Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Rushda Basir Ahmad and Nadeem Ahmad Khan

Affiliation: Department of Electrical Engineering, Lahore University of Management Sciences, Lahore, Pakistan

Keyword(s): Compression, Binary Encoding, Epilepsy, EEG.

Abstract: Ambulatory electroencephalogram (EEG), allows collection of patients data over extended periods of time. However, as a small recording requires large memory for storage, and this makes EEG data storage an arduous task. Moreover, classification of EEG for extraction of relevant information is relatively challenging, and selective data retrieval depends on task at hand. Consequently, EEG data storage and classification need to be computationally efficient. This paper presents a combined scheme, for the simultaneous compression and classification of EEG data, which not only decreases the overall computational effort, but also allows selective archiving and retrieval of data. Huffman and Arithmetic coding techniques are employed on CHB-MIT scalp EEG database and the results are presented in form of compression ratio (CR) and percentage root mean square distortion (PDR). For classification, Intelligent Neurologist Support System (INSS), has been used. The classifier output apart from bein g stored as data, is also used for intelligent data reduction, when only specific information is required, resulting in increased CR and decreased PDR, which is desired. Hence, the results show intelligent compression and reduction of data results in efficient management of EEG data. The signal undergoes state-of-the-art compression such that on reconstruction it almost maintains the same classification accuracy as the original one. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.188.42.10

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Ahmad, R. B. and Khan, N. A. (2020). Exploring the Merit of Collaboration in Classification and Compression of Epilepsy EEG Signal. In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020) - BIOSIGNALS; ISBN 978-989-758-398-8; ISSN 2184-4305, SciTePress, pages 23-29. DOI: 10.5220/0008853700230029

@conference{biosignals20,
author={Rushda Basir Ahmad and Nadeem Ahmad Khan},
title={Exploring the Merit of Collaboration in Classification and Compression of Epilepsy EEG Signal},
booktitle={Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020) - BIOSIGNALS},
year={2020},
pages={23-29},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0008853700230029},
isbn={978-989-758-398-8},
issn={2184-4305},
}

TY - CONF

JO - Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020) - BIOSIGNALS
TI - Exploring the Merit of Collaboration in Classification and Compression of Epilepsy EEG Signal
SN - 978-989-758-398-8
IS - 2184-4305
AU - Ahmad, R.
AU - Khan, N.
PY - 2020
SP - 23
EP - 29
DO - 10.5220/0008853700230029
PB - SciTePress