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Abstract: Robustness to out-of-distribution (OOD) data is an important goal in building reliable machine learning sys-
tems. Especially in autonomous systems, wrong predictions for OOD inputs can cause safety critical situa-
tions. As a first step towards a solution, we consider the problem of detecting such data in a value-based deep
reinforcement learning (RL) setting. Modelling this problem as a one-class classification problem, we pro-
pose a framework for uncertainty-based OOD classification: UBOOD. It is based on the effect that an agent’s
epistemic uncertainty is reduced for situations encountered during training (in-distribution), and thus lower
than for unencountered (OOD) situations. Being agnostic towards the approach used for estimating epistemic
uncertainty, combinations with different uncertainty estimation methods, e.g. approximate Bayesian inference
methods or ensembling techniques are possible. We further present a first viable solution for calculating a dy-
namic classification threshold, based on the uncertainty distribution of the training data. Evaluation shows that
the framework produces reliable classification results when combined with ensemble-based estimators, while
the combination with concrete dropout-based estimators fails to reliably detect OOD situations. In summary,
UBOOD presents a viable approach for OOD classification in deep RL settings by leveraging the epistemic
uncertainty of the agent’s value function.

1 INTRODUCTION

One of the main impediments to the deployment of
autonomous machine learning systems in the real
world is the difficulty to show that the system will
continue to reliably execute beneficial actions in all
the situations it encounters in production use. One
of the possible reasons for failure is so called out-
of-distribution (OOD) data, i.e. data which devi-
ates substantially from the data encountered during
training. As the fundamental problem of limited
training data seems unsolvable for most cases, es-
pecially in sequential decision making tasks like re-
inforcement learning (RL), a possible first step to-
wards a solution is to detect and report the occur-
rence of OOD data. This can prevent silent and
possibly safety critical failures of the machine learn-
ing system (caused by wrong predictions which lead
to the execution of unfavorable actions), for exam-
ple by handing control over to a human supervisor
(Amodei et al., 2016). Recently, several different ap-
proaches were proposed that try to detect OOD sam-

ples in classification tasks (Hendrycks and Gimpel,
2016; Liang et al., 2017), or perform anomaly de-
tection via generative models (Schlegl et al., 2017).
While these methods show promising results in the
evaluated classification tasks, we are not aware of
applications to value-based RL settings where non-
stationary regression targets are present. Thus, our
research aims to provide a first step towards develop-
ing and evaluating suitable OOD detection methods
that are applicable to changing environments in se-
quential decision making tasks. We model the OOD-
detection problem as a one-class classification prob-
lem with the two classes: in-distribution and out-of-
distribution. Having framed the problem this way,
we propose a framework for uncertainty-based OOD
classification: UBOOD. It is based on the effect that
epistemic uncertainty in the agent’s chosen actions
is reduced for situations encountered during train-
ing (in-distribution), and is thus lower than for un-
encountered (OOD) situations. The framework itself
is agnostic towards the approach used for estimat-
ing epistemic uncertainty. Thus, it is possible to use
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e.g. approximate Bayesian inference methods or en-
sembling techniques. In order to evaluate the perfor-
mance of any OOD classifier in a RL setting, mod-
ifiable environments which can generate OOD sam-
ples are needed. Due to a lack of publicly available
RL environments that allow systematic modification,
we developed two different environments: one using
a gridworld-style discrete state-space, the other us-
ing a continuous state-space. Both allow modifica-
tions of increasing strength (and consequently pro-
duce OOD samples of increasing strength) after the
training process. We empirically evaluated the perfor-
mance of the UBOOD framework with different un-
certainty estimation methods on these environments.
Evaluation results show that the framework produces
reliable OOD classification results when combined
with ensemble-based estimators, while the combi-
nation with concrete dropout-based estimators fails
to capture increased uncertainty in the OOD situa-
tions. Ensemble-based approaches also show increas-
ing classification accuracy, the stronger the OOD
samples are (i.e. the more the environments differ
from training) and increasing uncertainty is inversely
related with the agent’s achieved return.

