
ar
X

iv
:2

00
5.

05
57

9v
1

 [
cs

.A
I]

 1
2

M
ay

 2
02

0

Data-driven Algorithm for Scheduling with Total Tardiness

Michal Bouška1,2 a, Antonı́n Novák1,2 b, Přemysl Šůcha1 c, István Módos1,2 d, and Zdeněk

Hanzálek1 e

1Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague,

Jugoslávských partyzánů 1580/3, Prague, Czech republic
2Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering,

Karlovo náměstı́ 13, Prague, Czech republic

Keywords: Single Machine Scheduling, Total Tardiness, Data-Driven Method, Deep Neural Networks.

Abstract: In this paper, we investigate the use of deep learning for solving a classical N P -hard single machine schedul-

ing problem where the criterion is to minimize the total tardiness. Instead of designing an end-to-end machine

learning model, we utilize well known decomposition of the problem and we enhance it with a data-driven

approach. We have designed a regressor containing a deep neural network that learns and predicts the criterion

of a given set of jobs. The network acts as a polynomial-time estimator of the criterion that is used in a single-

pass scheduling algorithm based on Lawler's decomposition theorem. Essentially, the regressor guides the

algorithm to select the best position for each job. The experimental results show that our data-driven approach

can efficiently generalize information from the training phase to significantly larger instances (up to 350 jobs)

where it achieves an optimality gap of about 0.5%, which is four times less than the gap of the state-of-the-art

NBR heuristic.

1 INTRODUCTION

The classical approaches for solving combina-
torial problems have several undesirable properties.
First, solving instances of an N P -Hard problem to
optimality consumes an unfruitful amount of compu-
tational time. Second, there is no well-established
method how to utilize the solved instances for im-
proving the algorithm or recycling the solutions for
the unseen instances. Finally, the development of ef-
ficient heuristic rules requires a substantial time de-
voted to the research. To address these issues, we in-
vestigate the use of deep learning which is able to de-
rive knowledge from the already solved instances of
a classical scheduling N P -hard Single Machine Total
Tardiness Problem (SMTTP) and estimate the optimal
value of an unseen SMTTP instance. This is the first
successful application of deep learning to the schedul-
ing problem; we successfully integrated the deep neu-
ral network into a known decomposition algorithm
and outperformed the state-of-the-art heuristics. With
this, we are able to solve instances with hundreds of

a https://orcid.org/0000-0002-8034-2531
b https://orcid.org/0000-0003-2203-4554
c https://orcid.org/0000-0003-4895-157X
d https://orcid.org/0000-0003-4692-1625
e https://orcid.org/0000-0002-8135-1296

jobs, which is significantly more than, e.g., an end-to-
end approach (Vinyals et al., 2015) that solves Trav-
eling Salesman Problem with about 50 nodes. Our
proposed approach outperforms the state-of-the-art
heuristic for SMTTP.

1.1 Problem Statement

The combinatorial problem studied in this paper is de-
noted as 1||∑Tj in Graham’s notation of scheduling
problems (Graham et al., 1979). Let J = {1, . . . ,n} be
a set of jobs that has to be processed on a single ma-
chine. The machine can process at most one job at a
time, the execution of the jobs cannot be interrupted,
and all the jobs are available for processing at time
zero. Each job j ∈ J has processing time p j ∈Z≥0 and
due date d j ∈Z≥0. Let π : {1, . . . ,n} 7→{1, . . . ,n} be a
bijective function representing a sequence of the jobs,
i.e., π(k)∈ J is the job at position k in sequence π. For
a given sequence π, tardiness of job π(k) is defined

as Tπ(k) = max
(
0,
(
∑

k
k′=1 pπ(k′)

)
− dπ(k)

)
. The goal of

the scheduling problem is to find a sequence which
minimizes the total tardiness, i.e., ∑ j∈J Tj. The prob-

lem is proven to be N P -hard (Du and Leung, 1990).

In the rest of the paper, we use the following two
definitions to describe the ordering of the jobs:

1. earliest due date (edd): if 1 ≤ j < j′ ≤ n then ei-

http://arxiv.org/abs/2005.05579v1

ther (i) d j < d j′ or (ii) d j = d j′ ∧ p j ≤ p j′ ,

2. shortest processing time (spt): if 1 ≤ j < j′ ≤ n

then either (i) p j < p j′ or (ii) p j = p j′ ∧ d j ≤ d j′ .

1.2 Contribution and Outline

This paper addresses a single machine total tardi-
ness scheduling problem using a machine learning
technique. Unlike some existing works, for exam-
ple, (Vinyals et al., 2015), we do not purely count
on machine learning, but we combine it with the
known approaches from OR domain. The advan-
tage of our approach is that it can extract specific
knowledge from data, i.e., already solved instances,
and use it to solve the new ones. The experimen-
tal results show two important observations. First,
our algorithm outperforms the state-of-the-art heuris-
tic (Holsenback and Russell, 1992), and it also pro-
vides better results on some instances than the exact
state-of-the-art approach (Garraffa et al., 2018) with a
time limit. Second, the proposed algorithm is capable
of generalizing the acquired knowledge to solve in-
stances that were not used in the training phase and
also significantly differ from the training ones, e.g.,
in the number of jobs or the maximal processing time
of jobs.

