
A Framework for Measuring the Costs of Security at Runtime

Igor Ivkic1,2, Harald Pichler2, Mario Zsilak2, Andreas Mauthe1 and Markus Tauber2

1Lancaster University, Lancaster, UK
2University of Applied Sciences Burgenland, Eisenstadt, Austria

{i.ivkic, a.mauthe}@lancaster.ac.uk, {harald.pichler, 1710635019, markus.tauber}@fh-burgenland.at

Keywords: Cyber-Physical Systems, Internet of Things, Component Monitoring, Task Tracing, Security Cost Modelling.

Abstract: In Industry 4.0, Cyber-Physical Systems (CPS) are formed by components, which are interconnected with each
other over the Internet of Things (IoT). The resulting capabilities of sensing and affecting the physical world
offer a vast range of opportunities, yet, at the same time pose new security challenges. To address these chal-
lenges there are various IoT Frameworks, which offer solutions for managing and controlling IoT-components
and their interactions. In this regard, providing security for an interaction usually requires performing addi-
tional security-related tasks (e.g. authorisation, encryption, etc.) to prevent possible security risks. Research
currently focuses more on designing and developing these frameworks and does not satisfactorily provide
methodologies for evaluating the resulting costs of providing security. In this paper we propose an initial
approach for measuring the resulting costs of providing security for interacting IoT-components by using a
Security Cost Modelling Framework. Furthermore, we describe the necessary building blocks of the frame-
work and provide an experimental design showing how it could be used to measure security costs at runtime.

1 INTRODUCTION

In recent years, cloud computing has changed the way
how computer resources are being managed, config-
ured, accessed, and used (Mell et al., 2011). At the
same time, it paved the way towards the fourth in-
dustrial revolution (Industry 4.0), which is driven by
Cyber-Physical Systems (CPS) and the Internet of
Things (IoT) (Hermann et al., 2016; Almada-Lobo,
2016). A CPS is formed by a number of components
(e.g. IoT-components), which are interconnected over
the IoT and are capable of sensing and affecting the
physical world (Esterle and Grosu, 2016). Conse-
quently, the swarm of interacting components tends
to quickly become complex and challenging to ad-
minister. To address this challenge, various frame-
works (Derhamy et al., 2015) offer solutions to the
management of IoT-components entering a CPS (Bi-
caku et al., 2018a) and to control how they interact
with other components in a secure manner.

Within an interaction a number of components
perform different tasks and communicate with each
other to serve a specific purpose. To provide secu-
rity for these interactions, the execution of additional
(security-related) tasks, which are not directly linked
to the purpose of the interaction, is required. For in-
stance, as shown in Figure 1 the purpose of the inter-

Figure 1: Security Cost Modelling Framework.

action is to measure the temperature of a physical
room (C2) and to cool it down if necessary (C1). To
provide security for this interaction, the IoT Frame-
work ensures that only C1 and C2 are authorised to

ar
X

iv
:1

90
5.

11
18

0v
1 

 [
cs

.C
R

] 
 2

7 
M

ay
 2

01
9



exchange room temperature data to control the air-
conditioning system. Additionally, before any data
is transmitted between the components, they encrypt
their messages to avoid eavesdropping attacks. These
additional steps (authorisation and encryption) are
mainly security-related tasks, which are not directly
linked to the purpose of the interaction and produce
costs (e.g. execution time, computing resources, etc.).

Due to the complexity of interactions, the num-
ber of participating components and performed tasks,
an approach is needed to measure how much it costs
for providing security at runtime. Measuring security
costs of an interaction enables (i) redesigning inter-
actions to produce less security-related costs, (ii) pre-
dicting future security costs based on past measure-
ments, and (iii) detecting anomalies based on the ex-
pected security costs in comparison to actually mea-
sured security costs of an interaction. To address
this challenge, we propose an initial approach to au-
tomatically measure the resulting costs of providing
security by using a Security Cost Modelling Frame-
work as shown in Figure 1. The proposed framework
is an extension of our previous work (Ivkic et al.,
2019), where we proposed an Onion Layer Model,
which formally describes a CPS including its inter-
actions, the participating components and their per-
formed tasks.

