacks,

◦ geometric attacks, and

◦ system attacks.

In a watermark attack, the adversary aims to detect and destroy the watermark,
without necessarily decoding the original message. In contrast to watermark at-
tacks, geometrical attacks are blind attacks on watermarked text documents.
The process of these attacks requires neither the algorithmic knowledge of the
watermarking technique nor the watermarking key, geometrical attacks intend
not to remove the embedded watermark itself, but to prevent it from serving its
intended purpose through altering format or content of the watermarked text
documents. This type of attack includes reformatting, reproducing, sentences
swapping, paragraphs shuffling, the addition/deletion of words, sentences and
paragraphs. System attacks use several signal processing tools such as principal



3

component analysis, independent component analysis, clustering, vector quanti-
zation, etc.

Related Work. Text watermarking is the area of research that has emerged
after the development of Internet and communication technologies; we mention
that the first reported effort on marking documents dates back to 1993 [23].

Generally, we can classify the previous work on digital text watermarking in
the following four categories:

◦ image based approach,
◦ syntactic approach,
◦ semantic approach, and
◦ structural approach.

In image-based approach, a watermark is embedded in text image. Brassil, et al.
were the first to propose a few text watermarking methods utilizing text im-
age [4,5]; they also developed document watermarking schemes based on line
shifts, word shifts as well as slight modifications to the characters [6]. Maxem-
chuk, et al. [23,24,25] analyzed the performance of these methods, while later
Low, et al. [16,17] further analyzed their efficiency. Huang and Yan [14] proposed
a text watermarking method based on an average inter-word distance in each
line.

In syntactic approach, the syntactic structure of the text is used to embed
watermark. Atallah, et al. [3] proposed several methods of natural language wa-
termarking, which opened up a brand-new and challenging research direction for
text watermarking. Meral et al. performed morpho-syntactic alterations to the
text to watermark it [26]; they also provided an overview of available syntactic
tools for text watermarking [27].

In semantic approach, semantics of text are used to embed the watermark
in text. Atallah et al. were the first to propose the semantic watermarking
schemes [3]. Later, the synonym substitution method was proposed, in which
watermark was embedded by replacing certain words with their synonyms [30].
Sun, et al. [29] proposed noun-verb based technique for text watermarking which
used nouns and verbs parsed by semantic networks. Topkara, et al. proposed an
algorithm of the text watermarking by using typos, acronyms and abbreviation
in the text to embed the watermark [31]. Algorithms were developed to water-
mark the text using the linguistic approach of presuppositions [28] in which the
discourse structure, meaning, and representations are observed and utilized to
embed watermark bits. The text pruning and the grafting algorithms were also
developed in the past. Another algorithm based on text meaning representation
(TMR) strings has also been proposed [18].

The structural approach is the most recent approach used for copyright pro-
tection of text documents. In this approach, text is not altered, rather it is used
to logically embed watermark in it. A text watermarking algorithm, for copy-
right protection of text using occurrences of double letters (aa-zz) in text, has
recently been proposed [15]. Recently, a significant number of techniques have



4

been proposed in the literature which use Portable Document Format (PDF)
files as cover media in order to hide data [7,8,19,20,21,22,33].

Contribution. In this paper, in order to provide to web users copyright protec-
tion of their digital documents, we present easily implemented techniques for wa-
termarking PDF documents. Our aim is to extent the digital objects that the pro-
posed representations of a self-inverting permutation, i.e. the 1D-representation,
the 2D-representation, and the RPG-representation, can be efficiently applied
to; note that, RPG-representation means the encoding of permutation π∗ as a
reducible permutation graph F [π∗].

We first propose an image-based technique for marking the PDF document
T by exploiting the 1D-representation of a permutation π∗. The embedding of a
mark is performed by increasing the distance (or, space) between two consecutive
words in a paragraph of the document T . The extraction algorithm operates in
a reverse manner.

Consequently, since pages of a PDF documents T are two dimensional ob-
jects, we propose an algorithm for encoding a self-inverting permutation π∗ into
a document T by first mapping the elements of π∗ into an n∗ × n∗ matrix A∗

and then using the information stored in A∗ to mark invisibly specific areas of
PDF document T resulting thus the watermarked PDF document Tw. We also
propose an efficient algorithm for extracting the embedded self-inverting permu-
tation π∗ from the watermarked PDF document Tw by locating the positions
of the marks in Tw; it enables us to recontract the 2D representation of the
self-inverting permutation π∗.

