
STaDA: Style Transfer as Data Augmentation

Xu Zheng1,2, Tejo Chalasani2, Koustav Ghosal2, Sebastian Lutz2, Aljosa Smolic2

1Accenture Labs, Dublin, Ireland
2School of Computer Science and Statistics, Trinity College Dublin, Ireland
xu.b.zheng@accenture.com, {chalasat, ghosalk, lutzs, smolica}@scss.tcd.ie

Keywords: Neural Style Transfer, Data Augmentation, Image Classification

Abstract: The success of training deep Convolutional Neural Networks (CNNs) heavily depends on a significant amount
of labelled data. Recent research has found that neural style transfer algorithms can apply the artistic style of
one image to another image without changing the latter’s high-level semantic content, which makes it feasible
to employ neural style transfer as a data augmentation method to add more variation to the training dataset.
The contribution of this paper is a thorough evaluation of the effectiveness of the neural style transfer as a
data augmentation method for image classification tasks. We explore the state-of-the-art neural style transfer
algorithms and apply them as a data augmentation method on Caltech 101 and Caltech 256 dataset, where
we found around 2% improvement from 83% to 85% of the image classification accuracy with VGG16, com-
pared with traditional data augmentation strategies. We also combine this new method with conventional data
augmentation approaches to further improve the performance of image classification. This work shows the po-
tential of neural style transfer in computer vision field, such as helping us to reduce the difficulty of collecting
sufficient labelled data and improve the performance of generic image-based deep learning algorithms.

1 INTRODUCTION

Data augmentation refers to the task of adding diver-
sity to the training data of a neural network, especially
when there is a paucity of sufficient samples. Popu-
lar deep architectures such as AlexNet (Krizhevsky
et al., 2012) or VGGNet (Simonyan and Zisserman,
2014) have millions of parameters and thus require
a reasonably large dataset to be trained for a par-
ticular task. Lack of adequate data leads to overfit-
ting i.e. high training accuracy but poor generalisa-
tion over the test samples (Caruana et al., 2001). In
many computer vision tasks, gathering raw data can
be very time-consuming and expensive. For exam-
ple, in the domain of medical image analysis, in criti-
cal tasks such as cancer detection (Kyprianidis et al.,
2013) and cancer classification (Vasconcelos and Vas-
concelos, 2017), researchers are often restricted by
the lack of reliable data. Thus, it is a common prac-
tice to use data augmentation techniques such as flip-
ping, rotation, cropping etc. to increase the variety of
samples fed to the network. Recently, more complex
techniques using a green screen with different random
backgrounds to increase the number of training im-
ages has been introduced by (Chalasani et al., 2018).

In this paper, we explore the capacity of neural

style transfer (Gatys et al., 2016) as an alternative
data augmentation strategy. We propose a pipeline
that applies this strategy on image classification tasks
and verify its effectiveness on multiple datasets. Style
transfer refers to the task of applying the artistic style
of one image to another, without changing the high-
level semantic content (Figure 1). The main idea of
this algorithm is to jointly minimise the distance of
the content representation and the style representation
learned on different layers of a convolutional neural
network, which allows translation from noise to the
target image in a single pass through a network that is
trained per style.

The crux of this work is to use a style transfer
network as a generative model to create more sam-
ples for training a CNN. Since style transfer preserves
the overall semantic content of the original image,
the high-level discriminative features of an object are
maintained. On the other hand, by changing the artis-
tic style of some randomly selected training samples
it is possible to train a classifier which is invariant to
undesirable components of the data distribution. For
example, let us assume a scenario where a dataset
of simple objects such as Caltech 256 (Griffin et al.,
2007) has a category car but there are more images of
red cars than any other colour. The model trained on

ar
X

iv
:1

90
9.

01
05

6v
1 

 [
cs

.C
V

] 
 3

 S
ep

 2
01

9



(a) Raw image (b) Style Image

(c) Stylized Image

Figure 1: Style Transfer: The style of Sunflower (b) (Van
Gogh) is applied on the photo (a) to generate a new stylised
image (c), which can keep the main content of the photo but
as well as contain the texture style from image Sunflower.

such a dataset will associate red colour to the car cat-
egory, which is undesired for a generic car classifier.
Using style transfer as the data augmentation method
can be an effective strategy to avoid such associations.

