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Abstract: In this paper we discuss how we architected and developed a parallel data loader for LeanXcale database. The 
loader is characterized for its efficiency and parallelism. LeanXcale can scale up and scale out to very large 
numbers and loading data in the traditional way it is not exploiting its full potential in terms of the loading 
rate it can reach. For this reason, we have created a parallel loader that can reach the maximum insertion rate 
LeanXcale can handle. LeanXcale also exhibits a dual interface, key-value and SQL, that has been exploited 
by the parallel loader. Basically, the loading leverages the key-value API and results in a highly efficient 
process that avoids the overhead of SQL processing. Finally, in order to guarantee the parallelism we have 
developed a data sampler that samples data to generate a histogram of data distribution and use it to pre-split 
the regions across LeanXcale instances to guarantee that all instances get an even amount of data during 
loading, thus guaranteeing the peak processing loading capability of the deployment. 

1 INTRODUCTION 

In this paper we discuss the parallel data loader 
architected and developed for the LeanXcale 
database. This data loader was motivated by the 
LeanXcale appliance being developed in cooperation 
with Bull-Atos in the Bull Sequana in the context of 
the CloudDBAppliance European project 
(CloudDBAppliance 2019). The Bull Sequana is a 
large parallel server than can reach 896 cores and 140 
TB of main memory.  

Extract-Transform-Load (ETL) process are 
commonly used at all enterprises and they play a key 
role in moving data across the different data 
management systems being used within the 
enterprise. One of the key performance issues is the 
speed of loading of the destination database. 

Loading data in LeanXcale appliance adopting the 
traditional way, by means of a sequential thread, does 
not actually exploit the potential of the platform, since 
the thread doing the loading process become the 
bottleneck. Despite the LeanXcale appliance is able 
to load many millions of records per second, using a 
single loading thread results is simply using a small 
fraction of the insertion capacity of the appliance. 

The loader addresses three key issues in the 
loading process:  

1. The parallelism of the loader process that is 
required to exploit the full capacity of the 
appliance. 

 

2. The efficiency of the process. Loading data does 
not have the same requirements as regular OLTP 
processing, and these lower requirements can be 
exploited to improve the efficiency of the process. 

 

3. The parallelism on the database server side. In 
order to fully exploit the parallelism on the server 
side it is necessary to guarantee that all servers 
will receive a fraction of the load. 

 

The first point have been addressed by creating a 
parallel loader that is multi-process and multi-
threaded. This enables to use as many machines and 
cores as required to load data at the maximum rate 
that the LeanXcale appliance can process. 

The second item has been addressed by exploiting 
the dual-interface provided by LeanXcale. The dual-
interface supports key-value and SQL APIs. Both 
interfaces work over the same relational data. Since 
ingesting data does not require SQL, the loader 
leverages the key-value interface to save all the SQL 
overhead to ingest the data. 
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The third bullet has been tackled by creating a 
data sampler that creates a histogram of the data to 
partition horizontally data across the servers before 
the loading process starts in order to guarantee that all 
servers will receive a similar amount of data, thus, 
reaching the maximum capacity of the appliance. 

2 LeanXcale ARCHITECTURE 

2.1 Layers 

LeanXcale (LeanXcale 2019) is an ultra-scalable 
parallel & distributed database manager. It consists of 
three layers: storage engine, transactional manager, 
and query engine. The storage engine is actually a 
parallel-distributed relational key-value data store. 
The transactional manager is a parallel-distributed 
system with several components. The query engine is 
parallel-distributed as well and can scale both OLTP 
(each instance handles a subset of the transactions) 
and OLAP workloads (multiple instances cooperate 
to execute a large analytical query). 

2.2 KiVi Storage Manager 

KiVi is a parallel-distributed storage manager. One of 
its differential features is that it is optimized to run 
efficiently on many-core and NUMA architectures 
(Ricardo Jiménez-Peris, 2019). Basically, a different 
KiVi server is deployed at each of the cores that are 
dedicated to the storage layer. 

Each table is horizontally partitioned into regions. 
Each region comprises a range of primary keys. The 
region is the distribution unit across servers. When a 
row is inserted it will hit the server managing the 
region where the row belongs (based on the primary 
key range of the horizontal partition). 

Client applications access LeanXcale database 
through the SQL interface, via the JDBC driver. 
Internally, KiVi is accessed by the query engine 
subsystem. KiVi offers a key-value API. This API is 
internally used by the query engine to interact with 
the storage layer. However, this API is also available 
to be used directly by client applications. In this way, 
LeanXcale database offers a dual-interface, key-value 
and SQL.  

This dual interface has the advantage that 
whenever it is convenient it becomes possible to 
avoid the overhead of SQL processing by directly 
accessing the key-value interface that is accesing the 
same relational data as SQL. 
 

 

Figure 1: LeanXcale subsystems. 

3 LeanXcale ARCHITECTURE 

3.1 What Is LeanXcale Database 

LeanXcale is an ultra-scalable operational Full SQL 
Full ACID distributed database (Ozsu and Valduriez, 
2014) with analytical capabilities. The database 
system consists of three subsystems: 
1. KiVi Storage Engine. 
2. Transactional Engine. 
3. SQL query Engine. 