The rest of the paper is structured as follows.
In Section 2, we present a review of literature for
SMTTP and combination of operations research (OR)
and machine learning (ML). Section 3 describes our
approach integrating a regressor into the decomposi-
tion and analyzes it’s time complexity. We present
results for standard benchmark instances for SMTTP
in Section 4. Finally, the conclusion is drawn in
Section 5.

2 RELATED WORK

The first part of the literature overview is based on
the extensive survey addressing SMTTP published by
(Koulamas, 2010) which we further extend with the
description of the current state-of-the-art algorithms.
The second part maps existing work in machine learn-
ing related to solving combinatorial problems.

2.1 SMTTP

In 1977 it was shown by Lawler (Lawler, 1977) that
the weighted single machine total tardiness problem
is N P -Hard. However, it took more than a decade to
prove that the unweighted variant of this problem is
N P -Hard as well (Du and Leung, 1990).

Lawler (Lawler, 1977) proposes a pseudo-
polynomial (in the sum of processing times)
algorithm for solving SMTTP. The algorithm is
based on a decomposition of the problem into
subproblems. The decomposition selects the job
with the maximum processing time and tries all
the positions following its original position in the
edd order. For each position, two subproblems are
generated; the first subproblem contains all the jobs
preceding the job with the maximum processing
time and the second subproblem contains all the
jobs following the job with the maximum processing
time. In addition, Lawler introduces rules for filtering
the possible positions of the job with the maximum
processing time. This algorithm can solve instances
with up to one hundred jobs. F. Della Croce et al.

(Della Croce et al., 1998) proposed a spt decompo-
sition which selects the job with the minimal due
date and tries all the positions preceding its original
position in spt order. Similarly as with the Lawler’s
decomposition, two subproblems are generated where
the first subproblem contains all the jobs preceding
the job with the minimal due date time and the second
subproblem contains all the jobs following the job
with the minimal due date. F. Della Croce et al. com-
bined both edd decomposition and spt decomposition
together, this presented algorithm is able to solve
instances with up to 150 jobs. Finally, Szwarc et
al. (Szwarc et al., 1999) integrate the double decom-
position from (Della Croce et al., 1998) and a split
procedure from (Szwarc and Mukhopadhyay, 1996).
This algorithm was the state-of-the-art method for a
long time with the ability to solve instance with up to
500 jobs.

Recently, Garraffa et al. (Garraffa et al., 2018)
proposed Total Tardiness Branch-and-Reduce Algo-
rithm (TTBR), which infers information about nodes
of the search tree and merges nodes related to the
same subproblem. This is the fastest known exact al-
gorithm for SMTTP to this date and is able to solve
instances with up to 1300 jobs.

Exact algorithms, such as the ones mentioned
above, have very large computation times while the
optimal solution is rarely needed in practice. Hence,
heuristic algorithms are often more practical. Exist-
ing heuristics algorithm can be categorized into the
following three major groups.

The first group of heuristics creates a job order
and schedule the jobs according this order, i.e., list
scheduling algorithms. There are various methods
for creating a job order. The easiest one is to
sort job by Earliest Due Date rule (edd). A more
efficient algorithm called NBR was proposed in
(Holsenback and Russell, 1992). NBR is a construc-

tive local search heuristic which starts with job set
J sorted by edd and constructs the schedule from
the end by exchanging two jobs. Panwalkar et al.
(Panwalkar et al., 1993) proposes constructive local
search heuristic PSK, which starts with job set J
sorted by spt and constructs the schedule from the
start by exchanging two jobs. Russel and Holsenback
(Russell and Holsenback, 1997) compares PSK and
NBR heuristic, and conducted that neither heuristic
is inferior to another one. However, NBR finds a
better solutions in more cases. The second group
of heuristics is based on Lawler decomposition rule
(Lawler, 1977). In this case, heuristic evaluates
each child of the search tree node and the most
promising child is expanded. This heuristic approach
is evaluated in (Potts and Van Wassenhove, 1991)
with edd heuristic as a guide for the search.
The third group of heuristics are meta-
heuristics. (Potts and Van Wassenhove, 1991),
(Antony and Koulamas, 1996),
(Ben-Daya and Al-Fawzan, 1996) present simu-
lated annealing algorithm for SMTTP. Genetic
algorithms applied to SMTTP are described in
(Dimopoulos and Zalzala, 1999), (Süer et al., 2012),
whereas (Bauer et al., 1999), (Cheng et al., 2009)
propose to use ant colony optimization for this
scheduling problem. All the reported results in the
previous studies are for instance sizes up to 100
jobs. However, these instances are solvable by the
current state-of-the-art exact algorithm in a fraction
of second.

2.2 Machine Learning Integration to

Combinatorial Optimization

Problems

The integration of ML to combinatorial optimiza-
tion problems has several difficulties. As first, ML
models are often designed with feature vectors hav-
ing predefined fixed size. On the other hand, in-
stances of scheduling problems are usually described
by a variable number of features, e.g., variable num-
ber of jobs. This issue can be addressed by recur-
rent networks and, more recently, by encoder-decoder
type of architectures. Vinyals (Vinyals et al., 2015)
applied an architecture called Pointer Network that,
given a set of graph nodes, outputs a solution as
a permutation of these nodes. The authors applied
the Pointer Network to Traveling Salesman Problem
(TSP), however, this approach for TSP is still not
competitive with the best classical solvers such as
Concorde (Applegate et al., 2006) that can find opti-
mal solutions to instances with hundreds nodes in a
fraction of second. Moreover, the output from the

Pointer Network needs to be corrected by the beam-
search procedure, which points out the weaknesses
of this end-to-end approach. Pointer Network has
achieved optimality gap around 1% for instance with
20 nodes after performing beam-search.

