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Abstract

This paper presents a scalable solution to the problem of tracking objects
across spatially separated, uncalibrated, non-overlapping cameras. Unlike
other approaches this technique uses an incremental learning method to cre-
ate the spatio-temporal links between cameras, and thus model the posterior
probability distribution of these links. This can then be used with an appear-
ance model of the object to track across cameras. It requires no calibration
or batch preprocessing and becomes more accurate over time as evidence is
accumulated.

1 Introduction

CCTV cameras are increasingly used as a deterrent and tool to counteract crime and
terrorism. There is, however, heavy constraints upon the operator in managing large scale
surveillance systems, therefore, tools to assist the operator’s decision process are essential.
The goal of this paper is to automatically track objects between cameras (inter camera),
often termed, object ”handover”, where one camera transfers a tracked object to another.
To do this we need to learn about the relationships between the cameras, without colour,
or spatial pre-calibration. In summary, an ideal system could be described as one that,
is able to work immediately upon initialisation, will improve performance as more data
becomes available, and is able to adapt to changes in the camera’s environment.

The surveillance system needs to be able to link the separate cameras together in such
a way that as an object appears on one camera, the system can determine if this is the
same object previously tracked on another camera, or a new object. This paper proposes
a method to learn the linkage between cameras that does not require pre-calibration or
explicit training periods. The system is able to learn incrementally about its environment
and the objects that move within it, thus allowing the accuracy of tracking to increase
over time. The paper is split into a number of sections, firstly a brief background of
inter camera tracking techniques is given. Section 3 shows how the information gained
from intra camera tracking is collated and its use in creating the inter camera links is
described in section 4. Section 5 explains the sub division optimisation that is carried out
to improve the linkage between cameras. Section 6 then describes how the weighted links
can be used with an appearance model to track objects inter camera. An experiment with
results is then presented in Section 7.



2 Background

Early tracking algorithms [3][11] required both camera calibration and overlapping fields
of view (FOV). These are needed to compute the handover of tracked objects between
cameras. Additionally Chang [4] required a 3D model of the environment using epipolar
geometry, to allow for the registration of objects across the different overlapping cam-
eras. The requirement that cameras have an overlapping FOV is impractical due to the
large number of cameras required and the physical constraint upon their placement.

For a tracking algorithm to be useable in a large environment, it needs to be able to
deal with ”blind” spots in the system where a person is not visible to any camera. Most
single camera (intra) tracking algorithms rely on smooth motion using the previously ob-
served velocity to predict the future location using methods such as the Kalman filter [15].
However, motion between cameras is rarely smooth. Thus a number of techniques have
been developed to handle the ”blind” spots and improve object handover.

Kettnaker and Zabih [12] presented a Bayesian solution to track people across cam-
eras with non-overlapping FOVs. However the system required calibration, with the user
providing a set of transition probabilities and their expected durationa priori. This means
that the environment and the way people move within it must be known. In most surveil-
lance situations this is unrealistic.

Probabilistic or statistical methods have seen some of the greatest focus to solve inter
camera tracking. They all use the underlying principle that through accumulating evi-
dence of movement patterns over time it is likely that common activities will be discov-
ered. Huang and Russel [7] use a probabilistic approach for tracking cars on a highway.
The appearance of the car is modelled by the mean of the colour and the transition times
modelled as gaussian distributions. This approach is very application specific, using only
two calibrated cameras with vehicles moving in one direction in a single lane. Javed, et al
[8] present a more general system by learning the camera topology and path probabilities
of objects using Parzen windows. This is a supervised learning technique where transition
probabilities are learnt during training using a small number of manually labeled trajecto-
ries. Dick and Brooks [5] use a stochastic transition matrix to describe patterns of motion
both intra and inter camera. For both systems the correspondence between cameras has to
be supplied as training dataa priori. The system required an offline training period where
a marker is carried around the environment. This would be infeasible for large systems
and can not adapt to cameras being removed or added ad hoc without recalibration.