Finally, we describe a watermarking algorithm for embedding a self-inverting
permutation into the document structure of a PDF file T , by exploiting the graph
representation of π∗ and the structure of a PDF document T . More precisely, in
light of the two embedding algorithms Encode SiP.to.RPG-I and -II, we present
an algorithm for embedding a reducible permutation graph F [π∗] into a PDF
document T . The main idea behind the proposed embedding algorithm is a
systematic addition of appropriate object-references in the input PDF document
T , through the use of entries of type \kye(·), so that the graph F [π∗] can be easily
constructed from the page tree PT(Tw) of the resulting watermarked document
Tw.

Road Map. The paper is organized as follows: In Section 2 we establish the
notation and related terminology, and we present background results. In Sec-
tion 3 based on the three different representations of self-inverting permuta-
tion (SiP), i.e., the 1D-representation, the 2D-representation, and the RPG-
representation (the encoding of permutation π∗ as a reducible permutation graph
F [π∗]), we present the algorithms Embed SiP.to.PDF-I, Embed SiP.to.PDF-II,
and Embed RPG.to.PDF, along with the corresponding extracting algorithms, for
embedding a watermark number (or, equivalently, a self-inverting permutation
π∗ or a reducible permutation graph F [π∗]) into a PDF document file. Finally,
in Section 4 we conclude the paper and discuss possible future extensions.



5

2 Background Results

In this section we give some definitions and the theoretical background we use
towards the watermarking of Portable Document Format (PDF) documents. We
first briefly present the different representations of a self-inverting permutation
(SiP), and then we present the structure of PDF documents.

1D-representation of SiP. Recently, we presented the one-dimensional repre-
sentation (1D-representation) of a self-inverting permutation (SiP) π∗ and the
one-dimensional marked representation of π∗ (1DM-representation), and showed
how to embed a SiP, represented by 1D space, into an audio signal [9,10]. In our
1D-representation, the elements of the permutation π are mapped in specific
cells of an array B of size n2 as follows:

• number πi −→ entry B((π−1
πi

− 1)n+ πi)

or, equivalently, the cell at the position (i − 1)n+ πi is labeled by the number
πi, for each i = 1, 2, . . . , n.

In our 1DM representation, a permutation π over the set Nn is represented
by an n2 array B∗ by marking the cell at the position (i− 1)n+ πi by a specific
symbol, where, in our implementation, the used symbol is again the asterisk
character “*”.

2D-representation of SiP. We have also presented the two-dimensional rep-
resentation of a SiP (2D-representation) and the two-dimensional marked rep-
resentation of SiP (2DM-representation); note that, theses representations have
been recently used for watermarking images in the frequency domain [9,10].

We defined the 2D-representation of a SiP as the representation where the
elements of the permutation π = (π1, π2, . . . , πn) are mapped in specific cells of
an n× n matrix A as follows:

• number πi −→ entry A(π−1

i , πi)

or, equivalently,

• the cell at row i and column πi is labeled by the number πi, for each i =
1, 2, . . . , n.

In 2DM-representation the cell at row i and column πi of matrix A is marked
by a specific symbol, for each i = 1, 2, . . . , n.

We have presented algorithms for embedding the 2D-dimensional represen-
tation of SiP in an image. Recall that the matrix A incorporates important
structural properties which, in image watermarking, make it possible to detect
geometric transformations on the watermarked image. The properties of the
matrix A are the following:



6

π∗ = (4, 7, 6, 1, 5, 3, 2)

67 5 4 3 2 1 ts

The watermark number w = 4

6

5

4

3

2

1

1 2 3 4 5 6 7

7

1 2 3 4 5 6 8 9 10 11 12 137 14 15
. . .* *

36 37 38 39 40 41 43 44 45 46 47 4842 4935

* *

22 23 24 25 26 27 292821
. . . *

. . .
20

34
. . .

33

*

*

*

*

*

*

*

*

*

1D-representation of π∗ 2D-representation of π∗

Reducible Permutation Graph F [π∗]

↓

Fig. 1. Three different representations of permutation π∗ = (4, 7, 6, 1, 5, 3, 2).

◦ the matrix A is symmetric;
◦ the main diagonal of the symmetric matrix A∗ has always one and only one
marked cell;

◦ the marked cell on the diagonal is always in entry (i, i) of A∗, where i =
⌈n∗

2
⌉+ 1, ⌈n∗

2
⌉+ 2, . . . , n∗.

