
Active Object Search with a Mobile Device
for People with Visual Impairments

Jacobus C. Lock1, Grzegorz Cielniak1, Nicola Bellotto1

1Lincoln Centre for Autonomous Systems (L-CAS), University of Lincoln, Lincoln, UK
{jlock, gcielniak, nbellotto}@lincoln.ac.uk

Keywords: Active vision, object search, visual impairment, Markov Decision Process

Abstract: Modern smartphones can provide a multitude of services to assist people with visual impairments, and their
cameras in particular can be useful for assisting with tasks, such as reading signs or searching for objects
in unknown environments. Previous research has looked at ways to solve these problems by processing the
camera’s video feed, but very little work has been done in actively guiding the user towards specific points
of interest, maximising the effectiveness of the underlying visual algorithms. In this paper, we propose a
control algorithm based on a Markov Decision Process that uses a smartphone’s camera to generate real-
time instructions to guide a user towards a target object. The solution is part of a more general active vision
application for people with visual impairments. An initial implementation of the system on a smartphone was
experimentally evaluated with participants with healthy eyesight to determine the performance of the control
algorithm. The results show the effectiveness of our solution and its potential application to help people with
visual impairments find objects in unknown environments.

1 INTRODUCTION

It is estimated that almost half a billion people world-
wide live with mild to severe visual impairments or
total blindness (Bourne et al., 2017) and significant
effort is being made to enable these people to lead
more independent lives. Modern improvements in
mobile computing power and image processing tech-
niques have provided researchers with new and pow-
erful tools to solve this problem. The work presented
here is part of a project to assist people with visual
impairments to navigate and find objects in unknown
environments with the aid of a smartphone. The pro-
posed system implements ideas from the field of ac-
tive vision (Bajcsy et al., 2017), but replaces the typ-
ical electro-mechanical actuators of a moving cam-
era with the body (i.e. arm, hand) of the user holding
the smartphone, as pictured in Figure 1, expanding
upon concepts originally proposed in (Bellotto, 2013)
and (Lock et al., 2017).

The goal of our active search system is to under-
stand the user’s surroundings and determine what the
next best course of action is to reach the target ob-
ject based on what is currently within view and what
has been observed in the past. To this end, we im-
plemented a smartphone guidance system based on
a Markov Decision Process (MDP) (Bellman, 1957)

Figure 1: The system in use during an experiment.

that generates, in real-time, a series of instructions
for the user to point to the target, depending on a
previously-learned spatial distribution of known ob-
jects and on the camera’s current view. This work
includes three main contributions:

• an MDP-based human controller that can guide a
user in a visual search task;

• a data-based transition model for the MDP which
includes spatial relations between known objects;

• a set of user experiments that prove the effective-
ness of our active search implementation.

Section 2 discusses other relevant work done in
this field, followed by a general explanation of the ac-
tive vision system for human guidance in Section 3,
and a detailed explanation of the human-control mod-
ule in Section 4. The experimental results are pre-
sented in Section 5, after which we conclude the pa-
per and discuss future work in Section 6.

2 PREVIOUS WORK

Assistive technology for people living with visual im-
pairments is a growing research area (Manduchi and
Coughlan, 2012; Khoo and Zhu, 2016). In recent
years, the increase in mobile processing power and
computer vision improvements have led to research in
the use of smartphone cameras to augment or enhance
a user’s vision and help them find objects or other
points of interest. Earlier attempts at the problem in-
volved placing special markers or barcodes around an
environment, which the user then scans with a smart-
phone or similar mobile device (Gude et al., 2013;
Iannizzotto et al., 2005; Manduchi, 2012). This de-
vice then uses some feedback mode, e.g. Braille or
sound, to guide the user towards the target.