In this work, we use eight different style images as
palette to augment the original image datasets (Sec-
tion 3.3). Additionally, we investigate if different im-
age styles have different effects on image classifica-
tion. This paper is organised as follows. In Section 2,
we discuss research related to our work. In Section 3,
we describe different components of the architecture
used, in Section 4 we describe our experiments and
report and analyse the results.

2 RELATED WORK

In this section, we review the state-of-the-art research
relevant to the problem addressed in this paper. In
Section 2.1, we review the development of neural
style transfer algorithms and in Section 2.2, we dis-
cuss the traditional data augmentation strategies and
how they affect the performance of a CNN in the stan-
dard computer vision tasks such as classification, de-
tection, segmentation etc.

2.1 Neural Style Transfer

The main goal of style transfer is to synthesise a
stylised image from two different images, one supply-

ing the texture and another providing the high-level
semantic content. Broadly, the state-of-the-art style
transfer algorithms can be divided into two groups
— descriptive and generative. Descriptive approach
refers to changing the pixels of a noise image in an it-
erative manner whereas generative approach achieves
the same in a single forward pass by using a pre-
trained model of the desired style (Jing et al., 2017).

Descriptive Approach: The work done by (Gatys
et al., 2016) is the first descriptive approach of neural
style transfer. Starting from random noise, their algo-
rithm transforms the random noise image in an itera-
tive manner such that it mimics the content from one
image and style or texture from another. The con-
tent is optimised by minimising the L2 distance be-
tween the high level CNN features of the content and
stylised image. On the other hand, the style is op-
timised by matching the Gram matrices of the style
and stylised image. Several algorithms followed di-
rectly from this approach by addressing some of its
limitations. (Risser et al., 2017) propose a more sta-
ble optimisation strategy by adding histogram losses.
(Li et al., 2017) closely investigate the different com-
ponents of the work by (Gatys et al., 2016) and
present key insights on the optimisation methods, ker-
nels used and normalisation strategies adopted. (Yin,
2016; Chen and Hsu, 2016) propose content-aware
neural style transfer strategies which aim to preserve
high-level semantic correspondence between the con-
tent and the target.

Generative Approach: The descriptive approach
is limited by its slow computation time. In the gen-
erative or the faster approach, a model is trained in
advance for each style image. While the inference
in descriptive approach occurs slowly over several it-
erations, in this case, it is achieved through a sin-
gle forward pass. (Johnson et al., 2016) propose
a two-component architecture — generator and loss
networks. They also introduce a novel loss function
based on perceptual difference between the content
and target. In (Ulyanov et al., 2016a), the authors im-
prove the work by (Johnson et al., 2016) by using a
better generator network. (Li and Wand, 2016) train a
Markovian feed-forward network by using an adver-
sarial loss function. (Dumoulin et al., 2016) train for
multiple styles using the same network.

2.2 Data Augmentation

As discussed previously in Section 1, data augmen-
tation refers to the process of adding more variation
to the training data in order to improve the generalisa-
tion capabilities of the trained model. It is particularly
useful in scenarios where there is a scarcity of training



Figure 2: Components of the modular design for data augmentation using style transfer. The first module is a style trans-
fer module that is trained per style and takes an image as input to generate a stylised image and the second module is a
classification network that uses the stylised image for training to improve accuracy.

samples. Some common strategies for data augmen-
tation are flipping, re-scaling, cropping, etc. Research
related to developing novel data augmentation strate-
gies is almost as old as the research in deeper neural
networks with more parameters.

In (Krizhevsky et al., 2012), the authors applied
two different augmentation methods to improve the
performance of their model. The first one is horizon-
tal flip, without which their network showed substan-
tial overfitting even with only five layers. The second
strategy is to perform a PCA on the RGB values of
the image pixels in the training set, and use the top
principal components, which reduced over 1% of the
top-1 error rate. Similarly, the ZFNet (Zeiler and Fer-
gus, 2014) and VGGNet (Simonyan and Zisserman,
2014) also apply multiple different crops and flips for
each training image to boost training set size and im-
prove the performance of their models. These well-
known CNNs architectures achieved outstanding re-
sults in the ImageNet challenge (Deng et al., 2009),
and their success demonstrated the effectiveness and
importance of data augmentation.

