
A Generic Interface Specification for Standardized Retrieval and

Statistical Evaluation of Spatial and Temporal Data

Jens Kohlmorgen
Fraunhofer Institute for Open Communication Systems FOKUS

Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

jens.kohlmorgen@fokus.fraunhofer.de

Keywords: Generic, Interface, Specification, Retrieval, Aggregation, Statistical Evaluation, Spatial, Temporal, Spatio-

Temporal, Measurement, Data.

Abstract: The interface defined in this paper provides a generic way to select, structure, aggregate, and retrieve

spatially and/or temporally localized measurement data from an underlying database in a standardized

manner. It is generic in the sense that it is neither specific to a particular type of database, nor is it specific

to a particular programming language or data format. The interface is particularly designed for software

systems where statistical analyses of potentially large collections of scalar measurement data are to be

performed by loosely coupled client applications. A key feature of the interface design is that a statistical

aggregation and evaluation of the data is performed on the server side, such that the necessary amount of

data to be transferred to a querying client is minimized. This can be a crucial feature for clients that are

querying large databases remotely, for example, over the Internet. The interface delivers regularly arranged

data to facilitate statistical assessments (e.g., visualizations in charts). It does not require, however, that the

raw data is arranged regularly in any way. In particular, measurements are not required to be synchronous or

equally spaced. The proposed interface can be employed for a wide range of application areas, e.g., to

evaluate data from sensor networks measuring the street traffic, the water and energy supply, the air

pollution or climate indicators.

1 INTRODUCTION

The widespread use of (geo-)spatially and
temporally localized data in software applications
has long since driven standardization efforts towards
open standards for managing and exchanging such
data. In particular the work of the Open Geospatial
Consortium (OGC) [1] and the ISO technical
committee ISO/TC 211 [2] led to a series of
international standards and technical specifications
that were gradually incorporated into the ISO 19100
series of standards [3]. Today there exists a large
number of these comprehensive standards for many
aspects of handling geospatial data. Software
services that provide general access to such kind of
data, in particular Web services [4] that are publicly
accessible over the Internet, clearly benefit from
adopting these broadly accepted standards. On the
other hand, for services that provide data only
internally within a self-contained software system
based on a service-oriented architecture (SOA) [5],

the adoption of these elaborate standards may prove
to be unnecessarily complex.

In particular for the latter purpose we here
propose a significantly less complex interface. It is
designed for the structured retrieval and statistical
evaluation of spatial and temporal measurements of
scalar quantities provided by a software service.
Such data is ubiquitous, for example, in the context
of smart cities: Public and individual traffic data,
water and energy supply data, weather and other
measurement data is monitored and processed not
only by city managers with dedicated tools, but
increasingly also by individual citizens using mobile
apps.

Apart from the already mentioned efforts of the
OGC and ISO towards interoperable machine-to-
machine interaction, existing work regarding the
retrieval of spatial and temporal data is mainly
focused on language extensions for SQL, the
Structured Query Language. Such language
extensions were proposed for temporal data, e.g. in
TSQL2 [6], for spatial data, e.g. in Spatial SQL [7],

This work was presented at KMIS 2015 (http://www.kmis.ic3k.org) and was published in: Proceedings of
the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K 2015) - Volume 3: KMIS, pages 136-143, SCITEPRESS, 2015.

http://www.kmis.ic3k.org/

and for spatio-temporal data, e.g. in [8, 9]. SQL
implementations, however, are incompatible
between vendors and do not necessarily completely
follow standards. Therefore, direct SQL interfaces
are vendor-specific and, in addition, they do not
provide an abstraction layer between the querying
client and the underlying database. Thus, they are
precluding a loose coupling between client and
server. The interface proposed here provides this
abstraction.

A key feature of the interface is the statistical
aggregation and evaluation of the data on the server
side, such that the necessary amount of data to be
transferred to a querying client is minimized. This
can be an important feature for clients that are
querying data remotely, e.g., over the Internet.
Client requests for server-side statistical aggregation
are not yet supported by OGC or ISO standards.
Also, different from these standards, the proposed
interface delivers regularly arranged data in tabular
form to facilitate statistical assessments by the
client, for example in terms of visualizations in
charts. This ability does not require that the available
raw data itself is arranged regularly in any way. In
particular, measurements are not required to be
synchronous or equally spaced. On the other hand,
the interface presented here does not support the
direct supply with the unarranged raw data, as it is
supported by the aforementioned standards.

