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Abstract: Large software systems often comprise programs written in different programming languages. In the case 

when cross-language interoperability is accomplished with a Foreign Function Interface (FFI), for example 

pybind11, Boost.Python, Emscripten, PyV8, or JNI, among many others, common software engineering tools, 

such as call-graph analysis, are obstructed by the opacity of the FFI. This complicates debugging and fosters 

potential inefficiency and security problems. One contributing issue is that there is little rigorous software 

design advice for multilingual software. 

  In this paper, we present our progress towards a more rigorous design approach to multilingual 

software. The approach is based on the existing approach to the design of large-scale C++ systems developed 

by Lakos. The FFI is an aspect of physical rather than logical architecture. The Lakosian approach is one of 

the few design methodologies to address physical design rather than just logical design. Using the MLSA 

toolkit developed in prior work for analysis of multilingual software, we focus in on one FFI – the pybind11 

FFI.  

An extension to the Lakosian C++ design rules is proposed to address multilingual software that uses 

pybind11. Using a sample of 50 public GitHub repositories that use pybind11, we measure how many 

repositories would currently satisfy these rules. We conclude with a proposed generalization of the pybind11-

based rules for any multilingual software using an FFI interface. 

 

1 INTRODUCTION 

Software systems, especially large ones, are often 
developed using more than one programming 
languages (Mushtak and Rasool 2015) (Mayer, 
Kirsch and Le 2017). These are often referred to as 
multilingual or polylingual (Barrett, Kaplan and 
Wileden 1996) software systems. Occasionally, 
multilingual software refers to software localization – 
customizing software to operate with a specific 
human language/culture; this is not its usage in this 
paper.  In prior work (Lyons, Bogar and Baird 2018) 
we have discussed the historical and engineering 
trends that promote the development of multilingual 
software. We high-lighted a key challenge faced by 
developers and maintainers of multilingual software: 
“While it may be possible to automatically inspect 
individual language components of the codebase for 
software engineering metrics, it may be difficult or 

impossible to do this on a single accurate description 
of the complete multilingual codebase.”  

 In a survey of software developers, Mayer et al. 

(Mayer, Kirsch and Le 2017) find that 90% request 

help in developing multilingual code bases. The 

issues they raise include redundancy between 

language functionalities, necessitating refactoring 

(Strien, Kratz and Lowe 2006); unexpected 

interactions between languages (Hong and al 2015), 

and security breaches in cross-language calls 

(Bravenboer, Dolstra and Visser 2010) (Lee, Doby 

and Ryu 2016). Moreover, it appears this issue will 

continue to grow in significance. In an analysis of 

over 3800 papers over a 15-year time period, 

Zaigham et al. (Zaigham, Rasool and Shehzad 2017) 

report that 23% of these papers were written in the  

two years prior to publication alone. 
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In our work, we have focused on the common 
Foreign Function Interface (FFI) style of cross-
language interoperability. Examples include JNI, 
PyV8, pybind11, and many, many others. The 
advantages of examining this form of cross-language 
interoperability, apart from its popularity, include that 
it is amenable to static analysis of the source code by 
looking at a call-graph (since the cross-language 
transition is effected with a function call). However, 
the FFI is opaque: we cannot see what other-language 
functions are called within the FFI call. Thus, it 
becomes more difficult to verify software correctness, 
efficiency, and security. On top of this challenge, 
while an FFI package developer might (sometimes) 
make some recommendations as to how to safely use 
the interface, an application programmer is typically 
left to his or her own devices as to how to embed the 
FFI into the host language software. This can lead to 
a bewildering variety of designs for any one interface, 
and of course, a programmer might choose to use 
different interfaces for the same two languages at 
different places in the software to leverage ease of use 
or just plain familiarity. This lack of design guidance 
greatly complicates multilingual software 
engineering. 