Another approach is to discard tags completely
and rely on computer vision to perform the object
detection, something that has become more practi-
cal with recent improvements to feature detectors and
deep networks (Huang et al., 2017; Redmon et al.,
2016). SIFT and SURF-based object detectors have
also been used to detect known objects, when they are
in the camera’s view, and to guide the user to them
using sonified instructions (Schauerte et al., 2012).
These type of systems is more flexible than the tag-
based ones, but it has the same drawback of being
passive, in the sense that it relies on having the object
within the camera’s view in the first place. Also, no
clear performance metrics are reported in the previous
paper. The VizWiz system (Bigham et al., 2010) of-
floads the object recognition tasks to an Amazon Me-
chanical Turk worker who then provides feedback on
where the object of interest is located relative to the
user. The VizWiz has the advantage of being fairly
robust and is able to classify a great deal of objects
with little effort from the user and can provide nat-
ural, human-generated and curated directions. How-
ever, this approach does not enhance user indepen-
dence, since a person with visual impairments is now
beholden to an online worker instead of a relative,
friend or bystander. Furthermore, a good internet con-
nection is required on the device, possibly limiting its
use in some poor-reception areas.

Previous researchers have implemented active

search and perception strategies in robots and image
classifiers (Bajcsy et al., 2017) in an attempt to op-
timise their classification and planning tasks, for ex-
ample by exploiting the structured nature of human
environments and object placements. Two research
teams have recently implemented an active object
search strategy into their image classifiers (Caicedo
and Lazebnik, 2015; Gonzalez-Garcia et al., 2015).
Their approaches use different methods but concep-
tually similar models to generate windows of inter-
est for visual classification. The size and locations
of the windows within the image are generated using
the spatial relationship between objects, taken from
the SUNCG and PASCAL datasets (Song et al., 2017;
Everingham et al., 2010), and are iteratively changed
based on the output from the respective models. The
advantage of their approaches is that fewer windows
are generated and submitted to the classifier, resulting
in lower object classification times while still keeping
state-of-the-art results for accuracy.

Similar strategies have been incorporated on
robotic platforms to improve autonomous object
search, manipulation and localisation tasks. For
example, some researchers have developed a plan-
ning algorithm for a robotic manipulator that per-
forms an optimal object search in a cluttered environ-
ment (Dogar et al., 2014). Another team implemented
an MDP generating an optimal object search strat-
egy in a room over a belief state of object positions
and configurations (Aydemir et al., 2011). However,
the authors trained their MDP using a custom object-
placement and configuration scenario, so their results
are sensitive to changes within this distribution.

In summary, much research has been conducted
on recognition of and guidance towards target objects,
including active vision solutions for image classifiers
and robotic systems. However, to our knowledge, no
previous work has been done on active object search
and guidance for humans, which would especially
benefit people with visual impairments. In this pa-
per, we implement such an active vision system with
a human in the loop that guides the user towards an
out-of-view target object. Our system exploits prior
knowledge of the objects spatial distribution within
an indoor environment, learned from a dataset of real-
world images, and the history of past object observa-
tions made during the search.

3 ACTIVE VISION SYSTEM

The work presented in this paper is a fundamental step
towards a more general project’s goal to develop a
stand-alone system that can guide a person with vi-

Figure 2: System control loop: r is the reference object, e
the error signal, u and u∗ the original and interpreted control
signals and y is the current object observation. K, H and P
are the control, human and sensor blocks respectively.

sual impairments to his/her destination with minimal
user input or intervention. A complete system dia-
gram is given is Figure 2. This closed-loop system
is conceptually similar to other classical control prob-
lems, where the difference between desired and actual
state of a process is used to generate a control signal
that changes the process itself.

In this case, the reference signal, r, is the object
the user wishes to capture with the smartphone’s cam-
era. The goal of the control block, K, is to generate
human interpretable instructions, u, to guide the user
towards the target object. The process to be controlled
involves a human, H, who interprets the instruction
and executes a physical action, u∗, to actually manip-
ulate the smartphone’s camera, P. A new observation,
y, with the camera is then fed back to the loop and the
error signal, e, is updated accordingly.