KaewTraKulPong and Bowden [9] or Ellis et al [6] do not requirea priori correspon-
dences to be explicitly stated, instead they use the observed motion over time to establish
appearance and disappearance periods. Ellis learns the links between cameras, using a
large number of observed objects to form reappearance period histograms between the
cameras. Bowden instead uses appearance matching to build up fuzzy histograms of the
reappearance period between cameras. This allows a spatio-temporal reappearance period
to be modelled. In both cases batch processing was performed on the data which limits
their application.

Colour is often used in the matching process. Black et al [1] use a non-uniform quan-
tisation of the HSI colour space to improve illumination invariance, while retaining colour
detail. KaewTraKulPong and Bowden [10] uses a Consensus-Colour Conversion of Mun-
sell colour space (CCCM) as proposed by Sturges et al [14]. This is a coarse quantisation
to provide consistent colour representation inter-camera without colour camera calibra-



tion.

3 Object Tracking and Description

The test environment consists of 4 non-overlapping colour cameras in an office environ-
ment with the layout shown in Figure 1, the video feeds are multiplexed together to form
a time synchronized single video, fed into a P4 windows PC in real time.

Figure 1: (Left)The top down layout of the camera system, (Right) The tracking environ-
ment used.

The object detection tracker [9] used in this work is based on modelling the static back-
ground colour distribution and is similar to that originally presented by Stauffer and Grim-
son [13]. The foreground vs background pixel segmentation is formed using a gaussian
mixture model on a per pixel basis, learnt using an online approximation to expectation
maximisation. Shadows are identified and removed by relaxing a models constraint on
intensity, and the foreground object is formed using connected component analysis on
the resulting binary segmentation. Objects are linked temporally to provide movement
trajectories within each camera, illustrated in figure 1.

3.1 Colour Similarity

Once the foreground objects have been identified, an object description is formed for inter
camera correlation. The colour histogram is used to describe the objects appearance as
it is invariant to viewpoint and through quantisation, invariance to illumination can be
achieved. Several colour spaces and quantisation levels were investigated including the
HSI (8x8x4) approach proposed by Black et al [1] . The Consensus-Colour Conversion
of Munsell colour space (CCCM) [14] was selected as it produces marginally superior
results, for further details see [2]. CCCM works by breaking RGB colour into 11 basic
colours. Each basic colour represents perceptual colour category established through a
physiological study of how human’s categorise colour variations. This coarse quantisation
provides consistent colour representation inter-camera without colour camera calibration
provided cameras have similar colour consistency.



4 Building the Temporal links between Cameras

Our approach makes use of the key assumption that, given time, objects will follow sim-
ilar routes and that repetition will form marked and consistent trends in the overall data.
These temporal links can be used to link regions together producing a probabilistic dis-
tribution. Thus between each region of a camera a link can be formed estimating the
posterior distribution of an objects movement.

Linking all regions to all others is feasible in small scale experimental systems how-
ever as the number of cameras increase, the number of possible links required to model
the posterior increases exponentially. With only 4 regions in the system there will be 12
links(excluding linking the camera to itself), increasing this to 20 regions, the number of
links would be 380. This complexity further increases as multiple entry and exit areas
are considered for each camera. With each camera in a system of 20 cameras having 3
entry or exit areas, a total of 3540 links would be required to ensure that all possibilities
are covered and as links increase, the amount of data required to learn these relationships
also increases. The approach becomes infeasible. However, most of the links between
regions are invalid as they correspond to impossible routes. Thus to use the available
resources effectively a method is required to distinguish between valid and invalid links.
Most solutions to this problem require either, batch processing to identify entry/exit points
or hand labeling of the links between regions (impractical in large systems). Both of these
approaches are unable to adjust to changes in the environment or camera position. This
section proposes a method that is initially coarsely defined but then refines itself over time
to improve accuracy as more data becomes available. It has the ability to adjust to any
changes that might occur in the environment without a complete system restart.

4.1 Region links

The system starts by identifying links at the basic camera-to-camera level, discarding
unused or invalid links. Valid links can then be subdivided to provide a higher level of
detail.