2 BASICS

2.1 Uncertainty

When viewed from a statistical perspective, uncer-
tainty arises whenever the outcome of a random vari-
able cannot be known with certainty. Uncertainty
measures can then be understood to describe how ran-
dom the outcome of such a random variable is. This
“amount of randomness” is described by the disper-
sion of the random variable’s probability distribution,
i.e. how stretched or squeezed the probability distri-
bution is. Measures of this dispersion are e.g. the
probability distribution’s variance or standard devia-
tion. (Bishop, 2006)

2.1.1 Uncertainty Estimation

In the context of this work, we are interested in the
uncertainty of a neural network’s prediction, which in
a value-based deep RL setting is the certainty that an
agent’s chosen action is optimal in the given situation.
Different approaches exist that make it possible to es-
timate this uncertainty. Ensemble techniques for ex-
ample aggregate the predictions of multiple networks,
often trained on different versions of the data, and in-
terpret the variance of the individual predictions as the
uncertainty (Osband et al., 2016; Lakshminarayanan
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Figure 1: Example regression of a 1-D toy-dataset showing
the predictions of a Bootstrap ensemble (see Section 4.2)
of size 10. Blue dots represent the training data. Thin red
lines show the individual ensemble predictions, while the
thick red line represents the mean of the predictions. The
variance of the individual predictions can be interpreted as
epistemic uncertainty.

et al., 2017). An example of this approach can be
seen in Figure 1, which shows the individual predic-
tions of a Bootstrap ensemble as well as their mean
and variance. These and other methods applicable to
deep neural networks will be presented in more detail
in Section 3.1. Besides the various ways of measuring
uncertainty, it is equally important to differentiate the
different sources of uncertainty.

2.1.2 Aleatoric Uncertainty

Aleatoric uncertainty models the inherent stochastic-
ity in the system, i.e. no amount of data can explain
the observed stochasticity. In other words, the un-
certainty cannot be reduced by capturing more data.
A reason for this might be that certain features that
would be needed to explain the behaviour of the sys-
tem are not part of the collected data. E.g. consider
trying to model the distance different cars travel on
a highway in a certain amount of time, without mea-
suring their speed. If the speed is not part of the col-
lected data, the randomness in the measured distances
cannot be explained. It is also possible that the un-
certainty is a fundamental property of the measured
system, as is the case when dealing with quantum me-
chanics. As such, aleatoric uncertainty cannot be re-
duced, irrespective of how much data is collected.

2.1.3 Epistemic Uncertainty

Epistemic uncertainty by contrast arises out of a lack
of sufficient data to exactly infer the underlying sys-
tem’s data generating function. In this case, the fea-
tures available in the data do in principle allow the



explanation of the behaviour of the system. In the pre-
vious example, this would e.g. be the case if both time
and speed are measured, but so far only cars traveling
at the same speed had been observed. The uncertainty
caused by the effect of different speed in this case is
epistemic, as collecting more data could allow for a
correct inference of the system’s behaviour and con-
sequently the reduction of the uncertainty.

2.2 Markov Decision Processes

We base our problem formulation on Markov deci-
sion processes (MDPs) (Puterman, 2014). MDPs are
defined by tuples: M = 〈S ,A ,P ,R 〉. S is a (finite)
set of states; st ∈ S being the state of the MDP at time
step t. A is the (finite) set of actions; at ∈ A is the ac-
tion the MDP takes at step t. P (st+1|st ,at) defines the
transition probability function; a transition occurs by
executing action at in state st . The resulting next state
st+1 is determined based on P . In this paper we focus
on deterministic domains represented by determinis-
tic MDPs, so P (st+1|st ,at)∈ {0,1}. Finally, R (st ,at)
is the scalar reward; for this paper we assume that
R (st ,at) ∈ R.

Goal of the problem is to find a policy π : S → A
in the space of all possible policies Π, which maxi-
mizes the expectation of return Gt at state st over a
potentially infinite horizon:

Gt =
∞

∑
k=0

γ
k ·R (st+k,at+k) (1)

where γ ∈ [0,1] is the discount factor.

