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Abstract

We describe several established error of fit (EOF) functions for
use in the least square fitting of ellipses, and introduce a further four
new EOFs. Four measures are given for assessing the suitability of
such EOF's, quantifying their linearity, curvature bias, asymmetry, and
overall goodness. These measures enable a better understanding to be
gained of the individual merits of the EOF functions.

1 Introduction

The fitting of ellipses to edge data is a common task in computer vision. In partic-
ular, this often arises in the context of industrial inspection since circular parts in
the scene are projected into the image as ellipses. There are many algorithms for
ellipse fitting, but in this paper we shall concentrate on minimisation techniques
rather than others such as the Hough transform voting method. Despite its sensi-
tivity to non-Gaussian noise, least squares (LS) fitting is probably the most widely
used approach for estimating the ellipses’ parameters, due to its computation effi-
ciency and its high efficiency as an estimator. It operates by minimising the sum
of squares of some error term e; measured at each data point X; = (x;,y;). Thus
for N points the parameters P of the best fit ellipse are obtained by

N
min E e2.
P J
j=1

Similarly, other estimation techniques such as the least median of squares de-
pend on a suitable error term. However, there has been little comparison between
the effects of the choice of error term (but see [3, 8, 9]). The Euclidean distance
from X; to the ellipse boundary would be a good choice for e;, but requires solving
a quartic equation which may have up to four solutions, requiring the one with the
minimum distance to be determined [10]. To avoid the complexity of evaluating
the true Euclidean distance it is usual practice to approximate it by some measure
— the error of fit (EOF) function — that is simpler to calculate. Previously we
described six approximations [9] (EOF; - EOFg). In this paper we describe and
analyse a further set of approximations (EOF7 - EOF13).
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2 Distance Approximations

2.1 Algebraic distance

The simplest approximation is the algebraic distance [2] calculated from X to the
ellipse

EOF1 ZQ(Z‘j,yj) zAx?+ijyj+C’yJ2-+ij+Eyj+F, (1)

where Q(x,y) = 0 is the general equation of a conic, describing ellipses when
B? — 4AC < 0. An advantage of (1) is that a closed form LS solution is avail-
able whereas the other EOFs described below must be minimised by iterative
procedures. Figure la shows the iso-value contours for EOF; (the ellipse bound-
ary is drawn bold) from which we can make several observations. First, EOF;
demonstrates the so called “high curvature bias” in that the spacing between the
contours become wider at the pointed ends of the ellipse, i.e. near the regions of
high curvature. Second, the contours get closer with increasing distance out from
the ellipse. The effect of the curvature bias is to cause data near the ends of the
ellipse to have less influence on the fit, often resulting in an overestimate of the
eccentricity of the fitted ellipse. The second factor is the relationship between the
EOF and the Euclidean distance as a function of the Euclidean distance. Ideally
they should be linearly related; a constant scaling factor has no effect and can be
ignored. The super-linear relationship shown by EOF; causes the outlying data
to have a stronger influence on the fit than a linear or sub-linear relationship, and
therefore increases the sensitivity of the fitting to noise.

2.2 Gradient weighted algebraic distance

The most commonly used improvement over the algebraic distance is to inversely
weight Q(z;,y;) by its gradient [1, 11, 13]

Qz;,y5) .
IVQ(zj, )]

The plot of the iso-value contours (figure 1b) shows that the curvature bias is
indeed reduced, although the magnitude of the gradient of the measure inside the
ellipse is considerably larger than on the outside.! This asymmetry between the
distance approximation inside and outside the ellipse means that the data inside
the ellipse has more influence than the exterior data, which could cause the size
of the fitted ellipse to be underestimated.

EOF, = (2)

2.3 Second order approximation

Nalwa and Pauchon [6] used a second order Taylor series expansion? to approx-
imate the distance d, expanding about X;. The distance is then obtained by

1 Artifacts from the plotting process have caused some contours to be missed near the centre
of the ellipse.
2Taubin [13] showed that EOF2 is equivalent to a first order Taylor series expansion.
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solving the resulting quadratic equation, obtaining

Q'(zj,y5) £ Q7. y5) — 2Q(x;,y;)Q" (2, )

EOF7 = d = min
! Q"(xj,y;)

: (3)

where

Q (xj7yj) = |VQ|2

and all coefficients are evaluated at X;. This approximation does not hold when
the roots of the quadratic are imaginary. In practise, we have found that for the
high curvature sections of eccentric ellipses real roots can only be found close to the
boundary. This is demonstrated in figure 1c where the blank right hand portion
contains imaginary roots.