Second difficulty with training a ML model is
with acquisition of training data. Obtaining one train-
ing instance usually requires solving a problem of
the same complexity like the original problem itself.
This issue can be addressed with reinforcement learn-
ing paradigm. Deudon et al. (Deudon et al., 2018)
used encoder-decoder architecture trained with RE-
INFORCE algorithm to solve 2D Euclidean TSP with
up to 100 nodes. It is shown that (i) repetitive sam-
pling from the network is needed, (ii) applying well-
known 2-opt heuristic on the results still improves the
solution of the network, and (iii) both the quality and
runtime are worse than classical exact solvers. Simi-
lar approach is described in (Kool and Welling, 2018)
which, if it is treated as a greedy heuristic, beats weak
baseline solutions (from the operations research per-
spective) such as Nearest Neighbor or Christofides
algorithm on small instances. To be competitive in
terms of quality with more relevant baselines such
as Lin-Kernighan heuristics, they perform multiple
sampling from the model and output the best solu-
tion. Moreover, they do not directly compare their
approach with state-of-the-art classical algorithms
while admitting that off-the-shelf Integer Program-
ming solver Gurobi solves optimally their largest in-
stances within 1.5 s.

Khalil et al. (Khalil et al., 2017) present an inter-
esting approach for learning greedy algorithms over
graph structures. The authors show that their S2V-
DQN model can obtain competitive results on MAX-
CUT and Minimum Vertex Cover problems. For TSP,
S2V-DQN performs about the same as 2-opt heuris-
tics. Unfortunately, the authors do not compare run-
times with Concorde solver.

Milan et al. (Milan et al., 2017) presents
a data-driven approximation of solvers for N P -
hard problems. They utilized a Long Short-

Term Memory (Hochreiter and Schmidhuber, 1997)
(LSTM) network with a modified supervised setting.
The reported results on the Quadratic Assignment
Problem show that the network’s solutions are worse
than general purpose solver Gurobi while having the
essentially identical runtime.

Integration of ML with scheduling problems has
received a little attention so far. Earlier attempts of
integrating neural networks with job-shop scheduling
are (Zhou et al., 1991) and (Jain and Meeran, 1998).
However, their computational results are inferior to
the traditional algorithms, or they are not extensive

enough to assess their quality. An alternative use of
ML in scheduling domain is focused on the criterion
function of the optimization problems. For example,
authors in (Václavı́k et al., 2016) address a nurse ros-
tering problem and improved the evaluation of the so-
lutions’ quality without calculating their exact crite-
rion values. They propose a classifier, implemented as
a neural network, able to determine whether a certain
change in a solution leads to a better solution or not.
This classifier is then used in a local search algorithm
to filter out solutions having a low chance to improve
the criterion function. Nevertheless, this approach is
sensitive to changes in the problem size, i.e., the size
of the schedule of nurses. If the size is changed, a
new neural network must be trained. Another method,
which does not directly predict a solution to the given
instance, is proposed in (Václavı́k et al., 2018). In
this case, an online ML technique is integrated into an
exact algorithm where it acts as a heuristic. Specifi-
cally, the authors use regression for predicting the up-
per bound of a pricing problem in a Branch-and-Price
algorithm. Correct prediction leads to faster compu-
tation of the pricing problem while incorrect predic-
tion does not affect the optimality of the algorithm.
This method is not sensitive to the change of the prob-
lem size; however, it is designed specifically for the
Branch-and-Price approach and cannot be generalized
to other approaches.

3 PROPOSED DECOMPOSITION

HEURISTIC ALGORITHM

In this section, we introduce Heuristic Opti-

mizer using Regression-based Decomposition Algo-
rithm (HORDA) for Single Machine Total Tardiness
Problem (SMTTP). This heuristic effectively com-
bines the well-know properties of SMTTP and the
data-driven approach. Moreover, this paper proposes
a methodology for designing data-driven heuristics
for scheduling problems where good estimator of the
optimization criterion can be obtained to guide the
search.

This section is structured as follows. First of all,
we summarize decompositions used in the algorithm.
As the second, we describe HORDA. Next we con-
tinue by discussing the architecture of the regressor,
its integration into SMTTP decompositions, and de-
scribe the training of the neural network. Finally, we
analyze the time complexity of HORDA algorithm.

3.1 SMTTP Decompositions

Firstly, we describe two different decomposition ap-
proaches for SMTTP. The reason is that every state-
of-the-art exact algorithm for SMTTP is based on
these two decompositions.

First decomposition, introduced by Lawler
(Lawler, 1977), uses edd (earliest due date) order
in which it selects position for job jp-max, i.e., a
job with the maximal processing time from job set
J (in case of tie, jp-max is the job with the larger
index in edd order). Lawler proves that there
exists position k ∈ { jp-max, . . . ,n} in the edd order
such that at least one optimal solution exists where
jp-max is preceded by all jobs {1, . . . ,k} \ { jp-max}
and followed by all jobs {k + 1, . . . ,n}. Let us
denote set of positions { jp-max, . . . ,n} as Kedd . This
property leads to the following exact decomposition
algorithm. First, let Pedd : P (J)× [1, . . . ,n]→ P (J)
and Fedd : P (J) × [1, . . . ,n] → P (J) be functions
which for job set J and position k return subproblem
with jobs {1, . . . ,k} \ { jp-max} and {k + 1, . . . ,n},
respectively. Where P (J) is powerset of J. Thus, for
each eligible position k ∈ { jp-max, . . . ,n}, the problem
is decomposed into two subproblems defined by
Pedd(J,k) and Fedd(J,k) such that jobs jp-max is
neither in Pedd nor in Fedd . Let Z (J) denote the
optimal criterion value for job set J computed as

Z (J) = min
k∈Kedd

Z (J,k) , (1)

where

Z (J,k) = Z
(

Pedd(J,k)
)
+

max

0, pk− dk + ∑

j∈Pedd(J,k)

p j

+

Z
(

Fedd(J,k)
)
.