Grechanik et al. (Grechanik, Batory and Perry 
2004) present a design approach for polylingual 
software. The problem they address is the O(n2) 
potential cross-language communications in n 
programs. They propose a framework, called ROOF, 
that presents a single API for all cross-language 
communications. While this standardization clearly 
has benefits, we take a different approach: we believe 
software developers will use whatever FFI packages 
become available, so rather than try to change this 
behaviour, we limit ourselves to finding an approach 
that addresses the analysis of the ‘messy’ multilingual 
software thus created.  

Lakos (Lakos 1996) addresses the problem of 
the physical design of large-scale C++ software. He 
proposes a set of guidelines for the physical 
architecture of large C++ codebases that has certainly 
stood the test of time (an extensively expanded 
version is scheduled by Addison-Wesley for 2021). It 
addresses issues such as how to structure source code 
files into components, packages, and package groups 
in a modular way, avoiding potentially troublesome, 
hidden linkages between the source code units that 
hinder efficiency, scalability and understandability. 
These troublesome linkage issues are similar to those 
caused by multilingual interoperability APIs and it is 
the thesis of this paper that some of the principles 
introduced for large-scale C++ physical design in 
(Lakos 1996), Lakosian principles, are relevant for 
multilingual design.  

To illustrate this, we focus here on a common 
interoperability API, pybind11 (Smirnoff 2017), 

which allows mutual calling between C++ and 
Python. While Python is often convenient for high 
level programming, C++ can offer a more efficient 
platform to implement numerical algorithms. 
Pybind11 was released in 2015 and has become a very 
popular alternative to the Boost.Python library 
(Abrahams and Grosse-Kunstleve 2003).  To measure 
the popularity, we searched for public GitHub 
repositories using pybind11 and using Boost.Python. 
It has been 17 years since Boost.Python was released, 
and we found 478 repositories that referenced it. It has 
been only 4 years since pybind11 has been released 
and we found 233 repositories that reference it. The 
ratio of these time in existence to amount of 
repositories numbers would suggest that pybind11, at 
58.2, is experiencing higher growth than the more 
mature Boost.Python, at 28.1. Public comments on 
programming forums typically cite pybind11’s 
header-only nature, STL/Eigen support and full 
coverage of Boost.Python functionality as reasons for 
adoption. We take this step of picking one FFI to 
make our conclusions more concrete, and while we 
justify this choice for this paper, we could have 
selected a different one. We also specifically pick an 
FFI rather than a language such as Cython 
(http://cython.org) which aims to minimize the FFI 
aspect of calling C from Python; though given the 
popularity of Cython, we will come back to this later 
in the paper. 

We begin in Section 2 by briefly reviewing those 
aspects of Lakosian design principles for large-scale 
C++ development that will prove useful. Multilingual 
software with the Foreign Function Interface (FFI) is 
introduced in Section 3 with pybind11 as a specific 
example. The MLSA (Multilingual Software 
Analysis) toolkit (Lyons, Bogar and Baird 2017) 
(Bogar, Lyons and Baird 2018), which will be used to 
investigate FFI usage in a collection of pybind11 
repositories, is introduced in Section 4. Some 
common FFI practices will be identified that show 
analogous troublesome linkages to those first 
identified by Lakos in C++ physical design. As a 
solution, we will propose an extension of some 
Lakosian principles to address, first, pybind11/C++ 
repositories, and later (Section 6) FFI software in 
general. The pybind11 repository experimentation 
and results are reported in Section 5 and our 
conclusions presented in the final section. 

2 LAKOSIAN DESIGN PRINCIPLES 

Physical design is defined by Lakos as being 
concerned with the physical aspects of a software 
code repository:  the directories, header files, source 
files, libraries and issues related to these. Contrast this 
with logical design, which relates to classes, 
functions and so forth. His motivation in considering 
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physical design is the issue of scaling to very large 
software systems written in C++. Our motivation is 
different, relating as it does to the inter-language 
interface in multilingual software and issues relating 
to scaling, but we find that there are common 
concerns and solutions which can usefully be 
transferred from this prior work to our problem.  

Lakos introduces some useful terminology and it 
is helpful to recapitulate it here: 
• A component is a unit of physical design 

consisting of a source file (an implementation, a 
.cpp file for Lakos) and associated header file (an 
interface, a .h file for Lakos). All our work here 
will be component-based and we leave 
consideration of C++ modules for future work. 