2.4 Pavlidis’ approximation

Pavlidis [7] provides a distance measure which is an improvement over the basic
algebraic distance, defined as

EOFs = \/Ax? + Bxjy; + Cy; + Dxj + By; +v —VF +v (4)

b g 4]'[2)

where

The improvement of the algebraic distance is evident in the iso-value plot in fig-
ure 1d.

2.5 Reduced gradient weighted algebraic distance

We now describe four new error of fit functions which also provide some improve-
ments over the algebraic distance. The first is based on the observation that the
algebraic distance EOF; suffers from severe curvature bias while the weighted al-
gebraic distance EOF5 suffers from severe asymmetry. Both these factors degrade
the effectiveness of the measures. Possibly some intermediate measure which gives
the |VQ(z;,y;)| term less weighting might produce a superior compromise, espe-
cially since their gradients have opposite signs. This is simply achieved by raising
the weighting term to some power p = [0, 1].

Q(zj,y5)
IVQ(zj, ;)"
Thus EOFy reduces to EOF; and EOF; respectively when p = 0 and p = 1.

Figure le shows the iso-value contours obtained when p = 0.45; it can be seen
that both the curvature bias and asymmetry are moderate.

EOF, = (5)
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2.6 Directional derivative weighted algebraic distance

Although the gradient term in EOF5 corrected much of the high curvature bias of
EQF; it also introduced some other curvature bias, producing the wavy iso-value
contours in figure 1b. These waves are avoided if we replace |VQ(z;,y;)| by the
directional derivative of Q(z;,y;) in the direction along the ray r = (cos 6, sin6)
drawn between X; and the centre of the ellipse C, and we get

Q(z;,y;)
r-VQ(vj,y5)
Q(xjvyj)

T cosf (2Az; + By; + D) +sinf (Bz; + 2Cy; + E) (6)

EOF,y, =

The resulting iso-value contours (figure 1f) still have the asymmetry present in
EOF;, but the contours appear more regular.

2.7 Combined conic and circular distance

The iso-value contours for the algebraic distance show the effects of the curvature
bias: at the pointed ends of the ellipse the distance is underestimated. If, instead
of the algebraic distance of the ellipse, the algebraic distance of the inscribed circle
(i.e. setting B = 0 and A = (') were used this would cause the opposite effect: the
distance would be overestimated at the pointed ends of the ellipse. This suggests
that the effects of curvature bias could be reduced by combining the two terms.
We ignore constant values and just use the simplified symmetric term

Clzj,y;) = (x5 — e) + (y; — ye)”
and combine the terms as their geometric mean:
EOF; = \/\Q(fﬂj»yj)\c(xj»yj) (7)

This produces iso-value contours (figure 1g) which have quite low curvature bias,
although the asymmetry is substantial.

2.8 Concentric ellipse estimation

A property of ellipses is that for a point P on the ellipse with two foci F and F’
then PF + PF’ = 2a. We use this to make an approximation to the major axis of
the ellipse with similar proportions through X; as X; F + X; F/ = 2a. We take
the approximate distance as

EOFlga =a—a. (8)

This is the same as the first part of Stricker’s [12] two step method for estimating
a. Plotting the iso-level contours in figure 1h reveals significant low curvature
bias. We describe an alternative to Stricker’s subsequent reestimation step. In a
similar fashion to the combined conic and circular distance above we correct the
curvature bias by combining the algebraic distance with EOF19, to get

EOF a1, = /1Q(x;4)1(@ — a). (9)
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The iso-value contours (figure 1i) are much improved, showing little curvature bias
although there is significant asymmetry.