2.3 Reinforcement Learning

In order to search the policy space Π, we consider
model-free reinforcement learning (RL). In this set-
ting, an agent interacts with an environment defined
as an MDP M by executing a sequence of actions
at ∈ A , t = 0,1, ... (Sutton and Barto, 1998). In the
fully observable case of RL, the agent knows its cur-
rent state st and the action space A , but not the effect
of executing at in st , i.e., P (st+1|st ,at) and R (st ,at).
In order to find the optimal policy π∗, we focus on Q-
Learning (Watkins, 1989), a commonly used value-
based approach. It is named for the action-value
function Qπ : S × A → R,π ∈ Π, which describes
the expected return Qπ(st ,at) when taking action at
in state st and then following policy π for all states
st+1,st+2, ... afterwards.

The optimal action-value function Q∗ of policy π∗

is any action-value function that yields higher accu-
mulated rewards than all other action-value functions,
i.e., Q∗(st ,at) ≥ Qπ(st ,at) ∀π ∈ Π. Q-Learning aims

to approximate Q∗ by starting from an initial guess for
Q, which is then updated via

Q(st ,at)← Q(st ,at)+

α[rt + γmax
a

Q(st+1,a)−Q(st ,at)] (2)

It uses experience samples of the form et =
(st ,at ,st+1,rt), where rt is the reward earned at time
step t, i.e., by executing action at when in state st . The
learning rate α is a setup-specific parameter. The set
of all experience samples taken at time steps t1, ..., tm
for some training limit m is called the training set
T = {et1 , ...,etm}.

The learned action-value function Q converges to
the optimal action-value function Q∗, which then im-
plies an optimal policy π∗(st) = argmaxa Q(st ,a).

In high-dimensional settings or when learning in
continuous state-spaces, it is common to use pa-
rameterized function approximators like neural net-
works to approximate the action-value function:
Q(st ,at ;θ)≈ Q∗(st ,at) with θ specifying the weights
of the neural network. When using a deep neural
network as the function approximator, this approach
is called deep reinforcement learning. (Mnih et al.,
2015)

3 RELATED WORK

3.1 Uncertainty in Deep Learning

When dealing with uncertainty, a systematic way is
via Bayesian inference. Its combination with neural
networks in the form of Bayesian neural networks is
realised by placing a probability distribution over the
weight-values of the network (MacKay, 1992). As
calculating the exact Bayesian posterior quickly be-
comes computationally intractable for deep models, a
popular solution are approximate inference methods
(Graves, 2011; Blundell et al., 2015; Gal and Ghahra-
mani, 2016; Hernández-Lobato et al., 2016; Li and
Gal, 2017; Gal et al., 2017). Another option is the
construction of model ensembles, e.g., based on the
idea of the statistical bootstrap (Efron, 1992). The
resulting distribution of the ensemble predictions can
then be used to approximate the uncertainty (Osband
et al., 2016; Lakshminarayanan et al., 2017).

Both approaches have been used for tasks as di-
verse as machine vision (Kendall and Gal, 2017) or
disease detection (Leibig et al., 2017). In the field
of decision making, uncertainty is used to implic-
itly guide exploration, e.g by creating an ensemble of
models (Osband et al., 2016), or for learning safety



predictors, e.g. predicting the probability of a colli-
sion (Kahn et al., 2017). Recently, a distributional ap-
proach to RL (Bellemare et al., 2017) was proposed
which tries to learn the value distribution of a RL en-
vironment. Although this approach also models un-
certainty, its goal of estimating the distribution of val-
ues is different from the work at hand, which tries to
detect epistemic uncertainty, i.e. uncertainty in the
model itself.