• A name is introduced into a name scope 
(namespace) via a declaration and is uniquely 
defined with a definition. 

• Components are grouped into packages which 
are grouped into package groups. 

• A translation unit is the union of all components 
being processed by a compiler at one time.  

• A name has external linkage if it refers to the 
same object across multiple translation units.  

• A name has internal linkage if it is only visible 
in its translation unit.  

Among the many rules defined by Lakos to address 
issues in physical design, we identify a small subset 
that when interpreted in a multilingual context, as we 
will in a later section, are also important design rules. 
They are presented with their original intent here: 

R1. The source file includes the header file as its 
first substantive line of code 

R2. All logical constructs having external 
linkage defined in a source file are declared 
in the corresponding header file 

R3. All constructs having external linkage 
declared in a header file are defined within 
the component. 

While there are arguably additional Lakosian design 
rules that can address multilingual software, we select 
these rules because they are designed to address the 
problem of potential inconsistencies in name bindings 
in external linkages. They ensure that externally 
linked functions and objects are defined in a 
predictable, easy to find, and easily understood 
manner.  
 

3 MULTILINGUAL SOFTWARE 

Modern software development is increasingly 
multilingual: Developers might build a software 
project from different language components for 
functionality or style reasons. In prior work (Lyons, 
Bogar and Baird 2017) (Bogar, Lyons and Baird 
2018) (Lyons, Bogar and Baird 2018), we have 

looked at the problem of providing tools for analyzing 
multilingual code bases to address software 
engineering and security concerns. We proposed a 
software architecture for lightweight multilingual 
software analysis tools – the MLSA architecture and 
introduced some tools for generating multilingual 
call-graphs, which we argued can be the basis for the 
addressing many useful software engineering and 
security concerns.  

3.1 Foreign Function Interface 

Programs in one language can communicate with 
software written in a second language through several 
means (Grimmer, et al. 2018): message passing, 
foreign-function interface, and multi-language run-
time. Rather than proposing any new scheme for 
writing, including or executing multilingual software 
in this paper, we have instead focused on processing 
existing and widely used FFI packages, e.g., JNI (C 
with Java), Python.h (C/C++ with Python), PyV8 
(JavaScript with Python), Emscripten (JavaScript 
from C++), JQuery (Python from JavaScript), and so 
forth. As we initially stated, advantages of focusing 
on this form of cross-language are that it is quite 
common and it is amenable to static analysis of the 
source code by looking at a call-graph. Message 
passing is more difficult to analyze statically 
(Bronevetsky 2009), and a common language run-
time analysis must be done on the common language 
bytecode. 

All of these FFI packages differ in their syntax 
and use and there are no standards or guidelines that 
specifically address their use. In fact new cross-
language interfaces are defined all the time: 
Boost.Python (Abrahams and Grosse-Kunstleve 
2003) introduced a powerful library for binding C++ 
classes and functions to Python, a great improvement 
over the interoperability provided by Python’s C/C++ 
interface (Python 2.7 documentation 2010). 
Subsequently, pybind11 was developed as a light-
weight, header-only interface (Smirnoff 2017) with 
similar functionality. For historical reasons, all three 
are still used, and it is not unlikely that new ones will 
be developed! 

All these interoperability interfaces provide 
the common function of mapping from the namespace 
of one programming language to that of another. But 
in the Lakosian vocabulary, they map from the 
namespace of one translation unit to that of another. 
In that framework, every translation unit is C++ code, 
Fig. 1(a) whereas we propose to relax that constraint. 
Hence, FFIs define an external linkage between the 
two language translation units, Fig.1(b) – a topic 
about which Lakos has design advice that we can 
leverage. Our approach to addressing this issue with 



Lakosian design principles will be to work from the 
specific to general, starting with a pybind11 example. 

       
(a) 
 
 
 
 
 

 
 
  (b)  
 
 
 
 
 
 
 
 

Figure 1: (a) External linkage between C++ translation 

units; (b) Foreign-function interface between 

multilingual translation units. 