The tracking algorithm automatically tracks objects within the camera’s FOV and
forms a colour appearance model of the person based on the CCCM colour space. The
colour histogramB = (b1,b2....b11) is the median histogram recorded for an object over
its entire trajectory within a single camera. All new objects that are detected are compared
to previous objects within some allowable reappearance period. The colour similarity is
calculated and combined together, to form a discrete probability distribution over time
based on this reappearance periodT. Thus the frequencyf of a binφ is calculated as:

fφ = ∑
∀i, j

Hi j ;(tend
i − tstart

j ) < T (1)

wheretstart
i andtend

i are the entry and exit times of objecti respectively,T is the maximum
allowable reappearance period.Hi j is the histogram intersection of objectsi and j given
by

Hi j =
11

∑
k=1

min(Bik,B jk) (2)

Frequencies are only calculated for an objecti that disappears from regiony followed
by a reappearance in regionx ( f x|y

φ ). Through normalising the total area by∑T
i f x|y

φ we



obtain an estimate to the conditional transitional probabilityP(Ox,t |Oy). An example of
P(Ox,t |Oy) is shown in Figure 2 whereOx,t is objectx at time t, using 3 second time
intervals. The distinct peak at 3 seconds indicates a link between the two regions. The
next section describes how this link can be detected and is used.

Figure 2: An example of a probability distribution showing a distinct link between two
regions

5 Incremental Block sub division and recombination

This section explains how the system identifies which links are valid and therefore when
to subdivide the connected blocks. Eventually, adjacent neighbouring blocks can be re-
combined to form larger blocks if found to have similar distributions.

The system is based on a rectangular subdivision. Initially, at the top level, the system
starts with one block for each of the 4 cameras. This allows tracking to start immediately
with a coarse estimate initially uniformly distributed. The 12 links between the blocks
are learnt over time using the method described in the previous section. After sufficient
evidence has been accumulated, determined by the degree of histogram population, the
noise floor level is measured for each link. This is found by taking the median of all the
non zero values of the probability distribution. If the maximum peak of the distribution is
found to exceed double the noise floor level, there may be a correlation between the two
blocks, otherwise it is likely that there is no link and can be safely discarded. The noise
level was determined through experimental investigation. In Table 1 different noise floors
and time intervals in the probability distribution are shown along with the success rate of
correctly identifying links and non-links. The Median x2 was found to provide the best
results over the varying time intervals.

If a link is found between 2 blocks, they are both sub divided to each create 4 new
equal sized blocks, this process is illustrated in Figure 3. The data previously used to
create the links between the original blocks, is then reused to form links in these new split
blocks, before the algorithm incorporates new evidence into the distributions.

It is likely that many of the blocks will not form coherent links, and can therefore
be removed to minimise the number of links maintained. It is important that links are
not removed between blocks that could work with more data. Therefore a link between
two blocks is only removed if it has no data in it at all. This cautious method ensures
no blocks or links are removed that might be useful in a later iteration. Figure 4 shows
how the blocks are removed and sub divided over time. In this example, the maximum



Noise Floor Thres. Varying Distrib. time intervals with correct linkage shown (%)
1sec interval 2sec int 3sec int 4sec int 8sec int

2x Median 69% 82% 75% 94% 82%
3x Median 63% 69% 56% 75% 50%
4x Median 50% 50% 56% 56% 50%

Table 1: Table of % of correctly identified links and non-links between regions, with
varying noise floor and time intervals, (max reappearance time 40 secs using 3000 People)

Figure 3: The iterative process of splitting the blocks

number of iterations is 4, after which the amount of data required to sub divide the blocks
further exceeds 10000 tracked people (around 5 days of data). More than 5 days data
would effect the ability of the approach to adapt to long term changes in the environment.

Figure 4: The iterative process of splitting the blocks on the video sequence

Table 2 shows the number of links maintained and dropped at each iteration, along with
the amount of data used. It can be seen that with each iteration, the number of possible
links increases dramatically, whereas the number of valid links maintained by the system
is considerably less. The policy of removing unused and invalid regions improves system
scalability. This iterative process can be repeated to further increase the resolution of the
blocks.