In this paper, we extend the Onion Layer Model
by proposing a Security Cost Modelling Framework,
which uses additional mechanisms to collect data
about the interacting components (Component Moni-
toring) and their performed tasks (Task Tracing). The
gathered runtime data is then combined with a Cost
Metric Catalogue, which contains security cost met-
rics and is used to measure the security-related tasks
performed by components during interactions. Fur-
thermore, we extend the Onion Layer Model to be
able to measure security costs at a specific point in
time, explain how these mechanisms could be used
in a harness for measuring security costs and discuss
how they can be implemented.

The remainder of this paper is organised as fol-
lows: Section II summarises the related work in the
field and presents the background of this paper. Next,
in Section III, we present a use case for measuring
and controlling the temperature of a physical room.
Based on that we present the Security Cost Modelling
Framework and explain the building blocks needed to
measure security costs at runtime. Finally, in Section
IV we give an outline of future work in the field.

2 RELATED WORK

There are various approaches, platforms and frame-
works supporting the CPS and IoT movement. Der-
hamy et al. (2015) summarise commercially avail-
able IoT frameworks including the IoTivity frame-
work (IoTivity, 2015), the IPSO Alliance framework
(Shelby and Chauvenet, 2012), the Light Weight Ma-
chine to Machine (LWM2M) framework (Alliance,
2012), the AllJoyn framework (Alliance, 2016) and
the Smart Energy Profile 2.0 (SEP2.0) (Alliance and
Alliance, 2013). Most of the cloud-based frameworks
follow a data-driven architecture in which all involved
IoT-components are connected to a global cloud using
one SOA protocol. The Arrowhead Framework (Dels-
ing, 2017), on the contrary, follows an event-driven
approach, in which a local cloud is governed through
the use of core systems for registering and discovering
service, authorisation and orchestration. Since every-
thing within an Arrowhead Local Cloud is a service,
new supporting systems can be developed and added
to the already existing ones.

Regarding cyber security, there are many studies
proposing approaches and frameworks which focus
on evaluating security without referring to the result-
ing costs. Additionally, some of the presented ap-
proaches are limited by the usage of a single met-
ric, like process performance in Dumas et al. (2013),
and Gruhn and Laue (2006). Even though this metric
could help to estimate the costs of security it is mainly
used to evaluate the process of software implementa-
tion. Other related work focuses on methods for mea-
suring how secure a specific system is by evaluating
whether a security control has been implemented or
not (Hayden, 2010; Pfleeger, 2009; Tariq, 2012; Luna
et al., 2011). Unfortunately, these approaches provide
little insight into how to measure the costs of security.
Yee (2013) provides a summary of related work re-
garding security metrics. He first explains that many
security metrics exist, but most of them are ineffective
and not meaningful. Furthermore, the author provides
a definition of a good and a bad metric and applies
his definition on various frameworks in a literature re-
search.

This paper builds on Ivkic et al. (2019) where we
introduce an Onion Layer Model for formally describ-
ing how the costs of security can be modelled within a
CPS. This initial investigation included a mathemati-
cal expression for describing the costs of security dur-
ing the interaction of components and their performed
security-related tasks. Additionally, we showed how
the Onion Layer Model could be used to evaluate the
costs of security for two specific use cases in an ex-
emplary evaluation. To extend this work the key new
contribution of this paper is to present an approach for



automatically identifying the components of an inter-
action and their performed tasks at runtime. Further-
more, we extend the previous mathematical expres-
sion by transforming it to consider time including a
metric catalogue, allowing modelling the costs of se-
curity for interactions over a period of time. This al-
lows applying the Onion Layer Model over a longer
period of time to be able to measure, compare and
analyse the costs of security of a CPS at runtime.

3 DISCUSSION ON MODELLING
SECURITY COSTS

In this section we present the Security Cost Modelling
Framework and its building blocks, which are neces-
sary to measure security costs at runtime. First, we
present a use case where a component with a sen-
sor, another component with an actuator and an IoT
Framework are interacting with each other. Based
on that use case we then propose a framework and
discuss how it could be used to measure the security
costs at runtime. The proposed framework in Figure
1 includes the Onion Layer Model from our previ-
ous work, which uses additional mechanisms in order
to identify communicating components and their per-
formed tasks at runtime. In addition to that the frame-
work also uses a Cost Metric Catalogue for measuring
the cost of security.