Here we focus in particular on the implementation
of the control module K. Two important points are
considered in the design of the controller. Firstly, K
must be scenario-agnostic, meaning that objects could
be placed in different places with unknown a priori
information. Secondly, since each person could inter-
pret the instruction u differently (i.e. different trans-
formation block H), the controller must be robust
enough to handle such incorrect interpretations. For
example, one person might interpret and execute an
‘UP’ instruction correctly (i.e. u w u∗), while another
might interpret it correctly, but execute the wrong ac-
tion. This risk can be mitigated by the use of clear
and simple instructions that helps u∗ be as close as
possible to u. The implementation of this controller is
discussed in detail next.

4 HUMAN-CONTROL MODULE

Our active search system guides the user by generat-
ing a set of waypoints that need to be observed by the
camera, tracing a path that will eventually lead to the
target object. Note that the actual location of the latter
is unknown, meaning that the system will guide the
user towards the most likely location where the ob-
ject might be found, based on its internal knowledge

of spatial relations between objects (e.g. a computer
monitor is more likely to be above than below a desk).
This path is generated one waypoint at a time and is
updated with every new object observation captured
by the camera, or after a re-orientation of the latter
beyond a certain angle. We tackle the problem using
an MDP, the design and implementation of which are
discussed in the following sub-sections.

4.1 MDP for Human Control

An MDP produces a policy of optimal actions for an
agent to take in any given pre-defined state. In this
case, the agent is defined as the guidance system and
the policy is used to generate the next waypoint on
the search path towards the target object. We as-
sume fully observable states and known state transi-
tions probabilities. The MDP is represented by the
5-tuple

(S,A,T,R,γ), (1)

where S is a set of possible agent’ states, A is a set of
possible actions the agent can take in any given state,
T is a set of state transition probabilities from state
s to state s′, with s,s′ ∈ S, and R is the reward the
agent receives for reaching state s′ after executing ac-
tion a ∈ A in state s. The scalar γ is a discount factor
that prioritises immediate over long-term rewards and
which affects the model’s convergence rate (Russell
and Norvig, 2009). Each of these elements are de-
fined and discussed next.

4.1.1 States

The state is a combination of parameters that defines
the agent’s world and decision process. Our state vec-
tor is defined as

s = 〈o,n,v〉, (2)

where o is the current object in viewed by the camera,
n is the number of steps taken since the search started,
and v is a binary variable that keeps track of whether
a waypoint for the current state was already generated
during the current object search.

4.1.2 Actions

The policy produced by an MDP defines the action
the agent will take when it finds itself in any given
state. In this case, the action is the direction of the
next waypoint relatively to the current device’s pose.
The possible actions are given by

A = {UP,DOWN,LEFT,RIGHT}. (3)

Figure 3: Example of action policies generated by the MDP
to guide the user in pointing the camera from a random start-
ing object (e.g. monitor) to a target object (e.g. mug).

To illustrate an example of actions sequence, let us
consider the scene in Figure 3, which contains a num-
ber of simple, distinct objects (red boxes). The MDP
guides the user in pointing the camera to the target ob-
ject (the mug at the bottom-left of the figure). It does
this by inferring the current state, which depends on
the object currently observed by the camera, and gen-
erating an action, or instruction, that leads the user to
the target object. An action is considered completed,
and therefore a new state reached, when the camera
has rotated more than a predefined angle or a new ob-
ject is detected.

4.1.3 State Transition Probabilities

The state transition T defines the probability of the
agent switching from state s to state s′ due to action a,
i.e. the probability of observing object o′ after object
o due to a pan/tilt rotation of the camera. Therefore, T
represents the spatial relationships between the differ-
ent objects in our environment model. These spatial
relationships are learned from a dataset during an ini-
tial training process, which is discussed more in detail
in Section 4.2.1.

4.1.4 Reward Function

The reward R is the immediate reward that the agent
receives after transitioning from state s to state s′. The
goal of the agent is to maximise its cumulative re-
ward and it is very important to fine-tune R correctly
for producing an effective action policy. In order to
encourage the agent to find the target object as fast
as possible, a relatively large positive reward should
be assigned for successfully reaching the goal state,
and a negative one in any other case. These parame-
ters must be finely balanced to ensure effective object
search behaviour.