The authors of this paper, we have also presented an efficient and easily im-
plemented algorithm for encoding numbers as reducible permutation graphs
(or, for short, RPG) through the use of self-inverting permutations [12,13].
In particular, we have proposed two such encoding algorithms: the algorithm
Encode SiP.to.RPG-I applies to any permutation π and relies on domination re-
lations on the elements of π whereas the algorithm Encode SiP.to.RPG-II applies
to a self-inverting permutation π∗ produced in any way and relies on the decreas-
ing subsequences of π∗. Figure 1 summarizes by an example the representations
of the permutation π∗ = (4, 7, 6, 1, 5, 3, 2).

2.1 Structure of a PDF Document

The Portable Document Format (PDF) [2] is an open standard (defined in ISO
32000) which facilitates device and platform independent capture and represen-
tation of rich information such as text, multimedia and graphics, into a single



7

%PDF-1.1

1 0 obj
<< /Type /Catalog /Outlines 2 0 R /Pages 3 0 R >> endobj

2 0 obj
<< /Type /Outlines /Count 0 >> endobj

3 0 obj
<< /Type /Pages /Kids [4 0 R] /Count 1 >> endobj

4 0 obj
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 612 792] /Contents 5
0 R /Resources << /ProcSet 6 0 R /Font << /F1 7 0 R>> >> >>

endobj

5 0 obj
<< /Length 48 >>

stream
BT
/F1 24 Tf
100 700 Td
(Hello World)Tj
ET
endstream
endobj

6 0 obj
[/PDF /Text] endobj

7 0 obj
<< /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /Helvetica
/Encoding /MacRomanEncoding >> endobj

xref
0 8
0000000000 65535 f
0000000012 00000 n
0000000089 00000 n
0000000145 00000 n
0000000214 00000 n
0000000381 00000 n
0000000485 00000 n
0000000518 00000 n

trailer
<<

/Size 8
/Root 1 0 R
>>

startxref
642

(b)

Cross-reference

table

Trailer

Body

Header

(a)

Header

Body

Cross-reference

table

Trailer

Fig. 2. (a) The structure of a PDF file; (b) The code of a PDF file containing, in object
5 0 obj, the text “Hello World”.

medium. Thus the PDF format enables viewing and printing of a rich docu-
ment, independent of either application software or hardware. In this section we
present a structural analysis of a PDF file, by giving its basic components.

Object. An object is the basic element in PDF files, in which eight kinds of
objects, namely Boolean Object, Numeric Object, String Object, Name Object,
Array Object, Null Object, Dictionary and Stream Object are sustained. Objects
may be labeled so that they can be referred to by other objects. A labeled object
is called an indirect object.



8

Document
catalog

Page
tree

Outline
hierarchy

Article
threads

Named
destinations

Interactive
form

Page

Page

Content
stream

Content
stream

Content
stream

Outline
entry

Outline
entry

Thread

Thread

Bead

Bead

l

l
.
.
.

. . .

. . .

. . .

.
.
.

.
.
.

.
.
.

. . .

↓

↑

(a)

Page
tree

Page

Page

Content
stream

Content
stream

Content
stream

. . .

. . .

. . .

.
.
.

(b)

Fig. 3. (a) The main structural components of a PDF file; (b) The document structure
of PDF file.

File structure. The PDF file structure determines how objects are stored in a
PDF file, how they are accessed, and how they are updated. The file structure
(see, Figure 2) includes the following:

◦ an one-line header identifying the version of the PDF specification to which
the file conforms,

◦ a body containing the objects that make up the document contained in the
file,

◦ a cross-reference table containing information about the indirect objects in
the file, and

◦ a trailer giving the location of the cross-reference table and of certain special
objects within the body of the file.

Figure 2 shows an example of a PDF file and its internal file structure.



9

Document structure. The PDF document structure specifies how the basic
object types are used to represent components of a PDF document: pages, fonts,
annotations, and so forth. The document structure of a PDF file is organized
in the shape of an object tree topped by Catalog, Page tree, Outline hierarchy
and Article thread included. The Outline hierarchy is the bookmarker of PDF,
and Page tree includes page and Pages which in turn includes the total page
number and each page marker. Page, the main body of PDF file, is the most
important object which involves the typeface applied, the text, pictures, page
size, and so on. The organization of other objects is analogous to Page tree.
Figure 3 illustrates the structure of the object hierarchy.

3 Watermarking PDF Documents

In this section we describe embedding algorithms for encoding a SiP π∗ into
a digital document T . More specifically, we embed the permutation π∗ into a
PDF document by exploiting (i) the one-dimensional representation of π∗, (ii)
the two-dimensional representation of a π∗, and (iii) the encoding of π∗ as a
reducible permutation graph F ∗[π∗].