Besides the traditional transformative data aug-
mentation strategies as discussed above, some re-
cently proposed methods follow a generative ap-
proach. In the work (Perez and Wang, 2017), the au-
thors explore Generative Adversarial Nets to generate
stylised images to augment the dataset. Their work is
called Neural Augmentation, which uses CycleGAN
(Zhu et al., 2017) to create new stylised images in the
training dataset. This method is finally tested on a 5-
layer network with the MNIST dataset and delivers

better performance than most traditional approaches.

3 Design and Implementation

In this section, we propose a modular design for using
style transfer as data-augmentation technique. Fig-
ure 2 summarises the modular architecture we fol-
lowed for creating our data augmentation strategy. We
choose the network designed in (Engstrom, 2016) for
our style transfer module. The reasons for this choice,
architecture and implementation of the network are
explained in subsection 3.1. For testing the data aug-
mentation technique we use the classification module.
In our experiments we used the standard VGG16 from
(Simonyan and Zisserman, 2014) explained in section
3.2. In section 3.3 we briefly explain the datasets used
for evaluation of our strategy.

3.1 Style Transfer Architecture

For style transfer to be as viable as the other tradi-
tional data augmentation strategies (crop, flip etc.) we
need a fast running solution. There has been success-
ful style transfer solutions using CNNs but they are
considerably slow (Gatys et al., 2016). To alleviate
this problem we choose a generative architecture that
only needs a forward pass to compute a stylised image
(Engstrom, 2016). This network consists of a genera-
tive Style Transfer Network coupled with a Loss Net-
work that computes a cumulative loss which can ac-
count for both style from the style image and content



from the training image. In the following subsections
(3.1.1, 3.1.2) we will look at architectures of the Style
Transfer Network and Loss Network.

3.1.1 Transformation Network

For the transformation network, we follow the state-
of-the-art implementation from the work (Engstrom,
2016) and (Sam and Michael, 2016), with changes to
hyper parameters based on our experiments.

Five residual blocks are used in the style trans-
formation network to avoid optimisation difficulty
when the network gets deep (He et al., 2016). Other
none residual convolutional layers are followed by
Ulyanov’s instance normalisation (Ulyanov et al.,
2016b) and ReLU layers. At the output layer, a scaled
tanh is used to get an output image with pixels in the
range from 0 to 255.

This network is trained coupled with the Loss Net-
work (described in the following subsection) using
stochastic gradient descent (Bottou, 2010) to min-
imise a weighted combination of loss functions. We
treat the overall loss as a linear combination of the
content reconstruction loss and style reconstruction
loss. The weights of two losses can be fine-tuned de-
pending on the preference. By minimising the overall
loss we can get a model well trained per style.

3.1.2 Loss Network

Since we already define the transformation network
that can generate stylised images, we also need to
create a loss network that is used to represent loss
function to evaluate the generated images and use the
loss to optimise the style transfer network based on
stochastic gradient descent.

We use a deep convolutional neural network θ pre-
trained for image classification on imageNet to mea-
sure the texture and content differences between the
generated image and the target image. Recent work
has shown that deep convolutional neural networks
can encode the texture information and high-level
content information in the feature maps (Gatys et al.,
2015)(Mahendran and Vedaldi, 2015). Based on this
finding, we define a content reconstruction loss `θ

c and
a style reconstruction loss `θ

style in the loss network
and use their weighted sum to measure the total dif-
ference between the stylised image and the image we
want to get. For every style, we train the transforma-
tion network with the same pretrained loss network.