Another useful feature of our interface definition
is the provision of specific filters to select data
according to the state of another quantity (in section
2.5.4). For example, the number of shared bicycles
actively used in a city will probably depend on the
weather. So it may be desirable to individually
assess the use of bicycles for different weather
conditions – at different times and maybe for
different areas of the city. In the filter encoding
standard jointly developed by OGC and ISO TC/211
[10], this filter can, in principle, be implemented by
using a hook for user-defined functions. Our
interface explicitly includes specific definitions of
such filters.

The interface presented in this paper is
formulated in terms of a generic specification. It is
generic in the sense that it is neither specific to a
particular type of database, nor is it specific to a
particular programming language or data format
(e.g., XML or JSON). The implementation in a
particular programming language and data format of
choice should be straightforward though. The
specification also does not necessarily demand the
use of a specific syntax nor is the scope of its
functionality completely fixed. Therefore, it can be
seen as a framework that allows for an easy
adaptation to the specific needs and requirements of
a particular software implementation.

2 INTERFACE SPECIFICATION

The interface proposed here consists of only two
functions. They can be implemented, for example, as
remote procedure calls (RPC) from a client to a
server hosting the data (e.g., by using HTTP-based
calls):

1. an initialization function,

(list_of_functions,

list_of_measurement_quantities,

list_of_condition_keywords) = get_keys(),

2. the actual retrieval function,

array_of_scalars = get_data(

 list_of_functions,

 list_of_measurement_identifiers,

 list_of_conditions0,

 list_of_conditions1,

 list_of_conditions2).

The types of objects required are arrays of
floating point numbers, associative arrays, and
(ordered) lists. Theoretically, the minimum
requirement for this interface is that each list
contains just a single element. In this case, the
resulting array_of_scalars would contain just a
single floating point number. However, for a more
efficient use of the interface, we will consider multi-
element lists and four-dimensional arrays. As list
elements we mainly use text strings, which have the
benefit that their meaning can be largely self-
explanatory.

Figure 1: Block diagram of the interface. The interface

connects a client application with a server providing the

data through the functions get_keys and get_data.

The initialization function get_keys receives no
parameters and returns three lists specifying the
capabilities of the server with respect to the retrieval

function get_data. They effectively define the
vocabulary understood by the server. In trusted
computing environments one might consider adding
a clientID input parameter to get_keys in order to
provide different clients with different sets of
capabilities. In untrusted environments one should
rather resort to more reliable authentication methods
though.

2.1 list_of_functions

The list_of_functions returned by get_keys contains
a list of all supported scalar aggregation functions
–at least one– that the server can apply to each group
of selected data (as explained further below). In
particular, statistical functions can be applied. For
example,

 “mean” – the arithmetic mean,

 “SD” – the (corrected) sample standard

deviation,

 “n” – the number of selected/aggregated

elements,

and for robust statistics and box plots:

 “median” – the median,

 “Q1”, ”Q3” – the first and third quartile,

 “min”, “max” – the minimum and

maximum.

Vice versa, the list_of_functions provided as a
parameter to get_data can be a (non-empty) list of
any of these elements. A corresponding number of
results will be returned accordingly, as shown
further below.

2.2 list_of_measurement_quantities

The list_of_measurement_quantities returned by
get_keys consists of a list of associative arrays. Each
array in that list contains the metadata of a particular
scalar measurement quantity that can be queried in
the database of the server. The metadata is given in
terms of a number of (key, value)-pairs and specific
text strings are used as keys. A mandatory (key,
value)-pair is the (“identifier”, measurement_
identifier)-pair. The measurement_identifier can be a
number or a string that uniquely identifies an
accessible measurement quantity in the database
comprising a multitude of scalar measurements in

space and time. Each individual measurement should
be associated with a timestamp and a spatial location
(e.g., latitude longitude, and elevation). In case of
missing timestamps, the affected measurements
should be ignored when temporal constraints are
specified in a query. In case of missing location
information, the affected measurements should be
ignored when spatial constraints are given. In other
words, constraints are considered unfulfilled if the
respective information is missing.

To give an example, a measurement_identifier
could be given in the form of a text string like this:

“BikeSharingCompanies(Company1).NumberOf
AvailableBikes“.

This identifier would be associated with
measurements of the number of available bikes in all
bike sharing stations of a particular bike sharing
company.

The list_of_measurement_identifiers provided as
a parameter to get_data is a (non-empty) list of
these measurement_identifiers. A corresponding
number of results with regard to the respective
measurement quantities will be returned in the
corresponding order, as shown in detail further
below.