3.1 Embed Watermark into PDF - I

We first design an embedding algorithm for watermarking a PDF document by
exploiting the 1D-representation of a permutation π∗. The marking is performed
by increasing the space between two consecutive words in a paragraph of T .

Let B∗ be the 1D array of size n = n∗×n∗ which represents the permutation
π∗ of length n∗, and let (w1, s1), (w2, s2), . . ., (wn, sn) be n pairs of type “word-
space” of a paragraph par of the input PDF document; recall that the entry
B∗((i−1)n∗+π∗

i ) contains the symbol “*”, 1 ≤ i ≤ n∗. The algorithm increases
by a small value “c” the i-th space of the pair (wi, si) if B

∗((i−1)n∗+π∗

i ) = “∗”.
We next give a high-level description, with respect to PDF modification, of

our proposed embedding algorithm.

Algorithm Embed SiP.to.PDF-I

1. Compute the 1DM representation of the permutation π∗, i.e., construct the
array B∗ of size n = n∗ × n∗ where the (i− 1)n∗ + π∗

i entry of B∗ contains
the symbol “*”, 1 ≤ i ≤ n∗;

2. Select an appropriate paragraph par on a page P of PDF document T to
embed the self-inverting permutation π∗;

3. Partition the paragraph par into n pairs (w1, s1), (w2, s2), . . . , (wn, sn), where
wi and si are the i-th word and space, respectively, in selected paragraph
par, 1 ≤ i ≤ n;

4. For each pair (wi, si) s.t. B
∗((i−1)n∗+π∗

i ) = “∗”, increases the space si or,
equivalently, distance d(wi, wi+1) between words wi and wi+1, by a relative
small value c, 1 ≤ i ≤ n;



10

(a) (b)

Fig. 4. (a) The initial PDF document T ; (b) The watermarked PDF document Tw using
the 1D-representation of permutation π∗ = (4, 7, 6, 1, 5, 3, 2); the red cycles indicate the
marks.

5. Return the watermarked PDF document Tw.

Extraction. The extraction algorithm, which we call Extract PDF.from.SiP-I,
operates as follow: it takes as input the watermarked PDF document Tw, locates
the paragraph par, and computes the permutation π∗ by finding the positions
of the words wi such that:

◦ d(wi, wi+1) > d(wi−1, wi), or
◦ d(wi, wi+1) > d(wi+1, wi+2)

where, d(wi, wj) is the distance between words wi and wj in a paragraph par of
Tw, 1 ≤ i ≤ n; note that, an appropriate paragraph par contains more that n
words.

3.2 Embed Watermark into PDF - II

In this section we describe a different approach of embedding algorithm a self-
inverting permutation π∗ into a digital document T , by exploiting the two-
dimensional representation of permutation π∗.

The main idea behind the embedding algorithm, we call it Embed SiP.to.PDF-
II, is similar of that of algorithm Embed SiP.to.Image-F (see, [11]). The most
important of this idea is the fact that it suggests a way in which the permuta-
tion π∗ can be represented with a 2D-representation and since pages of a PDF
document T are two dimensional objects that representation can be efficiently
marked on them resulting the watermarked PDF document Tw; in a similar way
as in our image watermarking approach, such a 2D-representation can be effi-
ciently extracted for a watermarked PDF document Tw and converted back to
the self-inverting permutation π∗.



11

(a) (b)

Fig. 5. (a) The initial PDF document T ; (b) The watermarked PDF document Tw using
the 2D representation of permutation π∗ = (4, 7, 6, 1, 5, 3, 2); the red stars indicate the
marks.

Let A∗ be the 2D matrix of size n∗ × n∗ which represents the permutation
π∗ of length n∗. The marking of the input PDF document T is performed by
selecting an appropriate page P of T and setting n∗ objects (e.g., characters,
symbols, images) in a specific positions on page P , 1 ≤ i ≤ n∗. In fact, we set
an object Oi in position with (x′

i, y
′

i) coordinates on page P if A∗(xi, yi) = “ ∗ ”,
where 1 ≤ xi, yi ≤ n∗ and 0 ≤ x′

i, y
′

i ≤ size(P ); note that, (0, 0) is the lower-left
point (or, equivalently, the bottom-left corner) of the page P .

The algorithm takes as input a SiP π∗ and a PDF document T , and returns
the watermarked document Tw; it consists of the following steps.