3.1 Closed-Loop Temperature Control

In many respects, the closed-loop control view in Fig-
ure 1 corresponds to the most fundamental defini-
tion of a CPS. One component (C1) uses a sensor to
measure the physical world, while another component
(C2) uses this information to change it. Based on that
the following use case consists of a component, which
uses a temperature sensor to measure a room’s tem-
perature (C1), while another component controls an
air-conditioning system (C2) to control it. First, C1
becomes part of an existing CPS by registering the
temperature sensor to the IoT Framework (step 1).
Next, before C2 decides whether the room needs to be
cooled down, it sends a request to the IoT Framework
asking for a component which is capable of measur-
ing the room’s temperature (step 2). However, be-
fore the IoT Frameworks returns the endpoint of such
a component it verifies whether C2 is authorised for
such an interaction (step 3). If it is, the next step is
to search the component registries (step 4) and return
the temperature sensor component (step 5). After that
C2 requests in a loop the room temperature from C1

(step 6), which uses the sensor to measure it and re-
turns the measured value (step 7). Finally, C2 verifies
if a limit has been reached (e.g. greater than 25 de-
grees Celsius) and decides whether to activate the air-
conditioning system or not (step 8). Figure 3 shows
the sequence diagram including all steps of the de-
scribed Closed-Loop Temperature Control use case.

3.2 Security Cost Modeling Framework

The Onion Layer Model from from Ivkic et al.
(2019), as shown in Figure 2, can be used to describe
security costs that occur each time an interaction is
executed. In this context, an interaction is defined as
a unit of work, which is executed at a specific time,
serves a specific purpose and can be treated in an co-
herent and reliable way independent of other interac-
tions. Furthermore, it includes one or more partici-
pating components that perform a number of differ-
ent tasks. In relation to the use case in Figure 3 the
Closed-Loop Temperature Control represents an in-
teraction that involves three components (C1, C2, IoT
Framework), which perform a total of seven tasks.

Figure 2: Onion Layer Model for Modelling Security Costs

To measure the security costs of all interactions
the Onion Layer Model in Figure 2 suggests to form
a sum of sums. The first sum (∑n

i=1) represents all ex-
isting interactions of a CPS, while the second (∑m

j=1)
summarizes all components within one interaction.
The next sum (∑o

k=1) aggregates all security-related
tasks which have been performed by a one compo-
nent. Finally, the last sum (∑p

l=1) adds up all metrics
which have been used to measure the performance of
a specific security-related task. In our previous work
(Ivkic et al., 2019) the sum of sums has only been
used to describe how the cost of security could be
modelled within a CPS.

ft =
n

∑
i=1

m

∑
j=1

o

∑
k=1

p

∑
l=1

xti jkl (1)

Now, to extend this work and to be able to ag-
gregate the security costs at a specific point in time



Figure 3: Sequence Diagram for the Closed-Loop Temperature Control Use Case

the approach has been extended by a time function
ft as shown in (1). This allows measuring a spe-
cific security-related task performed by a component,
which participates in an interaction at a specific point
in time. Furthermore, measuring the same task pe-
riodically allows aggregating the temporal course of
security costs for this task.

To measure the security costs of an interaction
as they are occurring, the Onion Layer Model needs
to know the participating components, the performed
tasks and which metrics need to be used. As shown in
Figure 1, a Component Monitoring mechanism could
listen to the Internet Protocol (IP) address and port of
all components. Each time a component sends a mes-
sage to another one, the mechanism would create a
record containing at least the date and time, the send-
ing and receiving endpoints (sender/receiver IP and
port). Similar to that a Task Tracing mechanism could
log the performed tasks for each component. Addi-
tionally, this mechanism should categorize all tasks in
use case-related and security-related tasks. Finally, a
Cost Metric Catalogue could provide a set of metric
types which can be used to measure the security costs
of the previously identified security-related tasks. The
combination of the presented mechanisms (Compo-
nent Monitoring, Task Tracing), the Cost Metric Cat-
alogue and the Onion Layer Model in (1) allows mea-
suring the security costs of interactions at runtime.