3.2 OOD and Novelty Detection

For the case of low-dimensional feature spaces, OOD
detection (also called novelty detection) is a well-
researched problem. For a survey on the topic, see
e.g. (Pimentel et al., 2014), who distinguish be-
tween probabilistic, distance-based, reconstruction-
based, domain-based and information theoretic meth-
ods. During the last years, several new methods based
on deep neural networks were proposed for high-
dimensional cases, mostly focusing on classification
tasks, e.g. image classification. (Hendrycks and Gim-
pel, 2016) propose a baseline for detecting OOD ex-
amples in neural networks, based on the predicted
class probabilities of a softmax classifier. (Liang
et al., 2017) improve upon this baseline by using tem-
perature scaling and by adding perturbations to the
input. (Li and Gal, 2017) evaluate the performance
of a proposed alpha-divergence-based variational in-
ference technique in an image classification task of
adversarial examples. This can be understood as a
form of OOD detection, as the generated adversar-
ial examples lie outside of the training image mani-
fold and consequently far from the training data. The
authors report increased epistemic uncertainty, con-
firming the viability of their approach for the detec-
tion of adversarial image examples. The basic idea of
this uncertainty-based approach is closely related to
our proposed method, but no evaluation of the perfor-
mance in a RL setting with non-stationary regression
targets was performed. To the best our knowledge,
none of the previously mentioned methods were eval-
uated regarding the epistemic uncertainty detection
performance in a RL setting.

4 UBOOD:
UNCERTAINTY-BASED
OUT-OF-DISTRIBUTION
CLASSIFICATION

In this paper we propose UBOOD, an uncertainty-
based OOD-classifier that can be employed in value-

based deep reinforcement learning settings. It is
based on the reducibility of epistemic uncertainty in
the action-value function approximation.

As previously described, epistemic uncertainty
arises out of a lack of sufficient data to exactly infer
the underlying system’s data generating function. As
such, it tends to be higher in areas of low data density.
(Qazaz, 1996), who in turn refers to (Bishop, 1994)
for the initial conjecture, showed that the epistemic
uncertainty σepis(x) is approximately inversely pro-
portional to the density p(x) of the input data, for the
case of generalized linear regression models as well
as multi-layer neural networks:

σepis(x) ∝ p−1(x) (3)

This also forms the basis of our approach: to use
this inverse relation between epistemic uncertainty
and data density in order to differentiate in- from out-
of-distribution samples.

We define UQ : S×A→R as the epistemic uncer-
tainty function of a given Q-function approximation
Q. If a suitable method for epistemic uncertainty es-
timation for deep neural networks is applied, the pro-
cess of training the agent reduces UQ(s,a) for those
state-action tuples (s,a) ∈ I that were used for train-
ing, i.e., there exists a successor state s′ and a reward
r so that (s,a,s′,r) ∈ I . I consequently defines the
set of in-distribution data. By contrast, state-action
tuples that were not encountered during training i.e.
(s,a) 6∈ I define the set of out-of-distribution data O.
The epistemic uncertainty of these state-action tuples
is not reduced during training. Thus, epistemic uncer-
tainty of out-of-distribution data will be higher than
that of in-distribution data:

UQ(O)>UQ(I) (4)

UBOOD directly uses the output of the epistemic
uncertainty function UQ as the real-valued classifica-
tion score. As is the case for many one-class clas-
sificators, this real-valued score forms the input of a
threshold-based decision function, which then assigns
the in- or out-of-distribution class label.

4.1 Classification Threshold

As is the case for any score-based one-class classifi-
cation method, the classification threshold can be ad-
justed to modify the behaviour of the classifier, de-
pending on the application’s requirements. For many
applications, where some amount of OOD data is in-
termixed with the training data and the percentage is
known, this information can be used to specify the
threshold. As in our case, per definition, there are no
OOD samples in the training data, such an approach



is not possible. As a viable first solution, we propose
the following simple algorithm to calculate a dynamic
classification threshold:

1. Calculate the average uncertainty of the in-
distribution samples UQ = 1

|I| ∑(s,a)∈IUQ(s,a).

2. Treat UQ as a probability distribution and define
the classification threshold as c =UQ +σ(UQ).

Thus, a dynamic threshold-based on the uncertainty
distribution is realized that adjusts over the training
process as more data is gathered. Please note that
more complex algorithms for the threshold determi-
nation can be developed, e.g. by using multimodal
probability distributions to model UQ or by making
use of additional information about the available data
on a per-application basis.