Iteration Amount of Number of Tot poss Initial Dropped Kept links
Data Blocks Links links links

1 1000 4 12 12 0 12
2 5000 16 240 240 45 195
3 10000 60 2540 1631 688 943
4 10000 191 36290 36134 34440 1694

Table 2: Table of number of links maintained and dropped in each iteration

The blocks start to form the entry and exit points of the cameras, Figure 5 (left image)
shows the result after 4 iterations. The lighter blocks have a higher importance deter-
mined by the number of samples each link contains. As the number of iterations increase,

Figure 5: Left image shows the main identified entry/ exit blocks. Right Image shows
the individual blocks that, if similar, are then recombined to form larger more populated
blocks, shown by the constant colour areas.

the size of the linked blocks decreases and thus reduce the number of samples detected
in each block. This affects the overall reliability of the data used. To counter this, blocks
which are found to have similar distributions to neighbouring blocks are combined to-
gether to increase the overall number of samples within that region (as illustrated in the
right image in Figure 5. In comparing the two images in Figure 5, the effect of combin-
ing the neighbouring blocks reduces the number of actual links between blocks, therefore
increasing the accuracy of the remaining links.

6 Modelling Posterior Appearance Distributions

This section describes how the weighted links between blocks can be combined to form
a single posterior probability distribution. Over time this can be refined to become more
detailed as the iterative block splitting process (described previously) takes place.

Given an object which disappears in regiony we can model its reappearance proba-
bility over time as;

P(Ot |Oy) = ∑
∀x

wxP(Ox,t |Oy) (3)



where the weightwx at timet is given as

wx =
∑T

i f x|y
φ

∑∀y ∑T
i f x|y

φ

(4)

This calculated posterior probability is then applied with the appearance model de-
scribed earlier to enhance the tracking of objects across spatially separated cameras.
When a new object is detected, it is compared to all previous objects separately within
the time thresholdT. The resultant colour similarity is found through histogram inter-
section using the CCCM colour space and the result weighted by the new object’s entry
block posterior likelihood to form a weighted hypothesis for the objects previous location.
The highest weighted hypothesis determines where an object previously appeared. Values
below a nominal threshold are identified as new objects to the system.

7 Results

The 4 camera system described and presented in Figure 1 was used to track and collate
a total of 10000 people over a 5 day period. As the data became available the blocks
were gradually split and refined. The main entry/exit blocks and links after 4 iterations
are shown in Figure 6, along with a spatial map of the blocks.

Figure 6: Both the main entry and exit points and a top down layout of the camera system
environment with these blocks marked.

An example of the combined posterior probability of Block 1,P(O1, t) from Figure 6
is shown in Figure 7. The peak which can be seen occurring at 3 seconds indicates the
likely time taken for an object to arrive from block 2 which is the most probable block for
an object to have arrived from. There is also another peak at 18 seconds, this is the time
taken for an object to arrive from block 4 on average.

Table 3 compares the success at tracking people across cameras using only the colour
similarity of the objects, against the method proposed in this paper, where the posterior
distribution for the regions are used to weight the colour similarity between objects.

Initially, the experiment used only the colour similarity with no weights to track ob-
jects. As the available data increased, so did the number of program iterations, each time
incorporating new evidence. With each iteration, the linked blocks were split and refined



Figure 7: The Posterior Probability distribution of Block 3

Up to Iteration Success (%) Additional Data used Total Data Used
Only Colour Similarity 55% 0 0

1 57% 500 500
2 63% 500 1000
3 68% 4000 5000
4 71% 5000 10000

Table 3: Table of results of using colour similarity and using a weighted colour similarity
with varying of iterations to track object cross camera

increasing tracking accuracy. The test video sequence consisted of 45 objects that were
tracked for more than 4 seconds. Each new object was compared to other previous objects
within a reappearance period of 40 seconds and then either labeled as a new object or as
a previously tracked object. The results, compared to ground truth data are presented
in Table 3. The final column indicates the amount of data used to create the posterior
distribution between regions, starting with no data increasing in stages to 10000 people.

It can be seen that as the amount of data and number of program iterations increases
so does the success rate of tracking. This system fulfills the three ideals stated in the
introduction. It is not unreasonable to assume that given more data, further improvements
could be achieved.