Another interesting aspect of the proposed ap-
proach is that the measured runtime data could be
used to visualize an interaction, its participating com-
ponents and their performed tasks. Over time, an
interaction with all its components can quickly be-

come incomprehensible, making it difficult for peo-
ple to keep track of what is going on. To solve this
problem the measured runtime data of ”which compo-
nent communicates with which” and ”which compo-
nent performs which tasks and when” could be used
to create a simpler and more comprehensible graph.
For instance, Figure 4 shows a possible visual rep-
resentation of the Closed-Loop Temperature Control
interaction including its participating components and
their performed tasks:

Figure 4: Visual Representation of an Interaction

This graph enables the visualisation of interac-
tions while they are happening and improves their
comprehensibility. Additionally, the graph makes
possible the comparison of interactions and identifi-
cation of performance issues (e.g. bottlenecks).



3.3 Intended Experimental Design

To measure security costs in an experimental study
the Closed-Loop Temperature Control use case will
be implemented and evaluated. For the implemen-
tation we are planning to use a representative IoT
Framework which is capable of registering and dis-
covering services and verifying requests for authori-
sation. The Arrowhead Framework (Delsing, 2017)
could be a possible candidate, since its Core Services
(Service Registry, Authorisation and Orchestration)
already provide some of the required functionalities.
Regarding other requirements (Component Monitor-
ing, Task Tracing) further investigation of the frame-
work is needed to identify whether it already pro-
vides the necessary mechanisms, or if they need to
be implemented, yet. Furthermore, we plan to ex-
ecute the Closed-Loop Temperature Control interac-
tion consecutively in a loop of n runs (e.g. n = 50
runs) using two different workloads (WL). In WL1 a
representative security messaging protocol (S) will be
used to support an encrypted communication between
the components (C1 and C2) and the IoT Framework,
while WL2 will use an insecure protocol (I). In a first
evaluation we are planning to use a representative set
of the following four metrics for measuring the per-
formed tasks for each run:

• M1: duration in milliseconds (ms)

• M2: Central Processing Unit (CPU)-usage in per-
cent (%)

• M3: Read Access Memory (RAM)-usage in
Megabyte (MB)

• M4: packet-size of data packages in Kilobyte
(KB)

The following table summarises the setup of the
planned experimental evaluation including the two
WLs (WL1, WL2), the number of runs (n) , the used
messaging protocols (secure protocol = S, insecure
protocol = I) per WL and the metrics for measuring
the performed tasks (M1, M2, M3, M4):

Table 1: Workloads for Experimental Evaluation

WL∗ Runs Protocol Metrics

WL1 n S

M1: duration (ms)
M2: CPU-usage (%)
M3: RAM-usage (MB)
M4: packet-size (KB)

WL2 n I

M1: duration (ms)
M2: CPU-usage (%)
M3: RAM-usage (MB)
M4: packet-size (KB)

∗Workloads

The runtime information provided by the Compo-
nent Monitoring and Task Tracing mechanisms at run-
time will be used during the experimental evaluation
in combination with the Onion Layer Model. The idea
is to use the representative metrics to measure each
performed task of a component for each run. Then,
the following aggregation can be done to measure the
costs of using a messaging protocol (P = {S, I}) for
each run (n = 50) and each metric (m = 4):

xP(i) =
n

∑
i=1

m

∑
j=1

M j(i) (2)

As shown in (2) xP(i) represents the aggregation
of the measured costs of using protocol P for run i,
while M j(i) represents the metric j used to measure
the costs for each run. Now, as shown in (3) the se-
curity costs (xSC) can be calculated by the differenc
between the two aggregations of using the secure pro-
tocol xS(i) and the insecure protocol xI(i):

xSC(i) =
n

∑
i=1

xS(i)− xI(i) (3)

4 FUTURE WORK

4.1 Implementation & Evaluation

As mentioned in the previous section we will im-
plement the Closed-Loop Temperature Control use
case and evaluate its security costs in an experimen-
tal study. In this regard we will first investigate a
representative IoT Framework, which preferably al-
ready includes most of the required functionalities
and mechanisms implemented. In addition to that the
selected IoT Framework has to be extensible in or-
der to be able to implement missing mechanism and
functionalities. Once the use case is implemented we
will conduct an experimental study as described in 3.3
using the predefined WLs, protocols (S, I) and repre-
sentative metrics (M1, M2, M3, M4).