3.2 Standard pybind11 case 

A straightforward example of the use of pybind11 to 
call a C++ function from a Python script A.py is 
shown in Fig. 2(a). A C++ file B.cpp, shown in Fig. 
2(b), defines a function f, and establishes that it can 
be called in Python (with the same name f in this 
example). After compilation, a binary file is 
generated that can be imported as a Python module. 

#Python file A 

 

# C++ functions 

import B 

 

 

. 

# call C++ function 

x = B.f(34) 

. 

. 

(a) 

//C++ file B 

 

#include <pybind11> 

 

// declaration 

int f(int a); 

 

// bind python “f” to f 

PYBIND11_MODULE(B,m){ 

m.def(“f”,&f) 

} 

(b) 

Figure 2: pybind11 example. 

Let us begin by considering the software in Fig. 2 as 
two components. Each component has an interface 
(header file) and implementation (source file). This 
separation is important in physical design. The lines 
shown in bold font in Figs. 2(a) and (b) is the header 
file information and those below it, the source file 
information.  

To respect R1-3 of Section 2, it necessary that 
the header file B.h contains (at least) the material in 

bold in Figure 2(b) and the source file B.cpp contains 
(at least) the remainder. The rationale is a little 
different from the regular C++ case but reflects the 
same concerns with external linkage, or name 
binding. The Python file A.py needs to import 
declaration information for the external linkages 
(C++ names) it uses (R2). For this example, that 
information is in the m.def commands in B.cpp and 
not in B.h, which has the declarations of the C++ 
functions referenced by these bindings. Thus, the 
implementation declarations should be separate from 
the bindings, which should be in a source file named 
for the module. (An informal rule advocated by the 
pybind11 developers). The implementation 
declarations should be included in the header file for 
the component, and definitions in a separate source 
file, providing insulation for the module 
implementation.  

Summarizing, and based on R1-R3 in Section 2:  

M1. The python component imports the 
pybind11 generated module by name, in 
standard python syntax. 

M2. The source file of the binding component 
must be named after the module, so that 
there is a transparent connection to the 
interface with the important statement (R2). 

M3. The header file of the binding component 
should declare the implementation of the 
bound functions (R3). 

In addition to following Lakosian design principles 
for physical architecture, or perhaps because of it, 
these rules also simplify the static analysis of 
multilingual code bases by making it readily clear in 
what files functions are located. The multilingual 
software analysis toolkit MLSA is described in the 
next section as prelude to using the toolkit. Public 
GitHub repositories using pybind11 will be analysed 
with MLSA to determine how many abide by the 
proposed principles and in what ways they differ. 

4 THE MLSA TOOLKIT 

Developers may build a software project (here, the 
input data for our MLSA analysis tools) from 
different language components for functionality or 
style reasons, while at the same time companies 
maintain a commitment to language already used in 
company software, leading to an increasingly 
crowded and complex landscape of multilingual 
software development. Any solution that is narrowly 
focused on the existing state-of-the-art will find itself 
quickly outdated as new languages or interoperability 
APIs or language embeddings appear. For this reason, 
we proposed the following design principles for a 
software architecture for MLSA (Lyons, Bogar and 
Baird 2017) (Fig. 3). 

Translation unit namespace A Translation unit namespace B 

External Linkage between A and B 

 

         A                                                    B 

Language A 

Translation unit namespace 

Language B 

Translation unit namespace 

External Linkage between A and B via FFI 

 

                                    FFI 

   A                                                           B 

 



1. Lightweight: Computation is carried out by 
small programs, which we call filters, that 
communicate results with each other. A 
specific software analysis is built as a 
pipeline of these programs.  

2. Modular: Filter programs accept input and 
produce output in a standard form, to allow 
modules to be substituted or added with 
minimum collateral damage.  