2.9 Angular bisector of lines to foci

(a) (b)

Figure 2: Angular bisector of lines through X; and the foci

The final distance approximation is based on the focal (reflection) property of
ellipses: the lines FP and F'P make equal angles with the tangent to the curve
at the point P on the ellipse (figure 2a). Thus the normal to the ellipse at P is
the angular bisector of FP and F'P. As shown in figure 2b we approximate the
normal to the ellipse from X; as the angular bisector of X; F and X; F’. It would
be expected to provide a good approximation for points close to the ellipse. We
find the closest point of intersection I; of the bisecting line with the ellipse, and
take the distance between X; and I;

EOF;3 = X, 1. (10)

As can be seen from the iso-value plot in figure 1j this appears to provide a very
good approximate distance.

For comparison, the more easily determined ray through X; and the center of
the ellipse is also considered. The distance from X; to the closest point of inter-
section between the ray and the ellipse was used by Nakagawa and Rosenfeld [5]
as an EOF function. It can be seen from the resulting iso-value plot (figure 1k)
that EOF3 is considerably better.

3 Assessment Measures

Despite the variety of approximations to the distance from a point to the boundary
of an ellipse little comparative analysis has been carried out.? Although visualising
the iso-value contours is a useful tool for the qualitative analysis of EOFs, a quan-
titative assessment would be valuable for objectively comparing them. We develop

3Gross and Boult [4] experimentally evaluated four EOFs for superquadrics using graphi-
cal plots comparing scaled summed EOF against the true RMS error, as well as showing one
dimensional cross-sections of the errors of fit.
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assessment measures based on the three factors of deviation from the Euclidean
distance described above. One consideration is that the degree of deviation may
not be constant with increasing distance from the ellipse. Therefore it may be
necessary to make the measures a function of the distances. Second, although we
show the measures applied to all values X = (z,y) in the R? plane, in practice we
must discreetly sample a subset of R2. This leads to the problem of which subset?
One solution is to assume a noise model which, given an ellipse, specifies where
the data is expected to occur. For instance, for noise with a Gaussian distribution
N(0,0) we can weight the data in R? by

]. 2 2
w(d) = ——e"4/%
(@) ov2m

where d is the Euclidean distance to the ellipse boundary.

3.1 Linearity

To test for a linear relationship between the Euclidean distance values dx and
their approximations ex it is natural to use the Pearson correlation coefficient

. >ox(ex — ex)(dx — dx)
VEx(ex —ex)? Y dx — dx)?

The value of p lies between +1, although in our context negative values are unlikely,
and we can think of p € [0,1] with increasing values meaning a better linear
correlation.

A problem with (11) is that equidistant values further from the ellipse will
have greater effect on the measure than close values since as iso-value contours
become more distant from the ellipse they become longer. This can be compen-
sated by weighting points in R? by the length of the iso-value contour through the
point. Since determining the length is not straightforward we take an alternative
approach which is to sample a set of iso-value contours at regular intervals of the
distance approximation. The iso-value contour of the distance approximation at
some value* E; is at dxlex = E;, and the mean Euclidean distance along each
contour is

(11)

i = E[dx‘ex = EJ (12)

The correlation coefficient is then calculated between the iso-value values and their
Euclidean distance means

> wi(Bi — Ei) (1i — fii)
\/Zi wi(Ei — Ei)? Y, wipi — fii)?
Thus each distance is now given equal weight in the assessment measure. In

addition we have included the term w; for each contour corresponding to the
weighting factor associated with the noise model, where w; = w(;).

L =

(13)

4To avoid confusion we assume distances inside and outside the ellipse are signed, or can be
made so.
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3.2 Curvature Bias

To measure the departure of the iso-value contour from the desired constant Eu-
clidean distance we use the variance of the underlying Euclidean distance

o? = Varldx|ex = Ej]. (14)

Since this is a local measure it must be combined over contours to give a global
measure

C= Z w;o?. (15)
The ideal error of fit should have no curvature bias which is obtained when C' = 0.

3.3 Asymmetry

Assuming signed distances, the mean Euclidean distances along corresponding
iso-value contours inside and outside the ellipse are calculated

pi = Eldx|ex = Ei]
p; = Eldx|ex = —Ei].
Asymmetry is calculated at each contour pair as the normalised difference in their
mean Euclidean distances. N B
_ i — |
p
Again, a weighted sum of the local measures over the contours is made to produce
a global measure

(473

A= Z w;a; (16)
which would equal zero for the ideal error of fit.