Algorithm Embed SiP.to.PDF-II

1. Compute the 2DM representation of the self-inverting permutation π∗, i.e.,
construct an array A∗ of size n∗ × n∗ s.t. the entry A∗(i, π∗

i ) contains the
symbol “*”, 1 ≤ i ≤ n∗;

2. Select an appropriate page P to embed the permutation π∗ and compute the
size size(P ) of the page P , say, N ×M ;



12

1 0 obj
catalog Page

. . .

. . .

. . .

. . .

29 0 obj

Page
3 0 obj

Page
25 0 obj

Contents
23 0 obj

Resources
24 0 obj

XObject
13 0 obj

Resources
22 0 obj

.
.
.

ColorSpace
6 0 obj

ExtGState
8 0 obj

XObject
10 0 obj

Font
12 0 obj

R9
5 0 obj

R7
7 0 obj

R10
9 0 obj

R10
11 0 obj

. . .

Fig. 6. The watermarked DS(Tw) which encodes the RPG of π∗ = (4, 5, 3, 1, 2).

3. Segment the PDF page P into n∗ × n∗ grid-cells Cij of size
⌊

N
n∗

⌋

×
⌊

M
n∗

⌋

,
1 ≤ i, j ≤ n∗;

4. For each grid-cell Cij s.t. A∗(i, j) = “ ∗ ”, mark the cell Cij by setting a
symbol, with an appropriate color, in any position inside Cij of P , 1 ≤ i, j ≤
n∗, resulting thus the marked document Tw;

5. Return the watermarked PDF document Tw.

Extraction. The algorithm which extracts the permutation π∗ from the wa-
termarked PDF Tw operates in a similar way as the corresponding extraction
algorithm for images: it takes the input watermarked image Iw , locate the marked
page P , computes its N ×M size, and segments P into n∗ × n∗ grid-cells Cij

of size
⌊

N
n∗

⌋

×
⌊

M
n∗

⌋

; then, it computes the permutation π∗ by finding the co-
ordinates (xi, yi) of the n∗ symbols in the page P , 1 ≤ i ≤ n∗; we call it
Extract PDF.from.SiP-II.

3.3 Embed an RPG into a PDF

In this section we describe a watermarking algorithm for embedding a self-
inverting permutation π∗ into a PDF document T , by exploiting the RPG-
representation of π∗ and the structure of a PDF document T .

Indeed, we have recently proposed two algorithms, namely Encode SiP.to.RPG-
I and -II, for encoding self-inverting permutations π∗ as reducible permutation
graphs F [π∗]. Moreover, in this paper we have described the document struc-
ture DS(T ) of a PDF document T (see, Subsection 2.1); note that, the document



13

structure of a PDF file always contains a node, namely Document-catalog, and
a page tree PT(T ) rooted at node Page-tree, denoted by root(pt); see, Fig-
ure 3(b).

In light of the two encoding algorithms Encode SiP.to.RPG-I and -II, we next
present an algorithm for embedding a reducible permutation graph F [π∗] into a
PDF document T . The main idea behind the proposed embedding algorithm is
a systematic addition of appropriate object-references in selected nodes of the
page-tree PT(T ) of the document structure DS(T ), through the use of entries
of type /Kye(·), so that the graph F [π∗] can be easily constructed from the
page-tree PT(Tw) of the resulting watermarked document Tw.

Let F [π∗] be a reducible permutation graph produced by one of our two en-
coding algorithms (i.e., Encode SiP.to.RPG-I or -II), and let un+1, un, . . . , u1, u0

be the nodes of the graph F [π∗]; note that, F [π∗] does not contain the back-edge
(u0, un+1). In order to simplify the extraction process, the graph F [π∗] which is
embedded into a PDF document T contains one extra back-edge, i.e., the edge
(u0, un+1); see, [12,13].

The algorithm for embedding a reducible permutation graph F [π∗] into a
PDF document T is called Encode RPG.to.PDF and is described below.

Algorithm Encode RPG.to.PDF

1. Compute the document structure DS(T ) of the input PDF document T and
locate its page-tree PT(T ); let node(dc) be the document catalog node of
structure DS(T ) and root(pt) be the root node of the page tree PT(T ); see,
Figure 3(b);

2. Compute a path O(T ) = (vn+1, vn, . . . , v1, v0) on n+ 2 nodes (i.e., objects)
of the page-tree PT(T ) s.t. vn+1 = root(pt), and set s = vn+1 and t = v0;

3. Assign an exact pairing (i.e., 1-1 correspondence) of the n+2 nodes of path
O(T ) to the nodes un+1, un, . . . , u1, u0 of the watermark graph F [π∗];