3. Open: MLSA uses open-source software for 
monolingual processing and for display. 

4. Static Analysis: MLSA uses static source 
code analysis as its principle approach 

Illustrating the lightweight design principle, each 
filter is a small standalone program, implementing a 
single analysis. The only constraint on the filter is on 
the format of its input and output. Filter programs can 
be written in different languages as shell scripts.  

(a)

 
(b)

 
Figure 3: MLSA Software Architecture (a); example 

filter pipeline, from (Lyons, Bogar and Baird 2017) (b). 

The modularity design principle means that extending 

MLSA to handle a new cross-language interface is as 

simple as extending the parts of the processing 

pipeline with scripts designed for the new interface. 

4.1 Multilingual call-graph analysis 

We have argued in prior work (Lyons, Bogar and 

Baird 2017) (Lyons, Bogar and Baird 2018) (Bogar, 

Lyons and Baird 2018) that call-graph analysis is one 

productive tool for investigating software engineering 

properties of multilingual code, and we have focused 

our research on what is required to construct a 

multilingual call-graph. In addition to the challenges 

of monolingual call-graph construction, e.g.,  (Ali and 

Lhotak 2012) (Bacon and Sweeney 1996) (Bogar, 

Lyons and Baird 2018), multilingual call graphs have 

to include edges that span one language to a second. 

Since it is very typical in an FFI for the name of the 

function in the second language to be specified by the 

value of an argument to a function, and not as a name 

or label in the host name space, static analysis of the 

code becomes challenging. In (Lyons, Bogar and 

Baird 2018), we propose a solution to this problem 

based on a Reaching Definitions Algorithm (RDA)  

(Nielson, Nielson and Hankin 2005) to statically 

resolve argument values. Using this, we demonstrated 

multilingual call graphs for software code bases using 

C/C++, Python and JavaScript languages. We showed 

how the call graph could be used to identify potential 

software security hazards and other software 

engineering concerns that would normally be hidden 

by the opacity of the cross-language interface. 

4.2 MLSA pybind11 filter 

To include the pybind11 cross-language 

interoperability interface to the repertoire of FFI that 

MLSA handles, it was only necessary to build an 

additional MLSA filter and add it to the multilingual 

call-graph pipeline in Fig. 2 of  (Lyons, Bogar and 

Baird 2018). That pipeline is summarized below, for 

convenience. For simplicity, and since it suited the 

goals of this paper, only the Python calling C++ 

direction was implemented (our review of GitHub 

repositories shows this was by far more common), 

and only the function call interface (.def) was 

implemented and not the variable (.attr) interface. 

The MLSA multilingual call-graph pipeline  

(Lyons, Bogar and Baird 2018) proceeds as follows:  

1. MLSA begins by generating Abstract Syntax 

Trees (ASTs) for each monolingual program. 

2. From these, it extracts all the function definitions 

and calls, and writes them to csv-formatted data 

files. (Bogar, Lyons and Baird 2018) 

3. Filter programs for various cross-language 

interoperability FFIs post-process these files, 

replacing the cross-language FFI call with the 

cross-language function being called (in so much 

as that can be statically determined by RDA).  

4. The resultant data files are then merged to 

produce a single multilingual call graph. 

The MLSA pybind11 filter is just another filter added 

to stage 3 of this processing pipeline. The filter 

searches the datafiles generated from the Python AST 

looking for a function call in a module that has been 

defined in C++ rather than Python. (It knows this 



from inspecting the data files generated in stage 2.) 

The datafile for the C++ module is then scanned for 

references to the .def function. The arguments to 

.def are processed to determine the name of the 

target function. Only literal values, or variables 

previously assigned literal values (found by RDA 

analysis) are currently allowed. The python function 

call is replaced in the datafile by the C++ function. 

  
(a) 

 
(b) 

 
Figure 4: Multilingual call-graph extracted by MLSA 

from the example in Fig. 2: (a) just A.py and (b) for A.py 

and B.cpp/.h Node shape: Rect: Python; Ell:  C/C++. 

Fig. 4 shows the multilingual call graph generated in 

this way from the example in Fig. 2. Fig. 4(a) shows 

the call graph for just the Python component A.py. 