4.2 System Implementation

This section describe the actual implementation de-
tails of the MDP for active object search, including
initial training and software deployment on our smart-
phone device.

4.2.1 MDP Training

A policy that defines the optimal action for an agent
to take for any given state is generated through a
training process that involves letting the agent explore
the entire state-space and iteratively improve its deci-
sion function, i.e. policy, in order to reach the target
state in a way that maximises its cumulative reward.
This method, called Q-learning (Watkins and Dayan,
1992), does not require a model of the agent’s en-
vironment during training, allowing the policy to be
used in many different scenarios.

Currently there are 7 objects encoded into the sys-
tem, plus a ‘nothing’ instance where nothing of note
is observed. Our initial implementation considers a
simple office desk scenario containing the following
objects:

o ∈O = {monitor,mouse,keyboard,window,
mug,stationery,desk,nothing}.

(4)

The spatial relationships between the objects in
O are extracted from the OpenImage dataset (Krasin
et al., 2017), which consists of 1.74M images con-
taining 14.6M manually drawn and labelled bounding
boxes around objects (see Figure 4 for some exam-
ples). The dataset is primarily aimed toward object
recognition researchers to benchmark their models. In
our case though, the bounding boxes and object labels
are used to extract the spatial relationships between
the different objects in O. Since the camera perspec-
tives and absolute distances between the objects in the
images are not given, we can only extract the relation-
ships in the basic action terms specified in A, e.g. we
can only say that object 1 is above object 2, but not
how far above. Our relatively simple action-space is
therefore suitable for the limited dataset information.

Figure 5 shows the spatial relationship between a
subset of O (desk, keyboard and mouse). For exam-
ple, when the agent is in state s = 〈o = mouse,n,v〉
and is searching for the object otarget = keyboard,
there is a strong probability that the target object is on
the mouse’s LEFT . The MDP of course will consider
all of the objects’ spatial relationships when generat-
ing the optimal policy.

The agent’s target state is then any state where
s = 〈o = otarget ,n,v〉. This gives a total of 14 termi-
nal states (7×2) per policy, since the target object can

Figure 4: Examples of images from the OpenImage dataset
containing objects from our set O (Krasin et al., 2017).

be found at any point in the search or in a position
that was previously explored by the user. Each target
object has its own unique policy file.

The reward function was hand-crafted and the pa-
rameters were empirically selected. The function val-
ues can be found in Table 1. The reward punishes
the agent for every step it takes without finding the
target object. The reward becomes increasingly neg-
atives as the agent progresses without finding the tar-
get (n> nmax) or when it generates the same waypoint
more than once (v = true) during the same search.

Figure 5: Examples of the spatial relationships between
the desk, keyboard and mouse objects. Each square corre-
sponds to the probability of executing an action (top square
for UP, left square for LEFT , etc.)

Table 1: The reward functions for the MDP.

r(o = otarget) 10000

r(v = true) -10

r(n > nmax) -10

otherwise r(·) -1

Conversely, it gives a significant positive reward when
the target object is found.

We force the MDP to generate a maximum of
11 (inclusive) steps to the target, with 11 being the
longest possible route on the action grid (more details
about the grid are in Section 4.2.2). A search could
take longer than 11 steps, but the MDP considers
that the maximum, which is convenient for keeping
a manageable state-space and a simple reward func-
tion. The MDP therefore has a total of 154 reachable
states (stot = 11×7×2).

The lack of absolute spatial information in the
OpenImage dataset generates ambiguities, which
makes it hard for the model to converge to a
single, optimal solution. We therefore opted to
use the more conservative state-action-reward-state-
action (SARSA) algorithm (Rummery and Niranjan,
1994). SARSA is an on-policy algorithm that allows
us to control the level of exploration vs. exploitation
that makes it easier to find a solution, although this is
not guaranteed to be optimal.