4.2 Epistemic Uncertainty Estimation
Methods

In principle, any of the epistemic uncertainty estima-
tion methods mentioned in Section 3.1 that are appli-
cable to the function approximator used to model the
Q-function, can be used in the UBOOD framework.
In this paper, we evaluate three different UBOOD
versions using different methods for epistemic uncer-
tainty estimation and their effect on the OOD classi-
fication performance, as the networks are being used
by the RL agent for value estimation.

The Monte-Carlo Concrete Dropout method is
based on the dropout variational inference architec-
ture as described by (Kendall and Gal, 2017). Instead
of default dropout layers, we use concrete dropout
layers as described by (Gal et al., 2017), which do not
require pre-specified dropout rates and instead learn
individual dropout rates per layer. Figure 2a presents
a schematic of the network used by this method.
This concrete dropout method is of special interest
in our context of reinforcement learning, as here the
available data change during the training process, ren-
dering a manual optimization of the dropout rate hy-
perparameter even more difficult. Model loss is calcu-
lated by minimizing the negative log-likelihood of the
predicted output distribution. Epistemic uncertainty
as part of the total predictive uncertainty is then cal-
culated as:

Varep(y)≈
1
T

T

∑
t=1

ŷ2
t − (

1
T

T

∑
t=1

ŷt)
2 (5)

with T outputs ŷt of the Monte-Carlo sampling.
The Bootstrap method is based on the network ar-

chitecture described by (Osband et al., 2016). It rep-
resents an efficient implementation of the bootstrap
principle by sharing a set of hidden layers between all
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Figure 2: Model architectures of the evaluated networks.
(a) The Monte-Carlo Concrete Dropout network. For this
architecture, multiple MC samples are required to calcu-
late the epistemic uncertainty. (b) The Bootstrap neural net-
work with K = 10 bootstrap heads, and (c) the Bootstrap-
Prior neural network which adds the output of an untrain-
able prior network to the output of the bootstrap heads to
generate K = 10 posterior heads. For both bootstrap-based
architectures, epistemic uncertainty is calculated as the vari-
ance of the K output heads.

members of the ensemble. In the network, the shared,
fully-connected hidden layers are followed by an out-
put layer of size K, called the bootstrap heads, as can
be seen in Figure 2b. For each datapoint, a Boolean
mask of length equal to the number of heads is gener-
ated, which determines the heads this datapoint is vis-
ible to. The mask’s values are set by drawing K times
from a masking distribution. For the work at hand, the
values are independently drawn from Bernoulli distri-
butions with either p = 0.7 or p = 1.0. In the case of
p= 1.0, the bootstrap is reduced to a classic ensemble
where all heads are trained on the complete data.

The Bootstrap-Prior method is based on the ex-
tension presented in (Osband et al., 2018). It has the



same basic architecture as the Bootstrap method but
with the addition of a so-called random Prior Net-
work. Predictions are generated by adding the data
dependent output of this untrainable prior network to
the output of the different bootstrap heads in order
to calculate the ensemble posterior (Figure 2c). The
authors conjecture that the addition of this random-
ized prior function outperforms deep ensemble-based
methods without explicit priors, as for the latter, the
initial weights have to act both as prior and training
initializer.

For both bootstrap-based methods, epistemic un-
certainty is calculated as the variance of the K outputs.

5 EXPERIMENTAL SETUP

5.1 Framework versions

We evaluate three different versions of the UBOOD
framework:
• UB-MC: UBOOD with Monte-Carlo Concrete

Dropout (MCCD) network
• UB-B: UBOOD with Bootstrap network
• UB-BP: UBOOD with Bootstrap-Prior network

The UB-MC version’s estimator network consists of
two fully-connected hidden layers with 64 neurons
each, followed by two separate neurons in the output
layer representing µ and σ of a normal distribution.
As concrete dropout layers are used, no dropout prob-
ability has to be specified. Model loss and epistemic
uncertainty are calculated as described in Section 4.

The UB-B Bootstrap neural network and UB-BP
Bootstrap-Prior neural network versions all consist of
two fully-connected hidden layers with 64 neurons
each, which are shared between all heads, followed
by an output layer of K = 10 bootstrap heads.