Besides this essential (key, value)-pair, other
metadata information about a measurement quantity
might be required, e.g.,

 “locations” (key) – value: a list of all

existing measurement locations for the

given quantity. Each element in the list may

contain the specific coordinates and/or a

string with the name of the location. This

allows the client to query data from specific

locations (in get_data). In the bike sharing

example, these could be locations of

particular bike sharing stations.

 “areas” – a list of spatial areas where the

data is measured. An area can be specified,

for example, as a polygon on a two-

dimensional surface and/or by a name

given in a string. This provides the client

with another possibility to filter data

spatially.

 “measured since” – timestamp of the first

available measurement. Such a timestamp

can be specified as appropriate, typically as

RFC 3339 or ISO 8601 timestamp.

 “measured until” – timestamp of the last

available measurement. A special indicator

timestamp can be defined to designate

ongoing measurements.

 “name” – a string containing the (human-

readable) name of the measured quantity,

e.g., “number of available bikes”.

 “unit” – a string containing the unit of the

measured quantity, e.g., an SI unit like “kg”

or “m”. Measurement quantities without

unit (e.g. “number of available bikes”) can

be denoted with an empty string.

Categorical quantities: A special case can

be introduced to enable the processing of

measurements of categorical variables with

this interface. For this purpose, the value of

“unit” can be given as a list of strings, each

string denoting a category, e.g., “red”,

“green”, and “blue”. The measurement of a

categorical variable can then be represented

in terms of scalar numbers (hence fitting

into the given framework), each number

constituting the ordinal number of a

category in the list of category names.

Note, however, that it generally does not

make sense to use aggregation functions

like “mean” and “median” in conjunction

with ordinal numbers. Therefore, the access

to categorical data is mainly confined to the

use of the function “n” in combination with

the filter condition “value_is” (see below).

 “description” – a string that contains a

textual description of the measured

quantity.

Other (key, value)-pairs of metadata can be added, if
necessary.

2.3 list_of_condition_keywords

The list_of_condition_keywords returned by
get_keys contains a list of all supported keywords
that can be used to define filters for the selection of
measurements to be aggregated and retrieved. The
precise use of the keywords is explained in section
2.5, in this section we provide a condensed overview
of the different types of filters. The first type of
these filters selects measurements from particular
time intervals. Such filters can be, e.g.,

 “time_of_day” – to specify a time interval

within a day

 “day_of_week” – to specify a range of

week days, e.g., Mon-Fri

 “day_of_month” – to specify a range days

within a month, e.g., 1.-15.

 “week_of_year” – to specify a range of

calendar weeks

 “month_of_year” – to specify a range of

months within a year

 “year” – to specify a range of years

 “last_n_days”

Special keywords are

 “continuous_binning” – to specify a series

of time intervals

 “all” – to impose no restrictions

The second type of filter restricts the selection of
measurements spatially, e.g.:

 “within_distance_of” – to select

measurements within a certain distance

from a given spatial location

 “within_area_of” – to select measurements

within a certain area

The third type of filter is a restriction with respect to
the values of the measurements:

 “value_within” – to select measurements

whose value is within a certain range

 “value_is” – to select measurements with a

particular value

Finally, there is a more complex fourth type of filter
that conditions the selection of each measurement on
measurement results of another measurement
quantity:

 “corresponding_attribute”

 “corresponding_temporal_attribute”

 “corresponding_spatial_attribute”

 “corresponding_spatiotemporal_attribute”

The next sections explain how to use these
keywords.

2.4 list_of_conditions

Each of the three last parameters of get_data,
(list_of_conditions0, list_of_conditions1, and
list_of_conditions2) contains a list of freely
combinable conditions.

For each measurement quantity requested by
get_data in the list_of_measurement_identifiers,
each measurement associated with that measurement
quantity is aggregated in a cell of a two-dimensional
table, if it fulfils particular conditions given in the
three lists of conditions. First of all, all conditions
given in the list_of_conditions0 must be met (the
“global” conditions). Second, if the mth condition in
list_of_conditions1 and the nth condition in
list_of_conditions2 are fulfilled, then the
measurement is assigned to the mth row and nth
column of the table (the “local” conditions).