8 Conclusions

We have described a method to automatically derive the main entry and exit areas in a
camera probabilistically using incremental learning. This allows for objects to be tracked
between spatially separated uncalibrated cameras. The spatio-temporal structure of a sur-
veillance system can be used to weight hypotheses extracted through a coarse colour
similarity. The method is completely automatic and unsupervised and able to adapt to
changes in the spatio-temporal structure of the system. An experiment shows that using
this technique increases tracking accuracy up to 71%. This is a considerable improve-
ment over colour similarity alone, and impressive given the base accuracy (55%). The
incremental technique ensures that the system works immediately but will become more



accurate overtime as additional data is acquired.

9 Acknowledgements

This work is supported by an EPSRC/Imaging Faraday partnership industrial CASE award
sponsored by Overview Ltd.

References
[1] J. Black, T.J Ellis, and D. Makris. ”Wide Area Surveillance with a Multi-Camera Network”.

Proc. IDSS-04 Intelligent Distributed Surveillance Systems, pages 21–25, 2003.

[2] R. Bowden, A. Gilbert, and KaewTraKulPong P. ”Tracking Objects Across Uncalibrated Ar-
bitrary Topology Camera Networks, in Intelligent Distributed Video Surveillance Systems”.
S.A Velastin and P Remagnino Eds. Chapt 6, IEE, London, to be published, 2005.

[3] Q. Cai and J. Agrarian. ”Tracking Human Motion using Multiple Cameras”.Proc. Interna-
tional Conference on Pattern Recognition, pages 67–72, 1996.

[4] T. Chang and S. Gong. ”Bayesian Modality Fusion for Tracking Multiple People with a Multi-
Camera System”.Proc. European Workshop on Advanced Video-based Surveillance Systems,
2001.

[5] A. Dick and M. Brooks. ”A Stochastic Approach to Tracking Objects Across Multiple Cam-
eras”.Australian Conference on Artificial Intelligence, pages 160–170, 2004.

[6] T.J. Ellis, D. Makris, and J.K. Black. ”Learning a Multi-Camera Topology”.Joint IEEE
Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance
(VS-PETS), pages 165–171, 2003.

[7] T. Huang and S. Russell. ”Object Identification in a Bayesian Context”.Proc. International
Joint Conference on Artificial Intelligence (IJCAI-97), Nagoya, Japan, pages 1276–1283,
1997.

[8] O. Javed, Z. Rasheed, K. Shafique, and M. Shah. ”Tracking Across Multiple Cameras with
Disjoint Views”. Proc. IEEE International Conference on Computer Vision, pages 952–957,
2003.

[9] P. KaewTrakulPong and R. Bowden. ”An Adaptive Visual System for Tracking Low Resolu-
tion Colour Targets”.Proc. BMVC’01, Vol 1, Manchester UK, pages 243–252, 2001.

[10] P. KaewTrakulPong and R. Bowden. ”A Real-time Adaptive Visual Surveillance System
for Tracking Low Resolution Colour Targets in Dynamically Changing Scenes”.Journal of
Image and Vision Computing. Vol 21, Issue 10, Elsevier Science Ltd, pages 913–929, 2003.

[11] P. Kelly, A. Katkere, D. Kuramura, S. Moezzi, and S. Chatterjee. ”An Architecture for Multi-
ple Perspective Interactive Video”.Proc. of the 3rd ACE International Conference on Multi-
media, pages 201–212, 1995.

[12] V. Kettnaker and R. Zabih. ”Bayesian Multi-Camera Surveillance”.Proc. IEEE Computer
Vision and Pattern Recognition, pages 253–259, 1999.

[13] C. Stauffer and W.E.L. Grimson. ”Learning Patterns of Activity using Real-time Tracking”.
PAMI, 22(8), pages 747–757, 2000.

[14] J. Sturges and T.W.A. Whitfield. ”Locating Basic Colour in the Munsell Space”.Color
Research and Application, 20(6):364-376, 1995.

[15] G. Welch and G. Bishop. ”An Introduction to the Kalman Kilter”.Technical Report 95-
041,University of North Carolina at Chapel Hill, 1995.