(2)

The optimal solution to the instance is found by recur-
sively selecting the position k with the minimal crite-
rion Z.

The second decomposition(Della Croce et al., 1998)
introduced by Della Croce et al. uses spt order in
which it selects position for job jd-min. We refer to
this decomposition as spt decomposition. Let us
define jd-min job as a job with the minimal due date
from job set J (in case of tie, jd-min is the job with the
smaller index in the spt order). Similarly as in the edd
decomposition proposed by Lawler, Della Croce et

al. (Della Croce et al., 1998) prove that for job jd-min

in spt order there exists position k ∈ {1, . . . , jd-min}
such that in at least one optimal solution jd-min

is preceded by job set generated by function

Pspt : P (J)× [1, . . . ,n] → P (J). Pspt(J,k) returns
job set with first k jobs selected from {1, . . . , jd-min}
which are then sorted by edd. Job jd-min is followed
by job set Fspt : P (J)× [1, . . . ,n]→ P (J) with all the
others jobs. The set of positions k ∈ {1, . . . , jd-min} is
denoted as Kspt . One may use the spt decomposition
in the same recursive way as edd decomposition to
find the optimal solution.

The efficiency of both decomposition approaches
is significantly influenced by the branching factor.
Here, the branching factor is equal to the number of
eligible positions where job jp-max ∈ Kedd (jd-min ∈
Kspt) can be placed. The number of eligible posi-
tions can be reduced by filtering rules described in
(Lawler, 1977) and (Szwarc et al., 1999). Let us de-

note that Kedd , Kspt are the sets Kedd , Kspt filtered by
rules from (Szwarc et al., 1999) respectively.

3.2 HORDA

Even though algorithms using decompo-
sitions proposed in (Lawler, 1977) and
(Della Croce et al., 1998) are very efficient, their
time complexity exponentially grows with the
number of jobs. Our HORDA algorithm avoids this
exponential growth by pruning the search tree ruled
by the polynomial-time estimation of (2) produced
by a neural network. The estimations of Z (J,k) and

Z (J) are denoted as Ẑ (J,k) and Ẑ (J), respectively.

HORDA algorithm is outlined in Algorithm 1.
To increase the efficiency of the solution space
search, our HORDA algorithm combines the
power of both decompositions (Lawler, 1977)
and (Della Croce et al., 1998) in the following way.
The HORDA algorithm generates (lines 5 and 6) two

sets of eligible positions Kedd and Kspt by either edd
or spt decomposition which are filtered by state-
of-the-art rules (Szwarc and Mukhopadhyay, 1996).
Then, the set with the minimal cardinality is selected
(lines 7 - 12) for the recursive expansion; we refer to
the selected set as K.

After obtaining positions set K, the algorithm
greedily selects k∗ position having the minimal esti-

mation Ẑ (line 13). Next, the algorithm recursively
explores job sets P(J,k∗) and F (J,k∗), and result-
ing partial sequences are stored as vectors before and
after respectively (lines 14 and 15). Finally, the al-
gorithm merges {before,k∗,after} into one sequence,
which is returned as the resulting schedule (line 17).
Note that job sets with less or equal than 5 jobs are
solved to optimality by an exact solver (Total Tardi-
ness Branch-and-Reduce Algorithm (TTBR)) instead
of the decomposition.

Algorithm 1: Decomposition heuristic search
(HORDA)

Data: J

Result: HORDA ordered jobs
1 Function HORDA (J):

2 if |J| ≤ 1 then

3 return toSequence(J)

4 end

/* Generate edd and spt positions

with respect to the filtering

rules */

5 Kedd ← genEDDPos(J)
6 Kspt ← genSPTPos(J)

7 if |Kedd | ≤ |Kspt | then

8 K ← Kedd , P ← Pedd , F ← Fedd

9 end

10 else

11 K ← Kspt , P ← Pspt , F ← F spt

12 end

/* Where Ẑ is computed by

regressor. */

13 k∗ ← argmink∈K (Ẑ (P(J,k))+max(0, pk−

dk +∑ j∈P(J,k) p j)+ Ẑ (F (J,k)))

14 before← HORDA (P(J,k∗))
15 after← HORDA (F (J,k∗))

/* join sequences into one */

16 order← (before, k∗, after)
17 return order

3.3 Regressor

The proposed HORDA algorithm utilizes the regressor
estimation in the decomposition to guide the search
by selecting position k∗ that minimizes the estimated

criterion Ẑ (see line 13). The quality of the estima-
tion significantly affects the quality of the found solu-
tions. However, HORDA algorithm is not sensitive to
absolute error of the estimation, instead, it’s relative
error is important. Therefore, the proposed regres-
sor is based on neural networks that are known to be
successful for problems sensitive to relative error, for
example Google (Silver et al., 2016) applied them to
predict a policy in Monte Carlo Tree Search to solve
game of Go.