4. For each back-edge (ui, uj) of the graph F [π∗] (i.e., uj > ui), add the
forward-edge (vj , vi) in page-tree PT(T ) by adding in object [vj 0 obj] an
entry of type /Key(vi 0 R); add in object [vn+1 0 obj] an entry of type
/Key(v0 0 R);

5. Return the modified PDF document T , i.e., the watermarked document Tw;

Let us briefly discuss the way we add forward-edge in the page-tree PT(T );
recall that, in Step 4 of the previous algorithm Encode RPG.to.PDF we add the
forward-edge (vj , vi) in page-tree PT(T ) by adding in object [vj 0 obj] an entry
of type /Key(vi 0 R). The entry /Key(vi 0 R) may be of various types; note that,
/Key(·) is used as parameter in our algorithm’s description.

In our implementation, for the forward-edge (vj , vi) such that the object
[vj 0 obj] is not the rood-node root(pt) of the page-tree PT(T ), we always
chose the entry /Key(vi 0 R) which we add in object [vj 0 obj] to be of the
same type of object [vi 0 obj]. In the case where vj = root(pt), we chose the
entry /Key(vi 0 R) to be of type /Kids(·).



14

For example, in Figure 6 we have added forward-edges from object [29 0 obj]
to object [3 0 obj], from object [29 0 obj] to object [24 0 obj], from object
[3 0 obj] to object [13 0 obj], etc. Thus, in our implementation we have added
in the root-node object [29 0 obj] the entries /Kids(3 0 R) and /Kids(24 0 R),
in object [3 0 obj] the entry /XObject(13 0 R), while in object [13 0 obj] the
entries /ColorSpace(6 0 R) and /R9(5 0 R).

Remark 3.1. Let T be a PDF file and let PT(T ) be a page-tree of the document
structure DS(T ). A node of the page-tree PT(T ) may contain several entries
/Key(·) of various types. We mention that, some types are required for the entries
in specific nodes of PT(T ); for example, the required entries in the root-node
root(pt) of the page-tree PT(T ) are the following four: /Type(·), /Parent(·),
/Kids(·), and /Count(·).

Extraction.We next describe the corresponding extraction algorithm, which we
call Extract RPG.from.PDF; it extracts the graph F [π∗] from the PDF document
Tw watermarked by the embedding algorithm Encode RPG.to.PDF. The algorithm
works as follows:

• Take first as input the PDF document Tw watermarked by the embedding
algorithm Encode RPG.to.PDF, compute the document structure DS(Tw) of
Tw, and locate its page tree PT(Tw); then, find in object root(pt), where
root(pt) is the root of the tree PT(Tw), the entry /Kids(vk 0 R) s.t. vk is not
a child of root(pt), and set vn+1 = root(pt) and v0 = vk;

• Compute the pathO(T ) = (vn+1, vn, . . . , v1, v0) of PT(Tw), from node root(pt)
to v0, and assign an exact pairing (i.e., 1-1 correspondence) of the n+2 nodes
of path O(T ) to the nodes un+1, un, . . . , u1, u0 of a graph F [π∗]; initially,
E(F [π∗]) = ∅;

• Add edges (ui+1, ui) in F [π∗] for i = n, n− 1, . . . , 0, and the edge (ui, uj) iff
(vi, vj) is a forward edge in the page tree PT(Tw);

• Delete the edge (un+1, u0) from the graph F [π∗];

• Return the graph F [π∗];

It is easy to see that, by construction the returned graph F [π∗] is a reducible
permutation graph produced by either algorithm Encode SiP.to.RPG-I or algo-
rithm Encode SiP.to.RPG-II. Thus, F [π∗] has the following property: the struc-
ture which results after deleting

(i) all the forward edges (ui+1, ui) of F [π∗], 0 ≤ i ≤ n, and
(ii) the node u0

is either the tree Td[π
∗] or the tree Ts[π

∗] produced during the execution of either
the decoding algorithm Decode RPG.to.SiP-I or algorithm Decode RPG.to.SiP-
II, respectively (see, [9,12,13]). Thus, we can efficiently extract the self-inverting
permutation π∗ embedded into a PDF document T by algorithm Encode RPG.to.PDF.



15

4 Concluding Remarks

In this paper we presented embedded algorithms, along with their corresponding
extraction algorithms, for watermarking PDF documents T using three differ-
ent representations of a self-inverting permutation π∗, namely 1D-representation,
2D-representation, and RPG-representation; note that, RPG-representationmeans
the encoding of permutation π∗ as a reducible permutation graph F ∗[π∗].