Content Reconstruction Loss: To achieve that,
an image needs to be reconstructed from the image
information encoded in the neural network, i.e., com-
puting an approximate inverse from the feature map.
Given an image~x, the image will go through the CNN

model and be encoded in each layer by the filter re-
sponses to it. We use F l to store the feature maps in
a layer l where F l

i j is the feature map of the ith filter
at position j in layer l. Let Pl be the feature maps for
the content image in layer l, and we can update the
pixels of image x to minimise the loss L to make sure
these two images have the similar feature maps in the
network and thus have the similar semantic content:

Lcontent =
1
2 ∑

i, j
(F l

i j−Pl
i j)

2 (1)

Style Reconstruction Loss: We also want the
generated images to have similar texture as the style
target image, so we want to penalise the style differ-
ences with the style reconstruction loss. The feature
maps in a few layers of a trained network are used for
representing the texture by the correlations between
them. Instead of using these feature maps directly, the
correlations between the different channels of the fea-
ture maps are given by Gram matrix Gl , where the Gl

i, j

is the inner product between the vectorised ith feature
map and jth feature map in layer l:

Gl
i, j = ∑

k
F l

ikF l
jk (2)

The original texture is passed through the CNNs
and the Gram matrices Gl on the feature responses of
some layers are computed. We can pass a white noise
image through the CNNs and compute the Gram ma-
trix difference on every layer included in the texture
model as the loss. If we use this loss to perform gra-
dient on the white noise image and try to minimise
the Gram matrix difference, we can find a new image
that has the same style as the original image texture.
The loss is computed by the mean-squared distance
between the Gram matrix of two images. So let Al

and Gl be the Gram matrix of two images in layer l,
the loss of that layer equal:

El =
1

4N2
l M2

l
∑
i, j
(Gl

i j−Al
i j)

2 (3)

and the loss for all chosen layers:

Lstyle =
L

∑
l=0

wlEl (4)

Total Variation Regularization: We also follow
prior work (Gatys et al., 2016) and make use of total
variation regularizer LTV to gain more spatial smooth-
ness in the output image ŷ.

Terms Balancing: As we have above definitions,
generating an image ŷ can be seen as solving the opti-
mising problem in the style transfer module in figure
2. We initialise the image with white noise, and the



work (Gatys et al., 2016) found that the initialisation
has a minimal impact on the final results. λc, λs, and
λTV are hyperparameters that we can tune according
to the monitoring of the results. To get the stylised
image, we need to minimise a weighted combination
of two loss functions and the regularization term:

ŷ = argmin
y

λcLcontent +λsLstyle +λTV LTV (5)

3.2 Image Classification

To evaluate the effectiveness of this design, we per-
form image classification tasks with the stylised im-
ages. In a image classification task, for each given
image, the programs or algorithms need to produce
the most reasonable object categories (Russakovsky
et al., 2015). The performance of the algorithm
will be evaluated based on if the predicated cate-
gory matches the ground truth label for the image.
Since we will provide input images from multiple cat-
egories, the overall performance of an algorithm is the
average score of overall test images.

Once we train the transformation network that can
generate the stylised images, we apply it to the train-
ing dataset to create a larger dataset. The stylized im-
ages are saved on the disk with the ground truth cate-
gories. We then use them with their original images to
train the neural networks to solve the image classifica-
tion problems. In this research, the model we chose is
VGGNet, which is a simple but effective model (Si-
monyan and Zisserman, 2014). Their team got the
first place in the localisation and the second place in
the classification task in ImageNet Challenge 2014.
This model strictly used 3× 3 filters with stride and
pad of 1, along with 2× 2 max-pooling layers with
stride 2. 3 3× 3 convolutional layers back to back
have an effective receptive field of 7× 7. Compared
with one 7×7 filter, 3×3 filter size can have the same
effective receptive field with fewer parameters.

To fully understand the effectiveness of the style
transfer and explore how useful style transfer can
be compared and combined with other traditional
data augmentation approaches for image classifica-
tion problem, we need to experiment from multiple
perspectives. The first experiments are to use tradi-
tional transformations alone. For each input image,
we generate a set of duplicate images that are shifted,
rotated, or flipped from the original image. Both the
original image and duplicates are fed into the neural
net to train the model. The classification performance
will be measured on the validation dataset as the base-
line to compare these augmentation strategies. The
pipeline can be found in Figure 2. The second ex-
periments are to apply the well-trained transformation

network to augment the training dataset. For each in-
put image, we select a style image from a subset of
different styles from famous artists and use the trans-
formation network to generate new images from the
original image. We store the newly generated images
on the disk, and both original and stylised images are
fed to the image classification network. To explore if
we can get better results, we go further to combine
two approaches to get more images in training dataset
.