The architecture of our regressor using neural net-
work is illustrated in Figure 1. It has two main parts.
The first one is the normalization of the input data, de-
scribed in Section 3.3.1. The second one is the neural
network, explained in Section 3.3.2.

n
eu

ral
n

etw
o

rk

J

Norm

LSTM (512)

dense (1)

Norm−1

Ẑ(J) ∈ R≥0

XXX

y

Figure 1: Regressor architecture.

3.3.1 Input Data Preprocessing

The speed of training and quality of the neural net-
work is affected by the preprocessing of the input in-
stances. There are two main reasons for the prepro-
cessing denoted as Norm in Figure 1. Firstly, prepro-
cessing of the input instance normalizes the instances,
and thus reduces the variability of input data denoted
XXX . For example, two neural network inputs differing
only in job order are, in fact, the same. Secondly, nu-
merical stability of the computation is improved by
the preprocessing. In our regression architecture, the
preprocessing has three main parts:

1. sorting of the input: we performed preliminary
experiments with various sorting options such as
edd, spt, reversed edd and reversed spt, among
which edd performed the best.

2. normalization of the input: the processing times
and due dates are divided by the sum of the pro-
cessing times in the instance.

3. appending additional features to the neural net-
work: each job has one additional feature which
is its position in XXX divided by the number of the
jobs.

The best practice in the neural network training
is to normalize value that is estimated by the neu-
ral network, denoted as y in Figure 1. In the train-
ing phase, the associated optimal criterion value of
each instance is divided by the sum of the process-
ing times. Alternatively, we evaluated one additional
criterion normalization Z/

(
n ·∑ j∈J p j

)
. However, it

performed poorly. In the HORDA the estimation pro-
duced by the neural network has to be denormalized
by the inverse transformation (Norm−1 in Figure 1) to
obtain the actual estimation of the total tardiness.

3.3.2 Neural Network

The input data for our neural network have several
similarities as the input data for nature language pro-
cessing (NLP) problems. Firstly, as well as NLP,
our data can be arbitraly large, i.e., the size of job
set J is unbounded; similarly, sentences in NLP can
be arbitrarily long. In other research fields, such as
computer vision, this issue is mitigated by scaling
the feature vectors to a fixed length. However, there
is no simple and general way for scheduling prob-
lems how to aggregate multiple jobs into one without
losing necessary information. Therefore, we use an-
other technique of dealing with the varying length of
the input which are recurrent neural network (RNN)
(Sundermeyer et al., 2012).

Our neural network for the criterion estima-
tion of J consists of two parts (the red box in
Figure 1). The first layer is Long Short-Term Memory
(Hochreiter and Schmidhuber, 1997) (LSTM), which
receives job set J as the input. The input XXX is a se-
quence of features xxx j for every job j ∈ J. Each feature
vector xxx j consists of p j and d j with additional features
described below. The output of the last LSTM step is
passed into a dense layer which produces estimation
y of the criterion for XXX .

3.4 Time Complexity of HORDA

In this section, we present the worst-case runtime of
HORDA. The most time consuming part of HORDA is

the estimation of Ẑ (J) by the regressor. The LSTM

layer produces Ẑ (J) in O(n) time and HORDA algo-
rithm evaluates the regressor 2 ·n times to select posi-
tion k∗ from K. Thus, the evaluation of all the estima-
tions for K takes O(n2). In the worst-case, when de-
composition repetitively removes one job, HORDA al-
gorithm makes O(n) selections of position k∗. There-
fore, the worst-case time complexity of HORDA al-
gorithm is O(n3). However, we note that the con-
stants present in the asymptotic complexit are fairly
low. Hence, it is efficient in practice, as well.

4 EXPERIMENTAL RESULTS

In this section, we present the experimental re-
sults. Firstly, we describe the training of the neu-
ral network, also with the acquisition of a train-
ing dataset. Secondly, we describe the generation
of the benchmark instances. Then we compare our
HORDA heuristic with the state-of-the-art heuristic
NBR (Holsenback and Russell, 1992) and exact algo-

rithm TTBR (Garraffa et al., 2018). Finally, we dis-
cuss the advantages of our proposed heuristic.

Experiments were run on a single-core of the
Xeon(R) Gold 6140 processor with a memory limit
set to 8GB of RAM. HORDA and NBR algorithms
were implemented in Python, and the neural network
is trained in Tensor Flow 1.14 on Nvidia GTX 1080
Ti. Source codes of TTBR algorithm were provided
by authors of (Garraffa et al., 2018) and it is imple-
mented in C.

4.1 Neural Network Training

We trained the neural network with Adam optimizer,
with learning rate set to 0.0001, early stop with
patience equals to 5. Size of the LSTM layer is
set to 512. For the neural network training, we
generated instances by scheme introduced by Potts
and Wassenhove (Potts and Wassenhove, 1982). The
scheme uses two parameters; relative range of due
dates (rdd), and the average tardiness factor (tf).
The values of rdd, tf typically used in the litera-
ture are rdd, tf ∈ {0.2,0.4,0.6,0.8,1}. For each such
rdd, tf and n ∈ {5, . . . ,250}, we generated 5000 in-
stances. Therefore, the whole training dataset consists
of 30625000 instances in total. Since we use a super-
vised learning to train the neural network, we need
optimal criterion values that acts as labels.