The MDP is trained until it converges to the opti-
mal policy, or for a total of approximately 17 million
episodes. The parameter α, which controls the ex-
ploration vs. exploitation behaviour during training,
maximises the exploration when set to 1 and the ex-
ploitation when 0. We therefore set α to be a function

of the training episodes, starting with a high explo-
ration value and exponentially changing to exploita-
tion as the training progresses:

α = exp
(−i

10 stot

)
−0.001, (5)

where i is the episode index. The discount factor γ is
set to 0.95 to prioritise long-term rewards and guaran-
tee convergence.

Our MDP has a relatively small state-action space.
Therefore, a solution can be found within a reasonable
amount of time. However, it should be noted that ad-
justing the angle interval, or adding more actions or
objects, can easily lead to an intractable space size.

4.2.2 Waypoints Generation

The system uses a 6×6 discretised radial grid to sim-
plify the tracking and waypoint generation processes.
The grid spans 120◦ in both the pan and tilt dimen-
sions, giving a resolution of 20◦ per grid cell. A pol-
icy action is converted by the system into a new search
waypoint centred on a cell of the radial grid, e.g. an
‘UP’ action will generate a waypoint one grid cell
above the camera’s current orientation. Note that this
cell is not part of the MDP’ state and the radial grid is
only used to discretise the pan-tilt movements of the
camera and to guarantee a minimum angular variation
between subsequent actions.

The system uses the waypoint’s location to pro-
vide the user with guidance instructions (i.e. u in Fig-
ure 2). The policy actions, and waypoints by exten-
sion, are relative to the current camera’s pan-tilt orien-
tation. The grid is also wrapped so, if the location of
a waypoint exceeds the 120◦ limit, the same waypoint
is moved to the opposite side of the grid, effectively
limiting the search space to a 120◦×120◦ area.

4.2.3 Smartphone Application

We incorporated the trained system into an app (see
Figure 6) for an Asus ZenPhone AR smartphone, run-
ning Android 7.0, with Google’s augmented reality
toolkit (ARCore), which provides the necessary 3D
pose of the device. No further software or hardware
modifications were required. This app is responsi-
ble for generating the guidance instructions and track-
ing the camera sensor (K and P blocks in Figure 2)
throughout a search session. Tracking the camera’s
pose allows the app to infer the current state and
choose the optimal action to take next.

The system determines the state values for n
(number of search steps so far) and v (waypoint al-
ready visited or not) described in Section 4.1.1, by

Figure 6: A screenshot of the smartphone interface showing
an example of guidance instruction (down-left in this case)
towards a waypoint and the QR-object scanner area.

recording the previous positions and waypoint loca-
tions. The camera provides the ID of the object cur-
rently within view, which is assigned to the state vari-
able o. In the current implementation, we did not
use a real object detector, but we simulated it with
7 different QR codes, one for each unique object,
and a camera-based QR code scanner from Android’s
machine learning API (MLKit). This simplification
guarantees full observability of the state and let us fo-
cus on the performance of the MDP-based controller
in the following experiments. Moreover, to speed up
the image processing and avoid scanning multiple QR
codes, we only used the central part of the camera’s
frame, which is 300× 300 pixels. This choice also
defines the precision required in pointing the camera
towards the object (see Figure 6).

In a real application for people with visual impair-
ments, the position of the waypoint would be given to
the user by a set of audio or vibrotactile instructions.
However, since we are mainly interested in evaluating
the control algorithm of our system and not the inter-
face (K and not u), our current prototype generates
guidance instructions with four on-screen arrows (see
Figure 6). Obviously, this visual interface is only used
for debugging and experimental evaluation of the con-
troller, and it will be replaced by an opportune audio
interface, e.g. (Bellotto, 2013), at a second stage.

5 EXPERIMENTS

To evaluate our system, we designed a set of exper-
iments that determined how effective the MDP and
its policies are at guiding the user in an object search
task with the smartphone’s camera. Since the focus of

Figure 7: A snapshot of the environment used for the exper-
iments. Each QR code represents an object.

this work is on the algorithm for active object search,
and not on the actual human performance, in the fol-
lowing experiments the system was tested by partic-
ipants without any significant visual impairment. As
explained in the previous section, this simplified the
experimental design, allowing us to use the smart-
phone’s display for the guidance instructions.