Each of these UBOOD versions is further evalu-
ated with two parametrizations of the respective epis-
temic uncertainty estimation method: UB-MC40 and
UB-MC80 differ in respect to the amount of Monte-
Carlo forward passes that are executed to approx-
imate the epistemic uncertainty: 40 or 80 passes.
UB-B and UB-BP parametrizations (UB-B07, UB-
B10, UB-BP07, UB-BP10) differ in respect to the
Bernoulli distribution used to determine the bootstrap
mask: probability p = 0.7 for UB-B07 & UB-BP07
and probability p = 1.0 for UB-B10 & UB-BP10.

For all networks, ReLU is used as the layers’ acti-
vation function, with the exception of the output lay-
ers, where no activation function is used. The classi-
fication threshold is calculated as c =UQ +σ(UQ), as
described in section 4.1.

5.2 Environments

One of the problems in evaluating OOD detection for
RL is the lack of datasets or environments which can
be used for generating and assessing OOD samples
in a controlled and reproducible way. By contrast
to the field of image classification, where benchmark
datasets like notMNIST (Bulatov, 2011) exist that
contain OOD samples, there are no equivalent sets
for RL. We apply a principled approach to develop
two environments, one using a gridworld-style dis-
crete state-space, the other using a continuous state-
space. Both environments allow systematic modifica-
tions after the training process, thus producing OOD
states during evaluation.

The first environment is a simple gridworld
pathfinding environment. It is built on the design pre-
sented in (Sedlmeier et al., 2019) and has a discrete
state-space. The basic layout consists of two rooms,
separated by a vertical wall. Movement between the
rooms is only possible via two hallways, as is visu-
alised in Figure 3. The agent starts every episode at
a random position on the grid (labeled S in Figure 3).
Its task is to reach a specific goal position on the grid
(labeled G in Figure 3), which also varies randomly
every episode, by choosing one of the four possible
actions: {up,down,left,right}.

The state of the environment is represented as a
stack of three 12× 4 feature planes, with each plane
representing the spatial positions of all environment
objects of a specific type: agent, goal or wall. Each
step of the agent incurs a cost of −1 except the goal-
reaching action, which is rewarded with +100 and
ends the episode. We evaluate the performance of the
UBOOD framework on a set of 8 environment config-
urations. All environment configurations have a size
of 12× 4 and randomly vary the y-coordinate of the
agent’s start position as well as the goal position ev-
ery episode, in the interval [0,4). Configuration 0,
the only configuration used in training, varies the x-
coordinate of the agent’s start position in the inter-
val [0,5) and the goal position in the interval [7,12).
Each environment configuration 1−7 is then defined
by shifting the start interval right by 1 compared to
the previous configuration, while the goal interval is
shifted left by 1. E.g. configuration 1 has start posi-
tion range [1,6) and goal position range [6,11). This
results in environment configurations with increasing
difference from the training configuration 0, as can be
seen in the example shown in Figure 3b.

The continuous state-space environment is based
on OpenAI’s LunarLander environment (Brockman
et al., 2016). The goal is to safely land a rocket in-
side a defined landing pad, without crashing. This



(a) Example environment: Config 0

(b) Example environment: Config 7

Figure 3: Example initializations of the gridworld pathfind-
ing environment using different configurations. The label S
indicates the agent’s start position, while G marks the goal.
Both positions are randomly set in the ranges defined by the
respective configuration every episode. (a) shows a place-
ment using environment configuration 0 as active in train-
ing. Samples collected with this configuration define the in-
distribution set. (b) shows an initialization of environment
configuration 7 which differs maximally from the training
configuration.