It is easy to see that the dataset is enormous,
and it is necessary to solve millions of SMTTP in-
stances. However, this is not an issue since a sub-
stantial amount of the instances can be solved within
a fraction of a second. Moreover, the dataset can be
cheaply generated in the cloud, e.g., on the Amazon
EC2 cloud, the cost of generating the dataset is around
800$ and takes only ten days, which is significantly
cheaper compared to the cost of a human expert de-
veloping a heuristic algorithm.

Furthermore, it is important to stress that our neu-
ral network is able to generalize to larger instance
than used in the training. Therefore, it is possible
to train the neural network on smaller instances and

Table 1: Mean TTBR(Garraffa et al., 2018) runtimes in
seconds with respect to instance parameters for n ∈
{5, . . . ,500} and pmax = 100. For parameters relative range
of due dates (rdd), and the average tardiness factor (tf).

rdd/tf 0.2 0.4 0.6 0.8 1.0

0.2 0.07 2.16 5.16 1.64 0.04
0.4 0.04 0.36 1.64 0.05 0.04
0.6 0.04 0.06 0.47 0.04 0.04
0.8 0.04 0.04 0.07 0.04 0.04
1.0 0.04 0.04 0.04 0.04 0.04

solve larger ones both in terms of the number of jobs
and their parameters.

4.2 Benchmark Instances

Benchmark instances used in this paper were gen-
erated in the manner suggested by Potts and Van
Wassenhove in (Potts and Van Wassenhove, 1991)
and used in Section 4.1. Potts and Van Wassenhove
generate processing times of jobs uniformly on the
interval from 1 to 100. We define maximal pro-
cessing time pmax and generate processing time of
jobs in instance uniformly on the interval from 1 to
pmax. For pmax = 100 and n ∈ {5, . . . ,500}, we gen-
erated 25 sets of benchmarks differing in rdd and
tf . Then those instances were solved by TTBR al-
gorithm. Table 1 shows average runtimes in seconds
over (rdd, tf) ∈ {0.2,0.4,0.6,0.8,1}2. The results im-
ply, that the hardest instances occur for rdd = 0.2 and
tf = 0.6 (highlighted in Table 1 in bold), therefore our
experiments concentrate on them. Nevertheless, it is
important to stress that the neural network is trained
on the whole range of values (rdd, tf). First, we do
not want the algorithm to be limited to a specific class
of instances. Second, since our algorithm uses the
decompositions, as described in Section 3.1, there
is no guarantee that the subproblems have the same
(rdd, tf) parameterization as the input instance. In
fact, during the run of HORDA, the values of (rdd, tf)
in newly emerged subproblems shift from the original
ones.

4.3 Comparison with Existing

Approaches

In the first experiment, summarized in Table 2, we
concentrate on the comparison with NBR heuristic.
The benchmark instances used in this experiment
were generated with pmax = 100. Each row in the ta-
ble represents a set of 200 instances of size from range
[n−25,n+25). The optimal solution was obtained by
TTBR algorithm. The table compares NBR heuristic
with HORDA algorithm where the regressor is substi-
tuted by NBR heuristic (denoted HORDA+NBR), and
HORDA heuristic with the neural network regressor
(denoted HORDA+NN). These three approaches are
compared in terms of the average CPU time, and the
average quality of solutions, measured by the optimal-
ity gap in percent. All values are reported together
with their standard deviation.

Results are shown from n = 200. For smaller n
than 200, TTBR is able to find the optimal solution un-
der a second, and because of this, the results of heuris-
tics are not relevant. The bold values in the table in-

Table 2: Optimality gap of HORDA, TTBR(Garraffa et al., 2018) and NBR(Holsenback and Russell, 1992) on instances with
pmax = 100.

n TTBR NBR HORDA+NBR HORDA+NN

±25 time [s] gap [%] time [s] gap [%] time [s] gap [%] time [s]

225 1.05± 2.90 1.98± 0.58 0.06± 0.01 1.17± 0.47 1.19± 0.42 0.58± 0.30 5.03± 8.16
275 2.45± 4.19 2.12± 0.54 0.09± 0.02 1.31± 0.44 1.91± 0.62 0.57± 0.28 6.89± 9.62
325 4.72± 4.09 2.20± 0.50 0.12± 0.02 1.39± 0.43 2.87± 0.90 0.57± 0.37 9.25± 11.29
375 8.42± 4.75 2.27± 0.49 0.17± 0.03 1.46± 0.44 4.15± 1.31 1.23± 0.63 14.61± 13.52
425 14.42± 8.06 2.34± 0.46 0.21± 0.04 1.55± 0.41 5.52± 1.71 1.71± 0.65 20.60± 17.00

Table 3: Optimality gap of heuristics on instances with pmax = 5000.

n TTBR TTBR 10s NBR HORDA+NBR HORDA+NN

±25 time [s] gap [%] gap [%] gap [%] gap [%] time [s]

225 10.66± 9.20 0.17± 0.31 1.91± 0.60 1.10± 0.48 0.58± 0.27 3.58± 0.81
275 40.36± 32.24 0.77± 0.69 2.00± 0.54 1.20± 0.45 0.55± 0.27 4.89± 1.02
325 92.30± 56.39 1.28± 0.86 2.27± 0.53 1.36± 0.47 0.53± 0.33 6.61± 1.50
375 212.69± 122.14 1.87± 0.87 2.39± 0.47 1.50± 0.48 1.09± 0.60 10.32± 2.18
425 488.76± 265.88 2.64± 0.87 2.32± 0.44 1.52± 0.41 1.73± 0.64 14.96± 2.00