3.4 Overall Goodness

Rather than individually assess the three specific characteristics described above
sometimes it may be more convenient to produce a single overall assessment of the
distance approximations, ignoring the details. One approach would to produce a
weighted sum of the three measures above. Instead we use an alternative which
avoids the need for deciding on suitable weights and use the squared difference
between the approximation and the true Euclidean distance

G = wa(dx - Sex)2. (17)
X

Since we can ignore uniform scalings of the distances we allow the approximation

to be scaled by some constant S, and choose S so as to minimise G. This is found
Fy . .

when % = 0, yielding

Y ox wxexdx

> x er%(

S
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4 Results

We can now apply the assessment measures described in the previous section to
the EOF functions described in section 2. A quadrant of a single ellipse with semi-
major axis a = 400 and semi-minor axis b = 100 and centred at the origin was used.
The Euclidean distance was found by plotting the ellipse into an image followed
by performing a Euclidean distance transform. The distance was made signed by
setting negative all non-zero distance values 4-way connected to the origin. The
EOF's were generated and sampled at unit increments in the quadrant 1000 x 300.
Iso-value contours crossing the Y axis at 10 pixel intervals were detected, and the
average and variance of the Euclidean distances (12) and (14) along the contours
were calculated.

To simplify calculation of the measures and ensure uniform sampling, for both
the average and variance of the Euclidean distance values along the contours the
EQOF values were resampled at unit intervals using linear interpolation. It is then
straightforward to find the corresponding points ,u?' and p,; .

First we apply the assessment measures to EOFg to determine a suitable value
for p. The effects of p on the measures is graphed in figure 3. Increasing p initially
has little effect on the linearity before it degrades from p ~ 0.4. There is a roughly
linear relationship between p and a reduction in curvature bias. Asymmetry de-
grades with increasing p in a non-linear fashion. Combining all the factors in the
single measure of goodness G, the optimal value is found at p ~ 0.45. This is
the value of p we have used when comparing the various techniques. If the severe
asymmetry is ignored by using the G’ measure then the optimal value is p ~ 1 —
i.e. EOFg reduces to EOF5.

asymmetry

linearity
curvature bias

power power power power power

(a) linearity (b) curvature bias (¢) asymmetry d) G (e) &
Figure 3: Effect of p on assessment measures

Table 1 gives the assessment values of the EOFs (with the exception of the
incomplete EOF7) for the Gaussian noise model with ¢ = 64. To facilitate com-
parison all values have been scaled wrt the corresponding EOF; value. Recall
that we wish to maximise L and minimise the remaining assessment measures.
Clearly, EOF;3 is the best EOF since it has the best rating in all categories. With
the exception of EOFy and EOF;g the EOFs have reasonable linearity. All the
EOFs provide a lower curvature bias than the algebraic distance. However, despite
its wavy iso-value contours, EOF5 still has a lower curvature bias than EOFg —
EOF;1;. Apart from EOF;3 the EOFs have rather poor asymmetry; as expected
EOF( is comparable with EOF5, while EOF1; is worse yet. Overall the EOF's
with the exception of EOFy and EOF;( gain better ratings by G than EOF;. If
asymmetry is factored out using G’ then all the EOFs receive better scores.
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Table 1: Normalised assessment results with N (0, 64) noise model

|0 | £ | ¢ [ A | ¢ | & |
1 1.000 | 1.000 | 1.000 | 1.000 | 1.000
2 0.877 | 0.041 | 8.404 | 2.771 | 0.099
8 0.995 | 1.000 | 4.945 | 0.526 | 0.666
9 0.995 | 0.452 | 4.500 | 0.391 | 0.441
10 0.898 | 0.069 | 7.092 | 3.134 | 0.362
11 1.003 | 0.230 | 12.507 | 0.617 | 0.273
12b || 0.990 | 0.035 | 3.508 | 0.425 | 0.163
13 1.006 | 0.002 | 0.747 | 0.007 | 0.009
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