Measurements can be assigned to more than one
cell of the table, if they fulfil more than one pair of
conditions in list_of_conditions1 and list_of_
conditions2. After all measurements have been
checked and possibly assigned to a cell, each set of
measurements (given in each cell) is processed by
all aggregation functions specified in
list_of_functions. In effect, a scalar result is obtained
for each function in list_of_functions and each cell
of the table and each measurement quantity in the
list_of_measurement_identifiers, making up a four-
dimensional array_of_scalars returned by get_data.

If the set of measurements in a cell of the
aggregation table is empty, most aggregation
functions are undefined and the array_of_scalars
should reasonably contain a NaN (“not a number”,
IEEE 754 floating-point standard used for missing
values) at the corresponding position (or an
equivalent value, if NaN is not supported). One
exception is the counting function “n”, which returns
a zero in this case. Another special case is the
corrected sample standard deviation, “SD”, which is
undefined also for a single measurement. In this
case, one could either consistently return a NaN or
revert to the uncorrected sample standard deviation,
which is zero in this case.

2.5 conditions

Each individual condition can be either true or false
with respect to a single scalar measurement. It
consists of a keyword from the
list_of_condition_keywords supplemented with a

certain number of parameters. We use the following
syntax for such parameterized keywords:

condition_keyword(parameter1, parameter2, …,
parameterN)

Irrespective of this, depending on the particular
implementation, one might as well resort to other
syntactical formulations.

2.5.1 Temporal Constraints

Conditions related to the time of the measurements
will mostly have one or two parameters, specifying a
point in time or a time range, e.g.

 “time_of_day(10:00, 12:00)” – to select

data measured between 10 and 12. More

precisely, all data measured at times t

fulfilling the condition 10:00 ≤ t < 12:00.

Note that t=12:00 is excluded here to

prevent the same data appearing twice in

selections like “time_of_day(10:00, 12:00)”

and “time_of_day(12:00, 14:00)”.

 “time_of_day(10:00)” - to select data from

a single point in time, here 10:00.

Similarly, “day_of_week(Mon, Fri)” would restrict
data to be chosen between Monday and Friday and
“day_of_week(Mon)” would restrict data to be
chosen from Monday only. In all cases except
“time_of_day”, the second argument is meant to be
inclusive, e.g. “year(2012, 2014)” selects data from
years 2012, 2013, and 2014. Accordingly, the filters
“day_of_month”, “week_of_year”, and “month_of_
year” can take one or two integers as parameters,
whereas the filter “last_n_days” has only one
(positive) integer as parameter.

As an alternative, in accordance with ISO 8601,
one might consider defining also all times uniformly
in terms of single numbers: time in the format
HH:MM could be defined as HHMM (or
HH:MM:SS as HHMMSS). The days of the week
could be enumerated from 1 (Monday) to 7
(Sunday).

The following conditions implement special
functions:

 “continuous_binning(start_time, time_

interval, end_time)” – this specifies a whole

list of consecutive time intervals of length

time_interval (in seconds), starting at a

given point in time, start_time, and ending

at end_time. These timestamps can be

specified, e.g., according to RFC 3339 or

ISO 8601, as already suggested in section

2.2. Recommended is the use of

“continuous_binning” as sole element in

either list_of_conditions1 or

list_of_conditions2. It is useless in

list_of_conditions0 (where it should be

evaluated consistently as an unfulfillable

condition). Aside from statistical assess-

ments, continuous binning can be used with

“mean” or “median” to equidistantly (sub-

)sample the measurement data and thus to

obtain a regularized representation of the

data.

 “all” – always fulfilled, to impose no

restrictions (has no parameters).

2.5.2 Spatial Constraints

Conditions related to the location of the
measurements can be defined, e.g., as follows

 “within_distance_of(location, 0, 20)” – to

select data measured at a distance between

0 and 20 meters of a certain location. A

location can be specified as appropriate, for

example as Cartesian coordinates or in

terms of latitude, longitude, and elevation.

Alternatively, the server could also provide

a list of names (text strings) defining

particular locations of interest in the

“locations” (key, value)-pair, each name

being accepted as a valid location in

“within_distance_of”.

 “within_area_of(area)” – to select data

measured within a defined area. As stated

in section 2.2, an area can be specified, for

example, as a polygon on a two-dimen-

sional surface or just by a name (text string)

provided in the “areas” (key, value)-pair,

implicitly defining a particular area of

interest.

2.5.3 Constraints Regarding the
Measurement Value

Conditions related to the measured value itself can
be defined, e.g., as follows

 “value_within(-0.5, 1)” – to select

measurement data with values between -0.5

and 1.