Fig. 4(b) shows the call graph after the pybind11 filter 

has acted. The python function call B.f() has been 

correctly bound to the C++ function f() and its 

implementation subgraph included. Different 

languages are indicated in MLSA call graphs with 

different node shapes: here, rectangular indicates 

Python and ellipse indicates C++. Note that the 

implementation of f() is not shown in Fig.2 but is 

shown here: A call from the C++ f() function to the 

C++ square() function. 

The MLSA pybind11 filter provides a 

convenient lens to study how pybind11 is used in 

practice, and to evaluate to what extent the proposed 

Lakosian inspired design rules are followed. In the 

next section we present the results of our 

experimental analysis of public GitHub repositories. 

5 EXPERIMENTAL RESULTS 

GitHub has become a popular platform for 
collaborative software development, with over 30M 
users and 100M repositories (github.com/about). To 
measure how pybind11 is used by software 
developers, and how often our proposed design rules 
reflect common practice, we collected public GitHub 
repositories that use pybind11. A simple keyword 
search showed over 900K repositories using Python 
and almost 500K repositories using C++. Of these 
almost 12K used both C++ and Python. However, 
only 233 specifically mentioned pybind11, and we 
restricted our attention to these.  

Many of the repositories just contained 
examples or tutorials for pybind11 and in general we 
rejected all but one copy of these small repositories 
until we had reached 50 samples – an arbitrary limit 
selected to yield generalizable results. Table 1 
describes the sizes of the repositories. 

Table 1: Details of Sample Repositories. 

Num. repositories 50 

Num. pybind11 modules 449 

Total num. files 3712 

Num. PY files    540 

Num. CPP files 748 

Total lines of code 4.2M 

Max, min, avg. num. files 1131, 3, 75  

Max, min, avg. lines of code 2.3M, 312, 83K 

The MLSA pybind11 filter was augmented to count 
how often the repositories complied with our 
extended Lakosian design rules. The results are in 
Table 2. 

Table 2: Summary Results of Study. 

 Rep. Mod. 

Num. rep./mod. meeting  

M1-M3 

8 (16%) 360 (80%) 

Binding misname (fails M2) 27 (54%) 40 (9%) 

Impl. in binding (fails M3) 24 (48%) 53 (12%) 

Table 2 reports that 16% of the repositories strictly 
followed the guidelines proposed. That means all 360 
modules in those repositories followed the rules. The 
small repository number and large module number 
indicate that the repositories following the rules were 
in fact all the largest repositories in the collection. We 
contend that this large minority figure could be 
considered a vote in favour of our proposed 
guidelines. Given the variety of usage observed, we 
summarized failure to follow the guidelines into two 
categories: Where the binding component was not 
named after the module (fails M2; 54%) and where 
the implementation was included alongside the 
binding (fails M3; 48%). A repository was counted as 
failing M2 or M3 if any module in the repository 
failed. As can be seen from the smaller module 
percentages for this, many repositories contained a 
mix of modules meeting and not meeting each of the 
two criteria. Based on this study, 84% of the 
repositories have potential software engineering 
challenges related to ambiguity in how they defined 
external linkages. Several recurring themes were 
identified in non-compliant repositories; we discuss 
these in more depth below. 

Anonymous functions. We consider any 

function, such as a lambda function, which is defined 

directly in the binding as an anonymous function. 

This approach fails to meet design rule M3. An 



example is shown in Fig. 5. While lambda functions 

are elegant solutions to certain problems, anonymous 

functions of any kind are more difficult to track. Our 

approach in MLSA is to flag these for closer (manual) 

inspection when detected. We observed that 20% of 

the repositories used lambda functions in any module. 

Only 4% of modules used lambda functions, 

however, approximately half of which were used for 

member variable get/set functionality. 

# A.py 

import B 

 

x=B.f(1,2) 

y=B.g(3,4) 

 

//B.cpp 

#include “impl.h” // def f 

 

PYBIND11_MODULE(B, m) { 

m.def("f",&f); 

m.def("g",  

[](int i, int j)  

 { return i - j; }); 

} 

 

 
Figure 5: Anonymous function example. 