task can be understood as rocket trajectory optimiza-
tion. While the original environment defines a static
position for the landing pad, our modified environ-
ment allows for random placement inside specified
intervals. As the original environment does not en-
code the landing pad’s position in the state represen-
tation, our version extends the state encoding to in-
clude the left and right x-coordinate as well as the
y-coordinate of the pad. For evaluating the perfor-
mance of the UBOOD framework in this continuous
state-space environment, we created a set of 6 config-
urations. Configuration 0, the only configuration used
in training, varies the x-coordinate of the center of the
landing pad in the interval [2,5) and the y-coordinate
in the interval [6,12), which results in the landing pad
being placed in the upper left side of the environment.
An example of this configuration can be seen in Fig-
ure 4a. Each environment configuration 1−5 is then
defined by shifting the x-coordinate interval right by 1
compared to the previous configuration, while the y-
coordinate interval is shifted left by 1. This results in
the pads being placed increasingly to the lower right
side of the environment. Like in the gridworld en-
vironment, this produces environment configurations

(a) Example: Config 0 (b) Example: Config 5

Figure 4: Examples from the LunarLander environment us-
ing different configurations. (a) Example using environ-
ment configuration 0 as active in training. Samples col-
lected with this configuration define the in-distribution set.
Example using (b) environment configuration 5 which dif-
fers maximally from the training configuration.

with increasing difference from the training configu-
ration 0.

Note that training on both environments is solely
performed using the respective environment configu-
ration 0. Evaluation runs are executed independently
of the training process, based on model snapshots
generated at the respective training episodes. Con-
sequently, data collected during these evaluation runs
is not used for training.

6 PERFORMANCE RESULTS

All evaluated versions learn successful policies on
both the gridworld and LunarLander environments.
Returns achieved by the trained policies after 10000
training episodes on different environment configura-
tions are shown in Figure 5. As is to be expected,
increasing changes to the environment (configuration
1− 5) reduce the achieved return, as the evaluation
environment increasingly differs from the training en-
vironment configuration 0.

We evaluate the performance of the UBOOD
framework based on the F1-Score as the harmonic
mean of precision and recall. Figure 6 shows the F1-
Scores achieved, dependent on the uncertainty esti-
mation technique used in the framework. Best overall
classification results on the LunarLander environment
are achieved for UB-BP, i.e. using UBOOD with the
Bootstrap-Prior estimator with F1-values as high as
0.903 for UB-BP07 on environment configuration 5.
F1-Scores of the UB-B and UB-BP versions on the
gridworld environment are higher overall, when com-
pared to the UB-MC versions. Here, values range
between a minimum of 0.674 on evaluation config-
uration 1, which is closest to the training configura-
tion, and 0.958 on configuration 5, which produces
the strongest OOD samples. Overall, classification
performance increases over environment configura-
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Figure 5: Returns achieved by the different versions on
varying configurations of the LunarLander environment af-
ter 10000 training episodes on configuration 0. Envionment
configurations 1− 5 modify the environment with increas-
ing strength as described in Section 5.2. All values shown
are averages of 30 evaluation runs.

tions 1−5 when Bootstrap-based estimators are used
in the UBOOD framework. UB-MC, i.e. UBOOD
combined with MCCD estimators, generates highly
varying F1-scores, ranging between 0.020 and 0.738
on the gridworld environment and 0.280 and 0.484
on the LunarLander environment. By contrast to the
Bootstrap-based versions, there is no relation appar-
ent between the strength of the environment modifi-
cation and the classification performance.

We further evaluate the relation between reported
uncertainty and the return achieved by the agent. Fig-
ure 7 shows evaluation results of the UB-BP10 and
UB-MC80 versions evaluated on different configura-
tions of the gridworld environment. For UB-BP10
(p= 1.0), increases in uncertainty (caused by increas-
ing environment modifications) are reflected in de-
creases of return. This behaviour was also present on
the LunarLander environment and consistent for dif-
ferent values of p. No such clear relation was visible
for UB-MC80. As can be seen in the results visualised
in Figure 7, the uncertainty reported by the MCCD-
based version decreases strongly between configura-
tion 2 and 3, although the achieved return also de-
creases.