200 250 300 350 400 450

0

1

2

3

NN Generalization

n

o
p
ti

m
al

it
y

g
ap

[%
]

NBR

HORDA+NBR

HORDA+NN

TTBR10s

Figure 2: Optimality gap on instances with pmax = 5000.

dicate the best result over all the heuristic approaches
for the particular set of instances. The results show
that HORDA+NN has the best performance in terms of
the average optimality gap. In the case of the last data
set, the second heuristic HORDA+NBR is slightly bet-
ter. The reason is that the neural network was trained
only on instances with n ≤ 250. Therefore, one can
see that our neural network, used in the regressor, is
able to generalize the gained knowledge to instances
with n≤ 400. On instances with n≤ 325, the average
optimality gap of HORDA+NN is about 0.5%, which
outperforms all other methods. At the same time, we
have to admit that the heuristic is slower than TTBR

algorithm. Nevertheless, this is true only on instances
generated with pmax = 100. On larger maximum pro-

cessing time, the CPU time of TTBR is significantly
larger as will be seen in the next experiment.

In literature, benchmark instances for SMTTP are
usually generated with pmax = 100, as it was used in
the previous experiment. Since SMTTP is applica-
ble in production and grid computing and pmax can be
much longer in these fields, we introduce the follow-
ing experiments with maximal processing time pmax

equal to 5000. Table 3 compares our HORDA+NN and
HORDA+NBR heuristics with NBR, TTBR and TTBR

with runtime limited to 10 s denoted as TTBR10s. For
TTBR10s, a 10 s limit is selected with respect to the
HORDA+NN algorithm runtime, since the runtime of
HORDA+NN on instances with up to n = 350 is un-
der 10 s. Please note that the identical regressor as in

Table 2 was used, i.e., the regressor was trained only
on instances with pmax = 100. Hence, it demonstrates
neural network’s ability of generalization outside the
training processing time range.

One can observe from Table 2 and Table 3 that the
CPU time of HORDA+NN is almost the same for both
types of instances. However, this is not true for TTBR

where the CPU time is almost 30 times higher for
n = 425. Also, the CPU time of TTBR is more than
30 times higher for n = 425 and pmax = 5000 com-
pared to HORDA+NN. If the runtime of TTBR is lim-
ited to 10 s, then HORDA+NN outperforms TTBR10s

on larger instances. Moreover, the optimality gap of
HORDA+NN is practically the same as in the previous
experiment with pmax = 100.

The same experiment is shown in the form of a
graph in Figure 2. It compares the optimality gap
of NBR, TTBR with a time limit, HORDA+NBR, and
HORDA+NN. The bold lines in the graph represent
the moving average (last 5 samples) of optimality
gap of each method, and the colored areas represent
their standard deviation. HORDA+NN outperforms
HORDA+NBR about two times up to instances of size
n = 360. For instances with n ≥ 405, HORDA+NBR,
is slightly better. In addition, HORDA+NN also
outperforms TTBR10s from n = 265. Furthermore,
HORDA+NN holds the average optimality gap around
0.5% for instances with up to 350 jobs. The same
can be observed on instances with pmax = 100 (see
Table 2). Finally, the runtime of TTBR grows expo-
nentially with the growing size of the instance, in con-
trast to polynomial runtime of HORDA+NN.

Concerning the heuristic using the neural network
(HORDA+NN), it is important to stress that for in-
stances with n > 250 the network has to generalize
the acquired knowledge since it was trained only on
instances with n ≤ 250. This fact is indicated in
Figure 2 by a green vertical line. It can be seen that
HORDA+NN is able to generalize results to instances
having 100 more jobs than instances encountered in
the training phase with 50 times larger maximal pro-
cessing time (instances for the training phase were
generated with pmax = 100).

5 CONCLUSION

To the best of our knowledge, this is the first paper
addressing a scheduling problem using deep learn-
ing. Unlike the solution used in (Vinyals et al., 2015),
which tackled the Traveling Salesman Problem,
we combined a state-of-the-art operations research
method with a DNN. The experimental results show
that our approach provides near-optimal solutions

very quickly and is also able to generalize the ac-
quired knowledge to larger instances without signif-
icantly affecting the quality of the solutions. Our
approach outperforms state-of-the-art heuristic NBR.
Our approach is shown to be competitive and in some
cases, superior to the previous state-of-the-art algo-
rithms. Hence, we believe that the proposed method-
ology opens new possibilities for the design of effi-
cient heuristics algorithms.

ACKNOWLEDGEMENTS

The authors want to thank Vincent T’Kindt
from Universit de Tours for providing the source
code of TTBR algorithm. This work was sup-
ported by the European Regional Development
Fund under the project AI&Reasoning (reg. no.
CZ.02.1.01/0.0/0.0/15 003/0000466).

This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS19/175/OHK3/3T/13.

REFERENCES

Antony, S. R. and Koulamas, C. (1996). Simulated anneal-
ing applied to the total tardiness problem. Control and
Cybernetics, 25:121–130.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (2006).
Concorde TSP solver.