5.1 Experimental Design

For the experiment, the MDP policies were integrated
into an Android application that uses the camera to
provide observation data and track the pose and view-
ing direction. Guidance instructions towards the way-
points were visualised on the screen, which the par-
ticipants were allowed to use. The experimental en-
vironment mimicked a typical office desk layout and
contained 7 different objects (i.e. encoded QR codes),
one of which could be selected for each experiment
run. See Figure 7 for a snapshot of the environment.

For each experiment, the participant was placed
approximately at 1m from the closest barcodes and
was asked to remain on that spot during the experi-
ment. The participant started by pressing a button on
the app, which randomly selected a target object and
then guided the user towards it. Since the participants
were allowed to use the smartphone’s display, the tar-
get was randomly selected by the app without inform-
ing them, at least until it was found. This prevented
the participants from learning the target objects’ loca-
tions between subsequent runs of the experiment.

To avoid pointing at uncluttered edges of the
search space, where the system had difficulty guiding
the user back to the centre, we set a search step-limit
of 15, which means the search was terminated when
the number of waypoints generated by the system ex-
ceeded 15. A search run therefore ended when the
participant either successfully found the target object
by pointing the phone camera to it and scanning the
barcode, or exceeded the waypoint limit. After this,

Table 2: Results for the TAR, number of steps and time to
target means and standard deviations for each participant.

Participant TAR [%] Num. Steps Time [s]

s1 94 7.2 ± 5.4 29 ± 22

s2 79 6.7 ± 4.8 34 ± 5.1

s3 91 6.3 ± 4.9 31 ± 21

s4 79 6.7 ± 4.3 37 ± 5.6

s5 76 7.2 ± 4.9 33 ± 14

s6 60 8.2 ± 5.4 24 ± 10

s7 86 8.5 ± 5.8 31 ± 16

s8 88 5.1 ± 4.0 39 ± 21

s9 98 7.2 ± 5.4 39 ± 18

s10 67 6.6 ± 5.4 26 ± 12

the participant then restarted from the central posi-
tion, generating a new random target object and re-
peating the experiment.

We recorded 10 searches per object, giving us a to-
tal number of 70 search samples per participant. The
system was tested by 10 participants, mostly from our
research group. Our final dataset consisted therefore
of 700 search samples, which are analysed next.

5.2 Results

We identified 3 different measures to evaluate the
system’s performance: target acquisition rate (TAR),
number of steps to the target and the total time it took
to find a target object. We present and discuss the
results for each of these parameters in the next sec-
tions. The results for each individual participant are
presented in Table 2, while those across all the par-
ticipants are shown in Table 3. To provide a baseline
measure for the ideal case, we ran a number of simu-
lations in an environment mimicking the experiment
setup with a “virtual” user who perfectly executes the
policy, i.e. u = u∗. The TAR and steps to target results
for the simulation are included in Table 3.

Table 3: The means and standard deviations for the entire
participant population for the experiments and simulations.

Experiments Simulations

TAR [%] 82 ± 11 99.7

Num. Steps 6.8 ± 5.1 5.4

Time [s] 34 ± 23 –

5.2.1 Target Acquisition Rate

The TAR is a measure of how successful the sys-
tem was at directing a participant to the target ob-
ject within our 15-step limit. It is simply calculated
as a ratio between the number of completed searches
vs. the total number of searches. Please note, how-
ever, that this ratio depends also on the step-limit and
should not be taken as an absolute measure of per-
formance (i.e. if the step limit was much bigger, the
TAR would tend to 100%). Figure 8 shows the TAR
as a function of the step-limit and it shows that there
is a gradual increase in the TAR as the step limit in-
creases, but tapers off as the step-limit increases.

Table 2 shows a fairly consistent spread for the
TAR across the participants. The inter-participant
spread in Table 3 (σ = 11%) is fairly significant, per-
haps indicating that the user’s search behaviour and
strategy affects the target acquisition performance,
but with an average TAR of 82%, it is clear that the
system successfully finds the target object during the
vast majority of searches.

