
Parallel Efficient Data Loading

Ricardo Jiménez-Peris1, Francisco Ballesteros2, Ainhoa Azqueta3, Pavlos Kranas1,
Diego Burgos1 and Patricio Martínez1

1LeanXcale, Campus de Montegancedo, Madrid, Spain
2Universidad Rey Juan Carlos, Madrid, Spain

3Universidad Politécnica de Madrid, Spain

Keywords: Loading, Extract-Transform-Load (ETL), Scalable Databases, NUMA Architectures, Database Appliance,
Scalable Transactional Management.

Abstract: In this paper we discuss how we architected and developed a parallel data loader for LeanXcale database. The
loader is characterized for its efficiency and parallelism. LeanXcale can scale up and scale out to very large
numbers and loading data in the traditional way it is not exploiting its full potential in terms of the loading
rate it can reach. For this reason, we have created a parallel loader that can reach the maximum insertion rate
LeanXcale can handle. LeanXcale also exhibits a dual interface, key-value and SQL, that has been exploited
by the parallel loader. Basically, the loading leverages the key-value API and results in a highly efficient
process that avoids the overhead of SQL processing. Finally, in order to guarantee the parallelism we have
developed a data sampler that samples data to generate a histogram of data distribution and use it to pre-split
the regions across LeanXcale instances to guarantee that all instances get an even amount of data during
loading, thus guaranteeing the peak processing loading capability of the deployment.

1 INTRODUCTION

In this paper we discuss the parallel data loader
architected and developed for the LeanXcale
database. This data loader was motivated by the
LeanXcale appliance being developed in cooperation
with Bull-Atos in the Bull Sequana in the context of
the CloudDBAppliance European project
(CloudDBAppliance 2019). The Bull Sequana is a
large parallel server than can reach 896 cores and 140
TB of main memory.

Extract-Transform-Load (ETL) process are
commonly used at all enterprises and they play a key
role in moving data across the different data
management systems being used within the
enterprise. One of the key performance issues is the
speed of loading of the destination database.

Loading data in LeanXcale appliance adopting the
traditional way, by means of a sequential thread, does
not actually exploit the potential of the platform, since
the thread doing the loading process become the
bottleneck. Despite the LeanXcale appliance is able
to load many millions of records per second, using a
single loading thread results is simply using a small
fraction of the insertion capacity of the appliance.

The loader addresses three key issues in the
loading process:

1. The parallelism of the loader process that is
required to exploit the full capacity of the
appliance.

2. The efficiency of the process. Loading data does
not have the same requirements as regular OLTP
processing, and these lower requirements can be
exploited to improve the efficiency of the process.

3. The parallelism on the database server side. In
order to fully exploit the parallelism on the server
side it is necessary to guarantee that all servers
will receive a fraction of the load.

The first point have been addressed by creating a
parallel loader that is multi-process and multi-
threaded. This enables to use as many machines and
cores as required to load data at the maximum rate
that the LeanXcale appliance can process.

The second item has been addressed by exploiting
the dual-interface provided by LeanXcale. The dual-
interface supports key-value and SQL APIs. Both
interfaces work over the same relational data. Since
ingesting data does not require SQL, the loader
leverages the key-value interface to save all the SQL
overhead to ingest the data.

Jiménez-Peris, R., Ballesteros, F., Azqueta, A., Kranas, P., Burgos, D. and Martínez, P.
Parallel Efficient Data Loading.
DOI: 10.5220/0008318904650469
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 465-469
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

465

The third bullet has been tackled by creating a
data sampler that creates a histogram of the data to
partition horizontally data across the servers before
the loading process starts in order to guarantee that all
servers will receive a similar amount of data, thus,
reaching the maximum capacity of the appliance.