3.3 Dataset and Image Styles

The transformation network is trained on the COCO
2014 collection (Lin et al., 2014) containing more
than 83k training images, which are enough to get the
transformation network well trained. Since these im-
ages are used to feed the transformation network, we
ignored the label information during training.

Two different datasets are used for images clasi-
fication tasks, caltech 101 (Fei-Fei et al., 2006) and
caltech 256 (Griffin et al., 2007). We keep training
and testing on a fixed number of images and repeat-
ing the experiment with different augmented data and
compare the results with others. The images are di-
vided by a 70:30 split between training and validation
for both datasets.

For the chosen styles, we try to select the images
that look very different. At last, eight different im-
ages were chosen as the style input to train the trans-
formation network. All styles can be found in the
GitHub repo. https://github.com/zhengxu001/
neural-data-augmentation.

4 EXPERIMENTS

This section presents the evaluation of style transfer
for data augmentation. We evaluate the results from
multiple perspectives based on the classification Top-
1 accuracy of VGGNet. The results of experiments
on traditional augmentation are collected as the base-
line. We then do experiments on every single style
and some combined styles. We also combine the tra-
ditional methods with our style transfer method to
verify their effectiveness and see if we can improve
on previous methods.

4.1 Traditional Image Augmentation

We first used the pretrained VGGNet without any data
augmentation and reached a classification accuracy of
83.34% in one hour of training time. We then apply

https://github.com/zhengxu001/neural-data-augmentation
https://github.com/zhengxu001/neural-data-augmentation


two different traditional image augmentation strate-
gies, Flipping and Rotation, to train the model. Fi-
nally, we combine both strategies. Detailed results
can be found in table 1. We found the model itself
works the best without any augmentation. Using Flip-
ping as data augmentation strategy gives very simi-
lar results, however the combination of Rotation and
Flipping significantly reduces classification accuracy
to 77%. Adding Rotation as data augmentation does
not seem to help for classification, as is also shown in
our following experiments.

Traditional Image Augmentation
Style Name Result

None 0.8334
Flipping 0.8305

FlippingRotation 0.77

Table 1: Traditional Image Augmentation

4.2 Single Style

We select eight different styles that look different
from each other to train the transformation network.
All styles can be found in the Appendix. We feed
each of the images in the training set to the eight fully
trained transformation networks to generate eight
stylised images. Both the original images and the
stylised images are fed to VGGNet to train the net-
work and the best validation accuracy from all epochs
is recorded. The results for each style can be found in
table 2. Compared with the traditional strategies, we
can see that 7 out of 8 styles work better than the tra-
ditional strategies. It can also be seen that the Snow
style works the best, reaching an accuracy of 85.26%,
whereas YourName style only reaches 82.61%. This
is due to the addition of too much noise and colour to
the original images for that particular style. In figure
3 a comparison between the original image and two
different stylised images is shown. As can be seen,
YourName style adds too many colours and shapes
on the original image, which explains the bad perfor-
mance in terms of the image classification accuracy.

4.3 Combined Methods

To evaluate the combination of two different styles,
we take the original images and feed them to two dif-
ferent transformation networks and generate two styl-
ized images for each input image. We then merge the
stylized images and original images to compose the
final training dataset. This gives us three times the
number of images than the original dataset. We use

Single Style with VGG16 and Caltech 101
Style Name Result

Snow 0.8526
RainPrincess 0.8494

Scream 0.8490
Wave 0.8468

Sunflower 0.8461
LAMuse 0.8436

Udnie 0.8404
Your Name 0.8261
Table 2: Single Style Transfer Augmentation

(a) Original (b) Snow (c) YourName
Figure 3: Comparison between the original image and two
stylized images. YourName style adds too many colours
and shapes on the original image, which explains the bad
performance in terms of the image classification accuracy.

this augmented data set to train the VGGNet model.
We also try to combine the traditional augmentation
methods with style transfer together and evaluate the
performance. The results can be found in table 3.

Combined Method
Traditional Method Style Result

Flipping None 0.8305
Flipping Scream 0.8454
Flipping Wave 0.8486
Flipping ScreamWave 0.845

FlippingRotation None 0.7521
FlippingRotation Wave 0.7837
FlippingRotation Scream 0.7862
FlippingRotation ScreamWave 0.7942

Table 3: Combined Style Transfer Augmentation

We notice a very slight increase in performance
of the combined style (ScreamWave) over the single
styles. We further notice that adding Flipping as a
data augmentation strategy degrades the performance,
although to a lesser degree for the combined style.