Figure 9 shows the TAR for each object in our
set O. There are TAR variations for the different
objects, with the smaller objects typically being the
hardest to find. However, the differences are not ex-
treme and indicate that all the objects in O are roughly
equally hard to locate. This is also displayed in the
simulation’s TAR in Table 3, which could not achieve
100% because of the difficulty the agent had in find-
ing the objects on the fringes of the environment.

Failure cases were typically caused by the sys-
tem entering a no-recovery state where the user was
directed into dead-space with no spatial information
(e.g. ceiling or wall section). In this case the system
could not observe useful clues to intelligently guide

Figure 8: TAR as a function of the step limit for a search.
The ‘x’ indicates the cases that exceeded the 15-step limit.

Figure 9: The TAR for each of the objects within O.

the user. Possible improvements for future versions
of the algorithm would be to implement some fall-
back method that can detect a no-recovery state (e.g.
exceeding a set number of steps/time without any new
object observation) and guide the user back to a posi-
tion where to restart the search.

5.2.2 Number of Steps to Target

The number of steps to the target indicates the num-
ber of waypoints the system generated for the partici-
pant during the guidance process. This is a good indi-
cation of system performance, where less waypoints
means faster target acquisition and therefore better
object search strategy. Figure 10 shows the cumu-
lative distribution of the number of steps to the target
for all the participants.

The number of waypoints each participant re-
quired is fairly evenly spread across all of the par-
ticipants, with the majority of searches ending within

Figure 10: The cumulative distribution of the participants’
number of steps taken to find a target object.

Figure 11: The cumulative distribution of the participants’
time taken to find a target object.

a few search steps. The population mean and stan-
dard deviation is 6.8 and 5.1 waypoints, respectively.
This is a reasonable result, since most target ob-
jects were placed within approximately 4 grid squares
away from the participants’ initial looking directions.
The relatively high standard deviation is due to the
aforementioned no-recovery states and could be re-
duced by opportune mitigation strategies to avoid un-
informative areas.

5.2.3 Time to Target

The cumulative distribution of the time it took the
participants to reach the target object is given in Fig-
ure 11. We see that the distribution is heavily skewed
to the bottom with a long tail. The mean and standard
deviation of the data is 34s and 23s respectively.

In comparison to the remotely-assisted VizWiz
system (Bigham et al., 2010) covered in the related
work (mean 92s, standard deviation 37.7s), our results
look very encouraging, although there might be vari-
ations in case of participants with visual impairments.

6 CONCLUSIONS

In this work we presented and tested an MDP-based
system to guide a person with visual impairments to-
wards a target object with no prior knowledge of the
environment. We implemented the system in an An-
droid app and tested it with sighted users to deter-
mine the effectiveness of the active object search al-
gorithm. We found that it works generally well, even
when compared to alternative human-guided systems.
However, the solution can be improved by refining the
search strategy and implementing an automatic fail-

state recovery when the user points to an empty sce-
nario, like a blank wall. Furthermore, a purpose-built
dataset with clear object spatial relations would en-
able the creation of a more accurate transition model
for the MDP controller.

Future work will include the replacement of the
QR codes with a real vision-based object detector,
possibly extending the number of items and actions.
However, in order to consider the uncertainty intro-
duced by such detector, the MDP will have to be
replaced by a Partially Observable MDP (POMDP),
taking into account that the objects are not perfectly
observable and humans might not follow the guidance
instructions accurately. Further directions of research
include on-line learning techniques for model adapta-
tion that better follow the user profile of each individ-
ual and the possible performance change over time.

REFERENCES

Aydemir, A., Sjöö, K., Folkesson, J., Pronobis, A., and
Jensfelt, P. (2011). Search in the real world: Ac-
tive visual object search based on spatial relations. In
Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 2818–2824. IEEE.

Bajcsy, R., Aloimonos, Y., and Tsotsos, J. K. (2017). Re-
visiting active perception. Autonomous Robots, pages
1–20.

Bellman, R. (1957). A markovian decision process. Journal
of Mathematics and Mechanics, pages 679–684.