 “value_is(-0.5)” – to select measurement

data with a value of -0.5.

Note that these constraints apply to all
measurement quantities requested in get_data.
Therefore, if multiple measurement quantities are
requested in conjunction with value constraints, the
measurement quantities should usually be of the
same type.

2.5.4 Constraints with Respect to another
Measurement Quantity

Sometimes it is necessary to select data depending
on the state of a different measurement quantity. For
example, the number of bicycles in use will probably
depend on the weather. To facilitate evaluations in
this respect, the following conditions are proposed:

 “corresponding_attribute(identifier, mode,

min, max)” – the basic condition.

All measurement values of the (other)

quantity, specified by the identifier, are

processed according to a given mode taking

one of the following values:

- “mean”, the mean of all measurements is

considered,

- “median”, the median of all measurements

is considered,

- “exists”, to verify if at least one

measurement fulfils the condition,

- “all”, to verify if all measurements fulfil

the condition,

- “closest_in_time”, only the measurement

with the smallest absolute time difference

to the measurement of the primary

measurement quantity is considered,

- “closest_in_space”, only the measurement

with the smallest spatial distance to the

measurement of the primary measurement

quantity is considered.

The condition is fulfilled if the considered

value is between min and max, i.e. min ≤

value ≤ max. If there is no measurement,

the condition is not fulfilled.

 “corresponding_temporal_attribute(identifi

er, mode, min, max, t_min, t_max)” –

extends the basic condition with a time

constraint. Each measurement of the

corresponding measurement quantity is

considered only if the difference in time

between the measurement of the primary

measurement quantity and the measurement

of the corresponding measurement quantity

lies within a certain range [t_min, t_max].

Each parameter, t_min and t_max, denotes a

time difference in seconds, which can also

be a negative value.

 “corresponding_spatial_attribute(identifier,

mode, min, max, d_min, d_max)” – extends

the basic condition with a spatial constraint.

Each measurement of the corresponding

measurement quantity is considered only if

the spatial distance between the

measurement of the primary measurement

quantity and the measurement of the

corresponding measurement quantity lies

within a certain range [d_min, d_max].

Each parameter, d_min and d_max, denotes

a distance in meters.

 “corresponding_spatiotemporal_attribute(id

entifier, mode, min, max, d_min, d_max,

t_min, t_max)” – extends the basic

condition with a spatial and a temporal

constraint. Each measurement of the

corresponding measurement quantity is

considered only if (a) the spatial distance

between the measurement of the primary

measurement quantity and the measurement

of the corresponding measurement quantity

lies within a certain range [d_min, d_max],

and (b) the difference in measurement time

lies within a certain range [t_min, t_max].

The parameters d_min and d_max denote a

distance in meters and the parameters t_min

and t_max denote a time difference in

seconds.

2.6 A Simple Example using Lists of
Conditions

The list_of_conditions1 and list_of_conditions2 are
of the same type, but will usually contain different
lists of conditions. As an example,
list_of_conditions1 might contain

[“day_of_week(Mon)”,
 “day_of_week(Tue)”,
 “day_of_week(Wed)”]

and list_of_conditions2 might contain

[“time_of_day(10:00,12:00)”,
 “time_of_day(12:00,14:00)”,
 “time_of_day(14:00,16:00)”],

resulting in a table with 3×3 entries of aggregated
data (for each measurement quantity specified in
list_of_measurement_identifiers and each aggre-
gation function specified in list_of_functions).

Table 1: Example of a table containing aggregated data.

The matching data varies among the cells of the table and

depends on the respective conditions for each row and

each column.

Measu-

rement

quan-

tity

10:00-12:00 12:00-14:00 14:00-16:00

Mon mean(matching

data),

median(matchi

ng data),

…

mean(matching

data),

median(matchi

ng data),

…

mean(matchi

ng data),

median(matc

hing data),

…

Tue mean(matching

data),

median(matchi

ng data),

…

mean(matching

data),

median(matchi

ng data),

…

mean(matchi

ng data),

median(matc

hing data),

…

Wed mean(matching

data),

median(matchi

ng data),

…

mean(matching

data),

median(matchi

ng data),

…

mean(matchi

ng data),

median(matc

hing data),

…

The list_of_conditions0 contains a list of global
constraints that apply to the overall table in addition
to the constraints previously defined for the columns
and rows of the table. As an example, this could be
[“year(2001,2010)”, “month_of_year(1)”] to get
some statistics averaged over all Januaries from
2001 till 2010.