4.4 Content Weights Change

In this experiment, we change the proportion of con-
tent weights and style weight in the transformation



(a) Original (b) Wave2 (c) Wave
Figure 4: Comparison between the original image (airplane)
and stylized images with different content weights. (a) is
the original image. Wave2 (b) has more content weight than
Wave (c). Two stylized images look similar to each other.

network to evaluate the impact on the performance.
We increased the content weight to create a new style
named Wave2. As can be seen from the table 4, no
significant change can be observed for a change in
content weights. As can be seen in figure 4, the im-
ages for the two content weights look very similar to
each other, which explains the minimal impact in our
experiments. In future work we would like to examine
this effect further with more content weights.

Different Content Weights
Traditional Method Style Name Result

None Wave 0.8468
None Wave2 0.8417

Table 4: Wave2 gets more content weight than Wave

4.5 VGG19

To evaluate the generalisation of our approach over
network architectures, we used VGG19 as a classifi-
cation network and duplicated our experiments. The
results can be found in table 5.

Experiments on VGG19
Traditional Method Style Name Result

None None 0.8450
Flipping None 0.8367

None Wave 0.8425
Flipping Wave 0.8581

None Scream 0.8446
Flipping Scream 0.8465

None None 0.62
Flipping None 0.6666

None Scream 0.6313
Flipping Scream 0.6728

None Wave 0.6272
Flipping Wave 0.6632

Table 5: Experiments on VGG19 with Caltech datasets

The baseline classification accuracy for Caltech
101 is 84.5%. Based on this number, there are some

interesting findings in line with the VGG16. Using
Wave or Flipping itself does not improve the perfor-
mance of VGG19, but if we combine Flipping with
Wave we can get a considerable improvement, with
accuracy reaching 85.81%.

Similar results can be seen for our experiments on
Caltech 256. The use of Flipping as data augmenta-
tion gives an accuracy of 66.66%, while the use of
Scream gives at 63.13%. However, if we combine the
two approaches, we can get an accuracy of 67.28%.
The combination between Flipping and Wave gives
66.32% accuracy which is higher than for Wave alone.

The experiments performed on VGG19 show that
the style transfer is still an effective data augmentation
method, which can be combined with the traditional
approaches to further improve the performance.

5 CONCLUSIONS

In this paper, we proposed a novel data augmentation
approach based on neural style transfer algorithm.
From our experiments, we observe that this approach
is an effective way to increase the performance of
CNNs in image classification tasks. The accuracy for
VGG16 is increased to 85.26% from 83.34% while
for VGG19 the accuracy increased to 85.81% from
84.50%. We also found that we can combine this new
approach with traditional methods like flipping, rota-
tion etc. to boost the performance.

We tested our method only for image classifica-
tion task. As a future work, it would be interesting
to try it out for other computer vision tasks such as
segmentation, detection etc. The set of styles is also
limited. Even though we tried to select images of dif-
ferent styles, we did not classify the images according
to their category. A more elaborate set of styles might
train more robust models. Another limitation of this
approach is the speed of training, which is quite slow.
However, once trained, the inference can still be fast
as it does not involve augmentation.

Our approach is independent of the architecture.
Better and faster models for style transfer will enable
more diverse and robust augmentation for a CNN. We
hope that the proposed approach will be useful for
computer vision research in future.

Acknowledgments

This publication has emanated from research
conducted with the financial support of Science
Foundation Ireland (SFI) under the Grant Number
15/RP/2776.



REFERENCES

Bottou, L. (2010). Large-scale machine learning with
stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer.

Caruana, R., Lawrence, S., and Giles, C. L. (2001). Overfit-
ting in neural nets: Backpropagation, conjugate gradi-
ent, and early stopping. In Advances in neural infor-
mation processing systems, pages 402–408.

Chalasani, T., Ondrej, J., and Smolic, A. (2018). Egocentric
gesture recognition for head mounted ar devices. In
Adjunct Proceedings of the IEEE International Sym-
posium for Mixed and Augmented Reality 2018 (To
appear).