Bellotto, N. (2013). A Multimodal Smartphone Inter-
face for Active Perception by Visually Impaired. In
IEEE SMC International Workshop on Human Ma-
chine Systems, Cyborgs and Enhancing Devices (HU-
MASCEND).

Bigham, J. P., Jayant, C., Miller, A., White, B., and Yeh,
T. (2010). Vizwiz:: Locateit-enabling blind people
to locate objects in their environment. In Computer
Vision and Pattern Recognition Workshops (CVPRW),
2010 IEEE Computer Society Conference on, pages
65–72. IEEE.

Bourne, R. R., Flaxman, S. R., Braithwaite, T., Cicinelli,
M. V., Das, A., Jonas, J. B., Keeffe, J., Kempen, J. H.,
Leasher, J., Limburg, H., et al. (2017). Magnitude,
temporal trends, and projections of the global preva-
lence of blindness and distance and near vision im-
pairment: a systematic review and meta-analysis. The
Lancet Global Health, 5(9):e888–e897.

Caicedo, J. C. and Lazebnik, S. (2015). Active object local-
ization with deep reinforcement learning. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 2488–2496.

Dogar, M. R., Koval, M. C., Tallavajhula, A., and Srini-
vasa, S. S. (2014). Object search by manipulation.
Autonomous Robots, 36(1-2):153–167.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., and Zisserman, A. (2010). The pascal visual ob-
ject classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338.

Gonzalez-Garcia, A., Vezhnevets, A., and Ferrari, V.
(2015). An active search strategy for efficient ob-
ject class detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 3022–3031.

Gude, R., Østerby, M., and Soltveit, S. (2013). Blind navi-
gation and object recognition. Laboratory for Compu-
tational Stochastics, University of Aarhus, Denmark.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadar-
rama, S., et al. (2017). Speed/accuracy trade-offs
for modern convolutional object detectors. In IEEE
CVPR, volume 4.

Iannizzotto, G., Costanzo, C., Lanzafame, P., and La Rosa,
F. (2005). Badge3d for visually impaired. In
Computer Vision and Pattern Recognition-Workshops,
2005. CVPR Workshops. IEEE Computer Society
Conference on, pages 29–29. IEEE.

Khoo, W. L. and Zhu, Z. (2016). Multimodal and alternative
perception for the visually impaired: a survey. Journal
of Assistive Technologies, 10(1):11–26.

Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-
Haija, S., Kuznetsova, A., Rom, H., Uijlings, J.,
Popov, S., Kamali, S., Malloci, M., Pont-Tuset,
J., Veit, A., Belongie, S., Gomes, V., Gupta, A.,
Sun, C., Chechik, G., Cai, D., Feng, Z., Narayanan,
D., and Murphy, K. (2017). Openimages: A
public dataset for large-scale multi-label and
multi-class image classification. Dataset available
from https://storage.googleapis.com/openimages/
web/index.html.

Lock, J., Cielniak, G., and Bellotto, N. (2017). Portable
navigations system with adaptive multimodal inter-
face for the blind. AAAI Spring Symposium.

Manduchi, R. (2012). Mobile vision as assistive technology
for the blind: An experimental study. In International
Conference on Computers for Handicapped Persons,
pages 9–16. Springer.

Manduchi, R. and Coughlan, J. (2012). (Computer) Vi-
sion Without Sight. Communications of the ACM,
55(1):96–104.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-
learning using connectionist systems, volume 37. Uni-
versity of Cambridge, Department of Engineering
Cambridge, England.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A
Modern Approach. Prentice Hall.

Schauerte, B., Martinez, M., Constantinescu, A., and
Stiefelhagen, R. (2012). An assistive vision system for
the blind that helps find lost things. In International
Conference on Computers for Handicapped Persons,
pages 566–572. Springer.

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and
Funkhouser, T. (2017). Semantic scene completion
from a single depth image. IEEE Conference on Com-
puter Vision and Pattern Recognition.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Ma-
chine Learning, 8(3):279–292.