4.2 Normalisation & Conversion

Even though the presented Security Cost Modelling
Framework suggests evaluating security costs at run-
time, it implies using metrics with measurement re-
sults which can be aggregated. In other words, M1
provides results, which cannot be aggregated with the
other metrics. Due to incompatible units, a metric
measuring the duration in ms cannot directly be ag-
gregated with another metric measuring the load of a
CPU in %. Another problem is that when using two or



more metrics with different units the results may need
to be interpreted. For instance, when using all four of
the proposed metrics in two runs the measurements
might provide the following results:

• x1 = 5 ms + 10 % + 5 MB + 10 KB

• x2 = 10 ms + 5% + 10 MB + 5 KB

• is x1 < x2 or x1 > x2

Without normalisation of the results it is impos-
sible to tell which of the two measurements is ”bet-
ter” or ”cheaper” in terms of security costs. There-
fore, when using a metric catalogue in combination
with the Security Cost Metric Framework we need a
method for either normalising or converting measure-
ment results to a general Cost Unit.

4.3 Security Costs & Compliance

As already mentioned, monitoring communicating
components, tracing their performed tasks and mea-
suring resulting security costs opens up many new
possibilities. However, the security costs of e.g. two
systems, or two interactions (which serve the same
purpose) cannot be directly compared without know-
ing how secure the system or the interaction is. For
instance, if SystemA and SystemB produce the same
security costs for the same tasks they have performed,
it does not directly imply that they have the same level
of security. SystemA might be using a less secure algo-
rithm for encrypting its messages than SystemB. So,
in order to make those two systems comparable in re-
gard to security costs it is also necessary to evaluate
how secure both systems are.

Bicaku et al. (2018b) proposed a Monitoring
and Standard Compliance Verification Framework,
where they monitor whether a specific security con-
trol has been implemented/activated on the target sys-
tem. Furthermore, they propose to first extract the se-
curity controls from established standards and then
provide a mechanism how to monitor if they have
been implemented/activated. A combination of the
Security Costs Modelling Framework and the Mon-
itoring and Standard Compliance Verification Frame-
work from Bicaku et al. (2018b) could be used to
make two systems comparable in regard of security
costs and security compliance. We will investigate
these two approaches and verify whether it is possible
to combine them in future work.

5 CONCLUSION

In this paper, we presented a framework, which can
be used to measure security costs at runtime. We first

presented a close-to-reality use case, which uses an
IoT-component to measure the physical world (C1 us-
ing a temperature sensor) and another one to affect
it (C2 controlling an air-conditioning system). In ad-
dition to that an IoT Framework is integrated in this
use case, which manages service lookup and autho-
risation requests. Next, we presented the Security
Cost Modelling Framework, which is an extension of
our previous work and explain the missing building
blocks (Component Monitoring, Task Tracing, Cost
Metric Catalogue) to be able to measure the security
costs at runtime. Finally, we describe how we intend
to evaluate the security costs of the presented use case
in an experimental study. This included the design of
the experiment, the description of the WLs, runs (n),
protocols (S, I) and representative metrics (duration,
CPU-usage, RAM-usage, packet-size). Furthermore,
we showed how the costs of security will be estimated
at runtime by putting all building blocks of the pre-
sented Security Cost Modelling Framework together.

The main contribution of this paper is a frame-
work, which can be used to measure security costs
at runtime. This Security Cost Modelling Frame-
work will be enhanced by conducting an experimental
study as described in Section 3.3 in future work. Fur-
thermore, we will implement the Security Cost Mod-
elling Framework, which uses the outputs of the pro-
posed mechanisms to measure the security costs of
the closed-loop temperature control interaction at run-
time. Summarising, the main goal is to develop the
Security Cost Modelling Framework, which identifies
the interacting components and their performed tasks
of an interaction at runtime and measures the resulting
costs of providing security.

ACKNOWLEDGEMENTS

Research leading to these results has received fund-
ing from the EU ECSEL Joint Undertaking under
grant agreement n737459 (project Productive4.0) and
from the partners national programs/funding authori-
ties and the project MIT 4.0 (FE02), funded by IWB-
EFRE 2014 - 2020 coordinated by Forschung Burgen-
land GmbH.