Bauer, A., Bullnheimer, B., Hartl, R. F., and Strauss,
C. (1999). An ant colony optimization approach
for the single machine total tardiness problem. In
Proceedings of the 1999 Congress on Evolution-
ary Computation-CEC99 (Cat. No. 99TH8406), vol-
ume 2, pages 1445–1450. IEEE.

Ben-Daya, M. and Al-Fawzan, M. (1996). A simulated
annealing approach for the one-machine mean tardi-
ness scheduling problem. European Journal of Oper-
ational Research, 93(1):61–67.

Cheng, T. E., Lazarev, A. A., and Gafarov, E. R. (2009).
A hybrid algorithm for the single-machine total tar-
diness problem. Computers & Operations Research,
36(2):308–315.

Della Croce, F., Tadei, R., Baracco, P., and Grosso, A.
(1998). A new decomposition approach for the single
machine total tardiness scheduling problem. Journal
of the Operational Research Society, 49(10):1101–
1106.

Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., and
Rousseau, L.-M. (2018). Learning heuristics for the
tsp by policy gradient. In International Conference
on the Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research, pages
170–181. Springer.

Dimopoulos, C. and Zalzala, A. (1999). A genetic
programming heuristic for the one-machine total
tardiness problem. In Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat.
No. 99TH8406), volume 3, pages 2207–2214. IEEE.

Du, J. and Leung, J. Y. T. (1990). Minimizing total tardi-
ness on one machine is NP-Hard. Math. Oper. Res.,
15(3):483–495.

Garraffa, M., Shang, L., Della Croce, F., and T’Kindt, V.
(2018). An exact exponential branch-and-merge algo-
rithm for the single machine total tardiness problem.
Theoretical Computer Science, 745:133–149.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. R.
(1979). Optimization and approximation in determin-
istic sequencing and scheduling: a survey. Annals of
discrete mathematics, 5:287–326.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Comput., 9(8):1735–1780.

Holsenback, J. E. and Russell, R. M. (1992). A heuristic
algorithm for sequencing on one machine to minimize
total tardiness. Journal of the Operational Research
Society, 43(1):53–62.

Jain, A. S. and Meeran, S. (1998). Job-shop scheduling
using neural networks. International Journal of Pro-
duction Research, 36(5):1249–1272.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L.
(2017). Learning combinatorial optimization algo-
rithms over graphs. In Advances in Neural Informa-
tion Processing Systems, pages 6348–6358.

Kool, W. and Welling, M. (2018). Attention solves your
TSP. arXiv preprint arXiv:1803.08475.

Koulamas, C. (2010). The single-machine total tardiness
scheduling problem: Review and extensions. Euro-
pean Journal of Operational Research, 202(1):1 – 7.

Lawler, E. L. (1977). A pseudopolynomial algorithm for se-
quencing jobs to minimize total tardiness. In Hammer,
P., Johnson, E., Korte, B., and Nemhauser, G., editors,
Studies in Integer Programming, volume 1 of Annals
of Discrete Mathematics, pages 331 – 342. Elsevier.

Milan, A., Rezatofighi, S. H., Garg, R., Dick, A. R., and
Reid, I. D. (2017). Data-driven approximations to NP-
hard problems. In AAAI, pages 1453–1459.

Panwalkar, S., Smith, M., and Koulamas, C. (1993).
A heuristic for the single machine tardiness prob-
lem. European Journal of Operational Research,
70(3):304–310.

Potts, C. and Van Wassenhove, L. N. (1991). Single ma-
chine tardiness sequencing heuristics. IIE transac-
tions, 23(4):346–354.

Potts, C. and Wassenhove, L. V. (1982). A decomposition
algorithm for the single machine total tardiness prob-
lem. Operations Research Letters, 1(5):177 – 181.

Russell, R. and Holsenback, J. (1997). Evaluation of
greedy, myopic and less-greedy heuristics for the sin-
gle machine, total tardiness problem. Journal of the
Operational Research Society, 48(6):640–646.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484.

Süer, G. A., Yang, X., Alhawari, O. I., Santos, J., and
Vazquez, R. (2012). A genetic algorithm approach for
minimizing total tardiness in single machine schedul-
ing. International Journal of Industrial Engineering
and Management (IJIEM), 3(3):163–171.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). Lstm
neural networks for language modeling. In Thirteenth
annual conference of the international speech commu-
nication association.

Szwarc, W., Della Croce, F., and Grosso, A. (1999). So-
lution of the single machine total tardiness problem.
Journal of Scheduling, 2(2):55–71.

Szwarc, W. and Mukhopadhyay, S. K. (1996). Decompo-
sition of the single machine total tardiness problem.
Operations Research Letters, 19(5):243–250.

Václavı́k, R., Novak, A., Šůcha, P., and Hanzálek, Z.
(2018). Accelerating the branch-and-price algorithm
using machine learning. European Journal of Opera-
tional Research, 271(3):1055 – 1069.

Václavı́k, R., Šůcha, P., and Hanzálek, Z. (2016). Roster
evaluation based on classifiers for the nurse rostering
problem. Journal of Heuristics, 22(5):667–697.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer
networks. In Advances in Neural Information Pro-
cessing Systems, pages 2692–2700.

Zhou, D. N., Cherkassky, V., Baldwin, T. R., and Olson,
D. E. (1991). A neural network approach to job-shop
scheduling. IEEE Transactions on Neural Networks,
2(1):175–179.

This figure "orcid.png" is available in "png"
 format from:

http://arxiv.org/ps/2005.05579v1

http://arxiv.org/ps/2005.05579v1

