Authors:
Daniel Hincapie
;
Ahmad Saad
and
Josef Jiru
Affiliation:
Fraunhofer Institute for Embedded Systems and Communication Technologies, Munich and Germany
Keyword(s):
Access Network Selection, Quality of Service, Prediction, Monitoring, Resilient Communication, Autonomous Driving, Vehicle-To-X Communication.
Related
Ontology
Subjects/Areas/Topics:
Applications and Uses
;
Sensor Networks
;
Sensor, Mesh and Ad Hoc Communications and Networks
;
Telecommunications
;
Vehicular Networks
;
Wireless Information Networks and Systems
Abstract:
Vehicle-To-Everything (V2X) communication is a fundamental pillar of autonomous driving. It enables the exchange of safety-critical data between vehicles, infrastructure and pedestrians to enhance the awareness of the surrounding environment and coordinate the execution of collective functionalities vital to achieve full automation. Due to the safety-critical nature of the interchanged information, V2X communication must be resilient, so that it provides reliable connectivity despite of the very dynamic characteristics of both its environment and network topology. In this position paper, we propose a novel concept that aims at achieving resilient V2X communication. We introduce the Quality of Service Manager (QoSM), a collaborative and distributed implementation concept for the Heterogeneous Link Layer (HLL) that operates on the top of the Medium Access Control (MAC). The QoSM first monitors and predicts QoS indicators of Radio Access Technologies (RAT) in Heterogeneous Vehicular Net
works (HetVNET). Then, it determines, under the principle of Always Resiliently Connected (ARC), and sets timely the configuration settings of RAT that meet performance and reliability requirements of autonomous driving applications. Should it not be possible to fulfill applications demands, the QoSM can instruct applications in advance to lower the requirements or run in a safe mode. Like in many autonomous driving applications, the concept of our proposed QoSM is distributed and collaborative to enhance accuracy, self-awareness and safety. QoSMs shall be grouped hierarchically according to correlation of applications demands, conditions of communication links and mobility information. Group’s members share monitored and predicted indicators, as well as configuration settings. This information is used to determine collectively the configuration of the HetVNET. On the one hand, sharing information among QoSMs increases the amount of correlated data used by prediction algorithms, which improves prediction accuracy. On the other hand, hierarchical groups allow to extend the proposed methodology to other hierarchical elements of the access and core network. With this position paper, we intend to open the discussion on the importance of implementing protocols for sharing parameters that allow distributed and collaborative QoS management for resilient V2X communication.
(More)