2.7 array_of_scalars

The array_of_scalars returned by get_data is a
four-dimensional array of floating point numbers.
The array is of the size k×l×m×n corresponding to

 k aggregation functions specified in

list_of_functions,

 l scalar measurement quantities specified in

list_of_measurement_identifiers,

 m conditions specified in

list_of_conditions1,

 n conditions specified in

list_of_conditions2.

Each element in the array contains the result of the
corresponding aggregation function applied to those
measurements of the respective measurement
quantity that match the corresponding conditions:

single_element = array_of_scalars[g][h][i][j],

in which g refers to the gth function in
list_of_functions, h refers to the hth measurement
quantity in list_of_measurement_identifiers, i refers
to the ith condition in list_of_conditions1, and j
refers to the jth condition in list_of_conditions2.

For example, with a single call to get_data one
can obtain the mean and standard deviation
(list_of_functions) of the number of available
bicycles, individually for a number of bike sharing
companies (list_of_measurement_identifiers) and
separately for each hour of the day
(list_of_conditions1) and each day of the week
(list_of_conditions2). These statistics can be limited,
for example, to a certain time span, like “all
Januaries from 2001 till 2010” (list_of_conditions0).

It is, of course, conceivable to extend the table
spawned by list_of_conditions1 and
list_of_conditions2 to more dimensions by adding
more lists of conditions as additional parameters to
get_data. However, the use of two-dimensional
tables is often the most convenient option, in
particular for visualizations of the obtained statistics.

3 CONCLUSIONS

We presented a generic interface specification for

standardized retrieval and statistical evaluation of

spatial and temporal measurement data provided by

a software service. The two functions of the

interface can be implemented as remote procedure

calls (RPC) to the service. For example, one possible

realization would be the use of HTTP-based calls

over the Internet. The interface is not specific to a

particular type of database, programming language,

or data format. It also does not demand a specific

syntax nor is the scope of its functionality

completely fixed. In this way, it allows for an easy

adaptation to the specific needs and requirements of

a particular software implementation. In contrast to

the standards developed by OGC and ISO TC/211,

the proposed specification is much leaner and

features an efficient statistical aggregation of the

data on the server side, thereby minimizing the

amount of data to be transferred to the client.

On the other hand it should be noted that the

presented specification is restricted to the retrieval of

numerical data, whereas the OGC and ISO standards

have a much broader scope. It therefore would be

beneficial if the OGC and the ISO TC/211 could

consider including similar statistical aggregation

functionality into their standards in the future. Also,

the specific filters that we proposed in section 2.5.4

to select data according to the state of another

quantity may be adopted in OGC filters by

implementing user-defined functions according to

the definitions in 2.5.4.
We will implement the presented interface in a

mobility management platform for smart cities. A
client application, the so-called mobility
management and emission control panel, will
analyse and visualize all data collected on a central
mobility data integration platform. Access to the
data will be performed by using the proposed
interface and HTTP-based calls.

ACKNOWLEDGEMENT

The research leading to these results has received

funding from the European Union Seventh

Framework Programme (FP7/2007-2013) under

grant agreement n° 608991, project STREETLIFE.

REFERENCES

[1] http://www.opengeospatial.org

[2] http://www.isotc211.org

[3] http://www.isotc211.org/Outreach/Overview/

Overview.htm

[4] Alonso, G., Casati, F., Kuno, H., Machiraju, V., 2004.

Web Services. Springer Berlin Heidelberg.

[5] Erl, T., 2005. Service-oriented architecture: concepts,

technology, and design. Pearson Education.

[6] Snodgrass, R.T., et al., 1995. The TSQL2 Temporal

Query Language. Kluwer Academic Publishers.

[7] Egenhofer, M. J., 1994. Spatial SQL: A Query and

Presentation Language. In IEEE Transactions on

Knowledge and Data Engineering, 6(1):86–95.

[8] Chen, C.X., Zaniolo, C., 2000. SQLST: A Spatio-

Temporal Data Model and Query Language. In

Proceedings of the 19th International Conference on

Conceptual Modeling, pp. 96-111.

[9] Erwig, M., Schneider, M., 2002. STQL: A Spatio-

Temporal Query Language. In Mining Spatio-

Temporal Information Systems (eds. R. Ladner, K.

Shaw, and M. Abdelguerfi), Kluwer Academic

Publishers, pp. 105-126.

[10] http://www.opengeospatial.org/standards/filter