Chen, Y.-L. and Hsu, C.-T. (2016). Towards deep style
transfer: A content-aware perspective. In BMVC.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages
248–255. Ieee.

Dumoulin, V., Shlens, J., and Kudlur, M. (2016). A
learned representation for artistic style. arXiv e-prints,
abs/1610.07629.

Engstrom, L. (2016). Fast style transfer. https://github.
com/lengstrom/fast-style-transfer/.

Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot
learning of object categories. IEEE transactions on
pattern analysis and machine intelligence, 28(4):594–
611.

Gatys, L., Ecker, A. S., and Bethge, M. (2015). Tex-
ture synthesis using convolutional neural networks. In
Advances in Neural Information Processing Systems,
pages 262–270.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Im-
age style transfer using convolutional neural networks.
In Computer Vision and Pattern Recognition (CVPR),
2016 IEEE Conference on, pages 2414–2423. IEEE.

Griffin, G., Holub, A., and Perona, P. (2007). Caltech-256
object category dataset.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.

Jing, Y., Yang, Y., Feng, Z., Ye, J., and Song, M.
(2017). Neural style transfer: A review. CoRR,
abs/1705.04058.

Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual
losses for real-time style transfer and super-resolution.
In European Conference on Computer Vision, pages
694–711. Springer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.

Kyprianidis, J. E., Collomosse, J., Wang, T., and Isenberg,
T. (2013). State of the” art: A taxonomy of artistic
stylization techniques for images and video. IEEE
transactions on visualization and computer graphics,
19(5):866–885.

Li, C. and Wand, M. (2016). Precomputed real-time texture
synthesis with markovian generative adversarial net-
works. In European Conference on Computer Vision,
pages 702–716. Springer.

Li, Y., Wang, N., Liu, J., and Hou, X. (2017). De-
mystifying neural style transfer. arXiv preprint
arXiv:1701.01036.

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
and Zitnick, C. L. (2014). Microsoft COCO: common
objects in context. CoRR, abs/1405.0312.

Mahendran, A. and Vedaldi, A. (2015). Understanding deep
image representations by inverting them. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 5188–5196.

Perez, L. and Wang, J. (2017). The effectiveness of data
augmentation in image classification using deep learn-
ing. arXiv preprint arXiv:1712.04621.

Risser, E., Wilmot, P., and Barnes, C. (2017). Sta-
ble and controllable neural texture synthesis and
style transfer using histogram losses. arXiv preprint
arXiv:1701.08893.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.

Sam, G. and Michael, W. (2016). Training and investi-
gating residual nets. http://torch.ch/blog/2016/
02/04/resnets.html.

Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Ulyanov, D., Lebedev, V., Vedaldi, A., and Lempitsky, V. S.
(2016a). Texture networks: Feed-forward synthesis of
textures and stylized images. In ICML, pages 1349–
1357.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. (2016b). In-
stance normalization: The missing ingredient for fast
stylization. CoRR, abs/1607.08022.

Vasconcelos, C. N. and Vasconcelos, B. N. (2017). Increas-
ing deep learning melanoma classification by classical
and expert knowledge based image transforms. CoRR,
abs/1702.07025, 1.

Yin, R. (2016). Content aware neural style transfer. arXiv
preprint arXiv:1601.04568.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In European confer-
ence on computer vision, pages 818–833. Springer.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. arXiv preprint.

https://github.com/lengstrom/fast-style-transfer/
https://github.com/lengstrom/fast-style-transfer/
http://torch.ch/blog/2016/02/04/resnets.html
http://torch.ch/blog/2016/02/04/resnets.html

	1 Introduction
	2 Related Work
	2.1 Neural Style Transfer
	2.2 Data Augmentation

	3 Design and Implementation
	3.1 Style Transfer Architecture
	3.1.1 Transformation Network
	3.1.2 Loss Network

	3.2 Image Classification
	3.3 Dataset and Image Styles

	4 Experiments
	4.1 Traditional Image Augmentation
	4.2 Single Style
	4.3 Combined Methods
	4.4 Content Weights Change
	4.5 VGG19

	5 Conclusions