2 LeanXcale ARCHITECTURE

2.1 Layers

LeanXcale (LeanXcale 2019) is an ultra-scalable
parallel & distributed database manager. It consists of
three layers: storage engine, transactional manager,
and query engine. The storage engine is actually a
parallel-distributed relational key-value data store.
The transactional manager is a parallel-distributed
system with several components. The query engine is
parallel-distributed as well and can scale both OLTP
(each instance handles a subset of the transactions)
and OLAP workloads (multiple instances cooperate
to execute a large analytical query).

2.2 KiVi Storage Manager

KiVi is a parallel-distributed storage manager. One of
its differential features is that it is optimized to run
efficiently on many-core and NUMA architectures
(Ricardo Jiménez-Peris, 2019). Basically, a different
KiVi server is deployed at each of the cores that are
dedicated to the storage layer.

Each table is horizontally partitioned into regions.
Each region comprises a range of primary keys. The
region is the distribution unit across servers. When a
row is inserted it will hit the server managing the
region where the row belongs (based on the primary
key range of the horizontal partition).

Client applications access LeanXcale database
through the SQL interface, via the JDBC driver.
Internally, KiVi is accessed by the query engine
subsystem. KiVi offers a key-value API. This API is
internally used by the query engine to interact with
the storage layer. However, this API is also available
to be used directly by client applications. In this way,
LeanXcale database offers a dual-interface, key-value
and SQL.

This dual interface has the advantage that
whenever it is convenient it becomes possible to
avoid the overhead of SQL processing by directly
accessing the key-value interface that is accesing the
same relational data as SQL.

Figure 1: LeanXcale subsystems.

3 LeanXcale ARCHITECTURE

3.1 What Is LeanXcale Database

LeanXcale is an ultra-scalable operational Full SQL
Full ACID distributed database (Ozsu and Valduriez,
2014) with analytical capabilities. The database
system consists of three subsystems:
1. KiVi Storage Engine.
2. Transactional Engine.
3. SQL query Engine.

3.2 LeanXcale Subsystems

The operational database is a quite complex system in
terms of different kinds of components. The
operational database consists of a set of subsystems
namely: the Query Engine (QE), the Transactional
Manager (TM), the Storage Engine (SE) and the
Manager (MG). Some subsystems are homogeneous
and other heterogeneous.

Homogeneous subsystems have all instances of
the same kind of role. Heterogenous subsystems have
different roles. Each role can have a single instance
or multiple instances. The transactional manager has
the following roles: Commit Sequencer (CS),
Snapshot Server (SS), Conflict Managers (CMs) and
Loggers (LGs). The former two are mono-instance,
whilst the latter two are multi-instance. The Storage
Engine has two roles data server (DM) and meta-data
server (MS), both multiple instances. The query
engine is homogeneous and multi-instance. There is a
manager (MNG) that is single instance and single-
threaded. Many of these components can be
replicated to provide high availability, but their nature
does not change. Since replication it is an orthogonal
topic, we do not mention anymore.

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

466

Figure 2: Loading Throughput.

4 THE PARALLEL LOADER

As aforementioned it does not matter how powerful
is a database or data store. Loading has to be done
carefully to attain its maximum loading capacity.

The first aspect to be taken into account is the
parallelism in the loader itself. Assume, there is a
database able to handle 1 million insertions per
second. Assume that the average latency of the
insertion at this maximum throughput is 1 ms. If the
loader is single threaded, it would do 1000 insertions
per second. Why? Because it is limited by the latency
of a single insertion that does not exploit the
parallelism in the database. To reach the maximum
throughput we will need 1,000 threads inserting data.
A single computer might not be enough to generate
this load what might require having the threads spread
across multiple processes running on different
computers.

This is why a loader should be parallel and this is
key for the speed of the loading process, that is, to
reach the maximum speed of loading.

However, the parallelism of the loader on the
client side it is not enough. Despite the database
server might be parallel or distributed, to reach its
maximum potential data should be split evenly across
the different server instances of the database server.
This partitioning of data across server instances is not
easy, especially because it has to guarantee balancing
across them.