3.2 LeanXcale Subsystems 

The operational database is a quite complex system in 
terms of different kinds of components. The 
operational database consists of a set of subsystems 
namely: the Query Engine (QE), the Transactional 
Manager (TM), the Storage Engine (SE) and the 
Manager (MG). Some subsystems are homogeneous 
and other heterogeneous.  

Homogeneous subsystems have all instances of 
the same kind of role. Heterogenous subsystems have 
different roles. Each role can have a single instance 
or multiple instances. The transactional manager has 
the following roles: Commit Sequencer (CS), 
Snapshot Server (SS), Conflict Managers (CMs) and 
Loggers (LGs). The former two are mono-instance, 
whilst the latter two are multi-instance. The Storage 
Engine has two roles data server (DM) and meta-data 
server (MS), both multiple instances. The query 
engine is homogeneous and multi-instance. There is a 
manager (MNG) that is single instance and single-
threaded. Many of these components can be 
replicated to provide high availability, but their nature 
does not change. Since replication it is an orthogonal 
topic, we do not mention anymore. 
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Figure 2: Loading Throughput. 

4 THE PARALLEL LOADER 

As aforementioned it does not matter how powerful 
is a database or data store. Loading has to be done 
carefully to attain its maximum loading capacity. 

The first aspect to be taken into account is the 
parallelism in the loader itself. Assume, there is a 
database able to handle 1 million insertions per 
second. Assume that the average latency of the 
insertion at this maximum throughput is 1 ms. If the 
loader is single threaded, it would do 1000 insertions 
per second. Why? Because it is limited by the latency 
of a single insertion that does not exploit the 
parallelism in the database. To reach the maximum 
throughput we will need 1,000 threads inserting data. 
A single computer might not be enough to generate 
this load what might require having the threads spread 
across multiple processes running on different 
computers. 

This is why a loader should be parallel and this is 
key for the speed of the loading process, that is, to 
reach the maximum speed of loading. 

However, the parallelism of the loader on the 
client side it is not enough. Despite the database 
server might be parallel or distributed, to reach its 
maximum potential data should be split evenly across 
the different server instances of the database server. 
This partitioning of data across server instances is not 
easy, especially because it has to guarantee balancing 
across them. 

This even partitioning requires to know about the 
data distribution. Doing it accurately guarantees a 
perfect split of data across servers. However, the 
accurate splitting is too expensive. For this reason, we 
have developed a data sampler. The data sampler 
samples a subset of the data. The number of samples 
that are needed depend on the dataset to be loaded. 
We have run a number of experiments with different 
dataset sizes, different number of regions and 
different number of samples. We have measured the 
resulting imbalance across regions. We have seen that 
basically by multiplying by 10 the number of 
samples, the inaccuracy can be reduced by around 3 
times. For a dataset of up to 600 million rows, a  sam-
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Figure 3. 

ple of 10,000 rows provides a fairly good accuracy 
(Azqueta-Alzuaz, 2017). 

After running the sampling process over the 
dataset to be loaded, then split points are set on the 
table that establish how data will be horizontally 
partitioned across the different servers.  

5 EXPERIMENTAL 
EVALUATION 

We have evaluated the parallel loader with LeanXcale 
database through its two interfaces, SQL and key-
value. We compare the results with the parallel 
loading over a well-known open source database, 
MariaDB. 

The evaluation has been performed over an 
INTEL quad computer with 8 GB of memory and 1 
SSD. 

The injection is made through the parallel loader 
with a load factor. The bigger the load factor, the 
higher the number of threads/processes in the parallel 
loader ingesting data into the database. 

The results are shown in Figure 1 and Figure 2. 
Figure 1 shows the evolution of throughput for an 
increasing loading factor. MariaDB was able to reach 
a maximum of 2,628 rows/second. LeanXcale with 
the SQL/JDBC interface (LX) was able to reach 

13,062 rows/second that is almost 5 times higher 
throughput. Interestingly the key-value interface 
(KV) reached a throughput of 135,220 rows/second, 
what means it was doing 10 times more than 
LeanXcale through the SQL interface and more than 
50 times what MariaDB was able to do. 

Figure 2 shows the results for latency. MariaDB 
has the poorest results, with a latency of 37 ms for the 
highest throughput it achieved. LeanXcale SQL 
interface was attained a latency of 1.3 ms under the 
maximum throughput. While LeanXcale KiVi 
interface had a latency of 1 ms for the maximum 
throughput figure. 

6 CONCLUSIONS 

The more performant and the scalable a database, the 
more careful it requires to perform the loading 
process. Otherwise, most of its capacity will be 
wasted. 

In this paper, we have presented a parallel loader 
that is able to exercise the maximum throughput of 
LeanXcale database. It does so by having parallelism 
on the loader multi-process and multi-threaded to be 
able to inject data at the maximum rate that 
LeanXcale database can handle. 

Secondly, a sampler has been developed that ena- 
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bles to set a priori the split points of the tables to be 
loaded to guarantee that the insertion load is 
distributed evenly across all server instances of 
LeanXcale. 

Thirdly, the key-value of LeanXcale storage layer, 
KiVi, it is exercised to avoid the overhead of SQL 
processing. 

A evaluation has been conducted and it has been 
found that the LeanXcale key-value interface is able 
to load data 10 times faster than the LeanXcale SQL 
database. Interestingly, it was able to load data 50 
times faster than MariaDB. 
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