The main features of our algorithms, i.e., the way they mark a PDF document
T or, equivalently, the way they embed a self-inverting permutation π∗ into
document T , are summarized as follows:

◦ In the first algorithm Embed SiP.to.PDF-I the marking of a PDF document T
is performed by increasing the distance (or, space) between two consecutive
words in a paragraph of T .

◦ The main idea behind the second algorithm Embed SiP.to.PDF-II is based
on the fact that π∗ has a 2D-representation and, since pages of a PDF doc-
uments T are two dimensional objects, it can be efficiently used to mark
specific positions on a page of T resulting thus the watermarked PDF doc-
ument Tw.

◦ The third graph-based embedding algorithm Encode RPG.to.PDF uses a def-
erent approach: it exploits the structure of a PDF document T and embeds
the graph F [π∗] into T by adding appropriate object-references in the doc-
ument T , through the use of entries of type /Kids(k 0 R), so that the graph
F [π∗] can be easily constructed from the page tree PT(Tw) of the resulting
watermarked document Tw.

In light of our graph-based embedding algorithm Encode RPG.to.PDF it would be
very interesting to investigate the possibility of altering other components of the
document structure of a PDF file in order to embed the graph F [π∗]; we leave
it as a direction for future work.

Moreover, an interesting open question is whether the embedding approaches
and techniques used in this paper can help develop efficient encoding algorithms
having “better” properties with respect text attacks; we leave it as an open
problem for future investigation.

References

1. Amano, T., and Misaki, D.: A feature calibration method for watermarking of
document images. In: IEEE Proceedings of the 5th In’l Conference on Document
Analysis and Recognition (ICDAR’99), pp. 91–94 (1999)

2. Adobe Systems Incorporated. Adobe Portable document format Version 1.7,
http://www.adobe.com, Nov. 2006

3. Atallah, M.J., Raskin, V., Hempelmann, C.F., Karahan, M., Sion, R., Topkara,
U., and Triezenberg, K.E.: Natural language watermarking and tamperproofing.
LNCS 5, Springer, 196–212 (2003)

http://www.adobe.com


16

4. Brassil, J.T., Low, S., Maxemchuk, N.F., and Gorman, L.O.: Electronic Marking
and Identification Techniques to Discourage Document Copying. IEEE Journal on
Selected Areas in Communications 13(8), 1495–1504 (1995)

5. Brassil, J.T., Low, S., Maxemchuk, N.F., Gorman, L.O.: Hiding information in
document images. In: Proceedings of the 29th Annual Conference on Information
Sciences and Systems, Johns Hopkins University, pp. 482–489 (1995)

6. Brassil, J.T., Low, S., and Maxemchuk, N.F.: Copyright protection for the elec-
tronic distribution of text documents. In: IEEE Proceedings 87(7), pp. 1181–1196
(1999)

7. Bindra, G.S.: Invisible communication through Portable Document File (PDF) for-
mat. In: Proceedings of the 7th International Conference on Intelligent Information
Hiding and Multimedia Signal Processing (IIH-MSP’11), pp. 173–176 (2011)

8. Bindra, G.S.: Masquerading as a trustworthy entity through Portable Document
File (PDF) format. In: Proceedings of the 2011 IEEE International Conference
on PASSAT and IEEE International Conference on Social Com., Boston, USA,
pp. 784–789 (2011)

9. Chroni, M.: Algorithmic Techniques for Encoding Permutations and Permutation
Graphs for Watermarking Software, Image, Audio, and Text. Department of Com-
puter Science and Engineering, University of Ioannina, PhD Thesis (2014).

10. Chroni, M., Fylakis, A., and Nikolopoulos, S.D.: From image to audio watermark-
ing using self-inverting permutations. In: Proceedings of the 10th Int’l Conference
on Web Information Systems and Technologies (WEBIST’14), SciTePress, pp. 177–
184 (2014)

11. Chroni, M., Fylakis, A., and Nikolopoulos, S.D.: Watermarking images in the fre-
quency domain by exploiting self-inverting permutations. In: Proceedings of the
9th Int’l Conference on Web Information Systems and Technologies (WEBIST’13),
SciTePress, pp. 45–54 (2013)

12. Chroni, M., and Nikolopoulos, S.D.: Design and evaluation of a graph codec sys-
tem for software watermarking. In: Proceedings of the 2nd Int’l Conference on
Data Management Technologies and Applications (DATA’13), SciTePress, 277–
284 (2013)