7 DISCUSSION AND FUTURE
WORK

In this paper, we proposed UBOOD, an uncertainty-
based out-of-distribution classification framework.
Evaluation results show that using the epistemic un-
certainty of the agent’s value function presents a vi-
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Figure 6: F1-Scores of the classifier evaluated on different
configurations of the LunarLander and gridworld environ-
ments. Samples collected on the training configuration of
each environment are defined as negatives (in-distribution),
samples from the other configurations 1− 5 as positives
(OOD). X-Axis shows evaluations performed with samples
from the training configuration and the respective environ-
ment configuration 1− 5. Samples are aggregated from 30
consecutive episode runs.

able approach for OOD classification in a deep RL
setting. We find that the framework’s performance
is ultimately dependent on the reliability of the un-
derlying uncertainty estimation method, which is why
good uncertainty estimates are required.

On both evaluation domains, UBOOD combined
with ensemble-based bootstrap uncertainty estimation
methods (UB-B / UB-BP) shows good results with
F1-scores as high as 0.903, allowing for a reliable
differentiation between in- and OOD-samples. F1-
Scores increase as the environment configuration dif-
fers more from the training environment, i.e. the
stronger OOD the observed samples, the more reli-
able the classification. The addition of a prior as done
with the UB-BP version seems to have a positive ef-
fect on the separation of in- and out-of-distribution
samples as is reflected in higher F1-scores on the Lu-
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Figure 7: Uncertainty VS return of UB-BP10 and UB-
MC80 evaluated on different configurations of the grid-
world environment. While for the Bootstrap-based ver-
sion UB-BP10, increases in uncertainty are reflected in de-
creases of return, a large decrease in uncertainty is visible
for UB-MC80 between configuration 2 and 3, although the
achieved return also decreases. All values shown are aver-
ages of 30 evaluation runs.

narLander environment. By contrast, UBOOD com-
bined with the concrete dropout-based uncertainty es-
timation method (UB-MC) does not produce viable
results. Although increasing the amount of Monte-
Carlo samples improves the performance somewhat,
the resulting classification performance is not on
par with the Bootstrap-based versions. The reason
for the large difference in performance between the
Bootstrap-based and MCCD-based versions can be
seen in the example shown in Figure 8. For the
UB-B version, the reported uncertainties on environ-
ment configuration 0 (training) and 7 (strong modi-
fication) increasingly diverge with progressing train-
ing episodes (Figure 8a). As this is not the case for
the UB-MC version (Figure 8b), only the Bootstrap-
based version allows for an increasingly better differ-
entiation between in- and OOD samples and conse-
quently high F1-scores of the classifier. We found this
effect to be consistent over all parametrizations of the
Bootstrap- and MCCD-based versions we evaluated.

Our results match recent findings (Beluch et al.,
2018), where ensemble-based uncertainty estimators
were compared against Monte-Carlo Dropout based
ones for the case of active learning in image classi-
fication. Results presented in that work also showed
that ensembles performed better and led to more cal-
ibrated uncertainty estimates. As a possible expla-
nation, the authors argue that the difference in per-
formance is a result of a combination of decreased
model capacity and lower diversity of the Monte-
Carlo Dropout methods when compared to ensemble
approaches. This effect would also explain the be-
haviour we observed when comparing reported un-
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Figure 8: Average uncertainties reported by (a) Bootstrap-
based version UB-B07 and (b) Monte-Carlo Concrete
Dropout based version UB-MC80 on the Gridworld envi-
ronment. Env. config 0 shows uncertainties reported on the
training configuration of the environment (in-distribution),
Env. config 7 the uncertainties on the maximaly diverging
configuration. While for UB-B07 the uncertainties start di-
verging with progressing training, there is no such effect
for UB-MC80. As a consequence, only the Bootstrap-based
version allows for an increasingly better differentiation be-
tween in- and OOD samples. All values shown are averages
of 30 evaluation runs.

certainty and achieved return. While there is a strong
inverse relation visible when using Bootstrap-based
UBOOD versions, no clear pattern emerged for the
evaluated MCCD-based versions. We think that fur-
ther research into the relation between epistemic un-
certainty and achieved return when train- and test-
environments differ could provide interesting insights
relating to generalization performance in deep RL.
Being able to differentiate between an agent having
encountered a situation in training versus the agent
generalizing its experience to new situations could
provide a huge benefit in safety-critical situations.
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