 
# A.py 

import C 

 

x=B.f(3) 

 

//B.cpp 

#include “impl.h” # def f 

 

PYBIND11_MODULE(C, m) { 

m.def("f",&f); 

} 

 

 
Figure 6: Misnamed module example (top two rows, 

explanatory example; bottom row, summarized example 

call-graph from repository collection). 

Misnamed module. Included in this category is 

anything that puts the binding information in a place 

that is not clearly visible by inspection of the software 

or static analysis. The obvious example (shown in 

Fig. 6) is where the binding component is not named 

with the module name. MLSA can still find the 

binding but it flags the situation for correction, since 

the software becomes more difficult to maintain when 

the external linkages are not readily visible in a single 

location. Other cases of this include multiple modules 

in one binding (makes clear naming difficult), or 

binding information in a different location from the 

location the module will be imported from (a 

directory named for the module, for example). We 

found no example where there were multiple 

modules defined in a single binding. 

6 PROPOSED LAKOSIAN ML 

DESIGN RULES 

This paper has focused on pybind11 as a specific 

example for developing multilingual software design 

guidelines. We generalize our Lakosian inspired 

physical design rules M1-M3 for any FFI from a host 

language to a target language. 

ML1. The host component imports/includes a single 

uniquely named FFI interface file. 

ML2. The source file of the FFI binding component 

in the target language must be named after the 

FFI interface file, so that there is a transparent 

connection to the interface (R2). 

ML3. The source file of the binding component 

should import, or include declarations of, the 

implementation of the bound functions (R3) in 

the target language. 

While we argue that this extension can be justified 

based on our pybind11 examples and the original 

Lakosian rules, a realistic validation requires it should 

be evaluated against a range of FFI. That work is 

beyond the scope of this paper in general, but we will 

look at just one important case: How would this 

specialize to Cython?  

 Cython is a static compiler that accepts a 

superset of Python allowing a programmer to mix 

C/C++ declarations and definitions in Python-like 

code which is then translated to C for efficient 

implementation. In particular, programmers can write 

modules that can be imported and called from Python, 

in a manner analogous to pybind11.  Our general ML 

design rules can be applied to this usage of Cython as 

follows: 
C1. The python component imports the Cython 

generated module (created by the build file) by 

name, in standard python syntax. 

C2. The binding file (~.pyx) should be named the 

same as the binding module name in the build 

file (~setup.py). 

C3. The binding file should include a header file 

containing declarations of the C functions used 

in the binding functions in (~.pyx). 

7 CONCLUSIONS 

Large software systems often have components 

written in different languages. The FFI approach to 



cross-language interoperability is popular and 

relatively easy to use, mimicking as it does a host 

language function call. Our approach is to accept that 

programmers will continue to use existing and new 

FFI interfaces, and we do not try to present a new 

multilingual interface concept or formalism. Instead, 

we have developed a lightweight toolkit, MLSA 

(Lyons, Bogar and Baird 2018) for analysing such 

multilingual systems and identifying software 

engineering and security issues. In particular, given 

the nature of the FFI, we have focused on call-graph 

analysis (Bogar, Lyons and Baird 2018). In this paper, 

we have addressed the problem that there is little in 

the way of design assistance for FFI based 

multilingual software, comparable to the Lakosian 

design method of (Lakos 1996) for C++.  

We have proposed an extended application of 

the Lakosian design method to multilingual software. 

In particular, we applied this to software written using 

the popular pybind11 FFI to call C++ from Python. 

We reported on our study of 50 public GitHub 

pybind11 repositories: While 16% already adhered to 

our guidelines, 84% did not. Of the non-compliant 

cases, binding file naming and use of lambda 

functions are the most often issues. Based on our 

experience with pybind11, we proposed a more 

general set of multilingual design rules. In future 

work, we plan to evaluate these rules against other 

FFI. Finally, we believe we have just begun the task 

of understanding how Lakosian physical design rules 

hold value for the design of multilingual software. 
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