13. Chroni, M., and Nikolopoulos, S.D.: An efficient graph codec system for software
watermarking. In: Proceedings of the 36th Int’l Conference on Computers, Soft-
ware, and Applications (COMPSAC’12), Workshop STPSA’12, IEEE, pp. 595–600
(2012)

14. Huang, D., and Yan, H.: Interword distance changes represented by sine waves for
watermarking text images. IEEE Trans. Circuits and Systems for Video Technology
11(12), 1237–1245 (2001)

15. Jalil, Z., and Mirza, A.M.: An invisible text watermarking algorithm using image
watermark. In: Proceedings of the Innovations in Computing Sciences and Software
Engineering, pp. 147–152 (2010)

16. Low, S.H., Maxemchuk, N.F., and Lapone, A.M.: Document identification for copy-
right protection using centroid detection. IEEE Transactions on Communications
46(3), 372–381 (1998)

17. Low, S.H., and Maxemchuk, N.F.: Capacity of text marking channel. IEEE Signal
Processing Letters 7(12), 345–347 (2000)

18. Lu, P., Lu, Z., Zhou, Z., and Gu, J.: An optimized natural language watermarking
algorithm based on TMR. In: Proceedings of the 9th International Conference for
Young Computer Scientists, pp. 1459–1463 (2008)



17

19. Liu, H., Li, L., Li, J., and Huang, J.: Three novel algorithms for hiding data in pdf
files based on incremental updates. Digital Forensics and Watermarking, Springer
Berlin Heidelberg, pp. 167–180 (2012)

20. Liu, X., Zhang, Q., Tang, C., Zhao, J., and Liu, J.: A Steganographic Algorithm for
Hiding Data in PDF Files Based on Equivalent Transformation. In: International
Symposiums on Information Processing (ISIP’08), pp. 417–421 (2008)

21. Liu, Y., Sun, X., and Luo, G.: A novel information hiding algorithm based on
structure of PDF document. Computer Engineering 32(17), 230–232 (2006)

22. Lee, I.S., and Tsai, W.H.: A new approach to covert communication via PDF files.
Signal Processing 90(2), 557–565 (2010)

23. Maxemchuk, N.F., and Low, S.: Marking text documents. In: Proceedings of the
IEEE International Conference on Image Processing, pp. 13–16 (1997)

24. Maxemchuk, N.F., and Low, S.H.: Performance comparison of two text mark-
ing methods. IEEE Journal of Selected Areas in Communications 16(4), 561–572
(1998)

25. Maxemchuk, N.F.: Electronic document distribution. AT&T Technical Journal
73(5), 73–80 (1994)

26. Meral, H.M., and Sankur, B., Özsoy, A., Güngör, T., and Sevinç, E.: Natural
language watermarking via morphosyntactic alterations. Computer Speech and
Language 23(1), 107–125 (2009)

27. Meral, H.M., Sevinç, E., Ünkar, E., Sankur, B., Özsoy, A., and Güngör, T.: Syn-
tactic tools for text watermarking. In: Proceedings of the 19th SPIE Electronic
Imaging Conference on Security, Steganography, and Watermarking of Multimedia
Contents, San Jose, CA, (2007)

28. Macq, B., and Vybornova, O.: A method of text watermarking using presupposi-
tions. Electronic Imaging 2007, Society for Optics and Photonics, 65051R–65051R–
10 (2007)

29. Sun, X., and Asiimwe, A.J.: Noun-verb based technique of text watermarking using
recursive decent semantic net parsers. LNCS 3612, 958–961 (2005)

30. Topkara, U., Topkara, M., and Atallah, M.J.: The hiding virtues of ambiguity:
Quantifiably resilient watermarking of natural language text through synonym
substitutions. In: Proceedings of ACM Multimedia and Security Conference (2006)

31. Topkara, M., Topraka, U., and Atallah, M.J.: Information hiding through errors:
A confusing approach. In: Proceedings of the SPIE International Conference on
Security, Steganography, and Watermarking of Multimedia Contents, San Jose,
CA, (2007)

32. Zhou, X., and Zhao, W., and Wang, Z., and Pan, L.: Security theory and attack
anlysis for text watermarking. In: Proceedings of the International Conference on
E-Business and Information System Security (EBISS), pp. 1–6 (2009)

33. Zhong, S., Cheng, X., and Chen, T.: Data hiding in a kind of PDF texts for secret
communication. International Journal of Network Security 4(1), 17–26 (2007)


	Watermarking PDF Documents using Various Representations of Self-inverting Permutations