This even partitioning requires to know about the
data distribution. Doing it accurately guarantees a
perfect split of data across servers. However, the
accurate splitting is too expensive. For this reason, we
have developed a data sampler. The data sampler
samples a subset of the data. The number of samples
that are needed depend on the dataset to be loaded.
We have run a number of experiments with different
dataset sizes, different number of regions and
different number of samples. We have measured the
resulting imbalance across regions. We have seen that
basically by multiplying by 10 the number of
samples, the inaccuracy can be reduced by around 3
times. For a dataset of up to 600 million rows, a sam-

Parallel Efficient Data Loading

467

Figure 3.

ple of 10,000 rows provides a fairly good accuracy
(Azqueta-Alzuaz, 2017).

After running the sampling process over the
dataset to be loaded, then split points are set on the
table that establish how data will be horizontally
partitioned across the different servers.

5 EXPERIMENTAL
EVALUATION

We have evaluated the parallel loader with LeanXcale
database through its two interfaces, SQL and key-
value. We compare the results with the parallel
loading over a well-known open source database,
MariaDB.

The evaluation has been performed over an
INTEL quad computer with 8 GB of memory and 1
SSD.

The injection is made through the parallel loader
with a load factor. The bigger the load factor, the
higher the number of threads/processes in the parallel
loader ingesting data into the database.

The results are shown in Figure 1 and Figure 2.
Figure 1 shows the evolution of throughput for an
increasing loading factor. MariaDB was able to reach
a maximum of 2,628 rows/second. LeanXcale with
the SQL/JDBC interface (LX) was able to reach

13,062 rows/second that is almost 5 times higher
throughput. Interestingly the key-value interface
(KV) reached a throughput of 135,220 rows/second,
what means it was doing 10 times more than
LeanXcale through the SQL interface and more than
50 times what MariaDB was able to do.

Figure 2 shows the results for latency. MariaDB
has the poorest results, with a latency of 37 ms for the
highest throughput it achieved. LeanXcale SQL
interface was attained a latency of 1.3 ms under the
maximum throughput. While LeanXcale KiVi
interface had a latency of 1 ms for the maximum
throughput figure.

6 CONCLUSIONS

The more performant and the scalable a database, the
more careful it requires to perform the loading
process. Otherwise, most of its capacity will be
wasted.

In this paper, we have presented a parallel loader
that is able to exercise the maximum throughput of
LeanXcale database. It does so by having parallelism
on the loader multi-process and multi-threaded to be
able to inject data at the maximum rate that
LeanXcale database can handle.

Secondly, a sampler has been developed that ena-

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

468

bles to set a priori the split points of the tables to be
loaded to guarantee that the insertion load is
distributed evenly across all server instances of
LeanXcale.

Thirdly, the key-value of LeanXcale storage layer,
KiVi, it is exercised to avoid the overhead of SQL
processing.

A evaluation has been conducted and it has been
found that the LeanXcale key-value interface is able
to load data 10 times faster than the LeanXcale SQL
database. Interestingly, it was able to load data 50
times faster than MariaDB.

ACKNOWLEDGEMENTS

This work has been partially funded by the European
Commission under the H2020 project:
CloudDBAppliance – European Cloud In-Memory
Database Appliance with Predictable Performance
for Critical Applications. Project number: 732051.

REFERENCES

Ainhoa Azqueta-Alzuaz, M. P.-M.-P. (2017). Massive Data
Load on Distributed Database Systems over HBase.
CCGRID Proceedings.

Ricardo Jiménez-Peris, F. B. (2019). NUMA-Aware
Deployments for LeanXcale Database Appliance.
CLOSER Workshop.

Özsu, T., P. Valduriez. Distributed and Parallel Database
Systems. Computing Handbook, 3rd ed. 2014.

LeanXcale. http://leanxcale.com. 2019
CloudDBAppliance. https://clouddb.eu/ 2019.

Parallel Efficient Data Loading

469