REFERENCES

Alliance, A. (2016). Alljoyn framework. Linux
Foundation Collaborative Projects. URl:
https://allseenalliance.org/framework (visited on
09/14.

Alliance, O. M. (2012). Lightweight machine to machine
architecture. Draft Version, 1:1–12.

Alliance, Z. and Alliance, H. (2013). Smart energy profile 2
application protocol standard. document 13–0200-00.

Almada-Lobo, F. (2016). The industry 4.0 revolution and
the future of manufacturing execution systems (mes).
Journal of innovation management, 3(4):16–21.

Bicaku, A., Maksuti, S., Hegedűs, C., Tauber, M., Dels-
ing, J., and Eliasson, J. (2018a). Interacting with the
arrowhead local cloud: On-boarding procedure. In
2018 IEEE Industrial Cyber-Physical Systems (ICPS),
pages 743–748. IEEE.

Bicaku, A., Schmittner, C., Tauber, M., and Delsing,
J. (2018b). Monitoring industry 4.0 applications
for security and safety standard compliance. In
2018 IEEE Industrial Cyber-Physical Systems (ICPS),
pages 749–754. IEEE.

Delsing, J. (2017). Iot automation: Arrowhead framework.
CRC Press.

Derhamy, H., Eliasson, J., Delsing, J., and Priller, P. (2015).
A survey of commercial frameworks for the inter-
net of things. In IEEE International Conference
on Emerging Technologies and Factory Automation:
08/09/2015-11/09/2015. IEEE Communications Soci-
ety.

Dumas, M., La Rosa, M., Mendling, J., and Reijers, H. A.
(2013). Introduction to business process management.
In Fundamentals of Business Process Management,
pages 1–31. Springer.

Esterle, L. and Grosu, R. (2016). Cyber-physical systems:
challenge of the 21st century. e & i Elektrotechnik und
Informationstechnik, 133(7):299–303.

Gruhn, V. and Laue, R. (2006). Complexity metrics for
business process models. In 9th international con-
ference on business information systems (BIS 2006),
volume 85, pages 1–12. Citeseer.

Hayden, L. (2010). IT security metrics: A practical
framework for measuring security & protecting data.
McGraw-Hill Education Group.

Hermann, M., Pentek, T., and Otto, B. (2016). Design prin-
ciples for industrie 4.0 scenarios. In System Sciences
(HICSS), 2016 49th Hawaii International Conference
on, pages 3928–3937. IEEE.

IoTivity, I. (2015). A linux foundation collaborative project.

Ivkic, I., Mauthe, A., and Tauber, M. (2019). Towards a se-
curity cost model for cyber-physical systems. In 2019
16th IEEE Annual Consumer Communications & Net-
working Conference (CCNC), pages 1–7. IEEE.

Luna, J., Ghani, H., Germanus, D., and Suri, N. (2011).
A security metrics framework for the cloud. In Secu-
rity and Cryptography (SECRYPT), 2011 Proceedings

of the International Conference on, pages 245–250.
IEEE.

Mell, P., Grance, T., et al. (2011). The nist definition of
cloud computing.

Pfleeger, S. L. (2009). Useful cybersecurity metrics. IT
professional, 11(3):38–45.

Shelby, Z. and Chauvenet, C. (2012). The ipso applica-
tion framework draft-ipso-app-framework-04. Ava-
iable online: http://www. ipso-alliance. org/wp-
content/media/draft-ipso-app-framework-04. pdf (ac-
cessed on 3 June 2014).

Tariq, M. I. (2012). Towards information security met-
rics framework for cloud computing. International
Journal of Cloud Computing and Services Science,
1(4):209.

Yee, G. O. (2013). Security metrics: An introduction and
literature review. In Computer and Information Secu-
rity Handbook (Second Edition), pages 553–566. El-
sevier.


	1 Introduction
	2 Related Work
	3 Discussion on Modelling Security Costs
	3.1 Closed-Loop Temperature Control
	3.2 Security Cost Modeling Framework
	3.3 Intended Experimental Design

	4 Future Work
	4.1 Implementation & Evaluation
	4.2 Normalisation & Conversion
	4.3 Security Costs & Compliance

	5 Conclusion

