
Classifier-based Contour Tracking for Rigid
and Deformable Objects

Ali Shahrokni François Fleuret
Pascal Fua∗

Computer Vision Laboratory
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
{ali.shahrokni,francois.fleuret,pascal.fua}@epfl.ch

Abstract

This paper proposes a machine learning approach to the problem of model-
based contour tracking for rigid or deformable objects. The motion of the
target is calculated by tracking its contours in a video sequence. We develop
a probabilistic representation of contours that allows robust contour tracking
in presence of texture and clutter.

We use boosting to train a predictor of the conditional probability of tex-
ture transition, given the pixel intensities. The most likely connected con-
tours are obtained by maximizing the posterior probability of object model
parameters. The probabilistic formulation allows spatial connectivity of the
contours to be formulated in a natural manner. For deformable objects, we
use a Hidden Markov Model to calculate the joint law of the conditional
probabilities of contour points while for rigid objects geometric properties of
the model are used in a framework of random sample consensus algorithm to
find the optimal model pose.

We demonstrate that the proposed method is fast and robust for tracking
deformable and rigid objects. We also compare our algorithm to several other
contour tracking methods.

1 Introduction
In this paper we investigate the use of machine learning techniques to detect boundaries
between potentially textured regions. We demonstrate the effectiveness of this approach
in the context of tracking of rigid or deformable objects using images that are problem-
atic for other techniques. More specifically, we show how a small set of weak learners
can be used to estimate the conditional probability of a texture discontinuity, given its
neighborhood. The weighted sum of weak learners can be seen as an approximation
of a log-likelihood. This representation of texture discontinuities makes it possible to
enforce spatial connectivity of contours quantitatively. Spatial constraints together with

∗This work was supported in part by the Swiss National Science Foundation.

trained weak learner responses provide a natural way to detect contours of object which
is not attainable through conventional methods such as gradient-based techniques. These
characteristics make the resulting contour detection algorithm coherent and simple while
remaining general and robust.

In the remainder of this paper, we first discuss related work. We then describe the clas-
sification method for contour extraction. Finally Section 4 we go through spatial connec-
tivity constraints used to aggregates the classifier information and report our experiments
on tracking and comparison of the performance with some other tracking methods.

2 Related work
The contours for common tracking applications are extracted using different methods.
Methods based on local gradient information [2] or edge distance transform [11] are ap-
pealing due to their simplicity and speed, but their application is restricted to cases where
the contrast is sufficient. Furthermore, they tend to fail in the presence of highly textured
objects and clutter, which produce too many irrelevant edges. This is due to failure to
exploit the intensity values and structures available in the image.

Texture segmentation techniques such as methods based on graph cuts [1] require
computing Markov Random Field (MRF) models which tend to be computationally in-
tensive and therefore not suitable for tracking. Recently Rother et. al. [9] have introduced
a fast interactive technique based on graph cuts which yields impressive segmentation
results thanks to improvements in the optimization stage and local post-processing. In
contrast, rather than making a general hypothesis model for inside and outside texture,
in our proposed method we exploit geometric and continuity constraints in conjunction
with fast classifier-based estimation of local boundary positions. Our claim is that local
boundaries can be picked with more precision with less computation on concentrating the
learning on details which is more favorable for tracking proposes.

Machine learning methods and Hidden Markov Models, on the other hand, have been
used extensively for object detection [12] and recognition. However, these methods have
not yet been applied to low level generic classification problems, such as finding texture
discontinuities (cuts) in a narrow image band. The main motivation behind the present
work is that such a tool can prove to be useful in a wide variety of applications that
require reliable boundary detection.

3 Contour point classification
In this section we show how trained classifiers are used to provide a likelihood measure
for the points in the vicinity of a given contour point. The input to each classifier is a
narrow image band as described below. The output of each classifier is a binary decision
which is ’1’ if it determines that there is a texture cut in the middle of the band and ’0’ if
otherwise. Furthermore, each classifier is associated with a weight which is related to the
total weighted error on the training set. This is explained in detail in section 3.3.

Random boundary used for blending the two parts

Image patchs from random regions of two randomly selected images in an image database

Downsampled image gives the database item used for classification

Figure 1: The database samples with a texture transition in the middle are made using
blending of random image regions and down sampling.

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

m m+g n+hn

... ...

(a) positive sample (b) negative sample (c) feature parameters

Figure 2: Examples of (a) positive, and (b) negative training samples used to classify
texture cut in the middle of the test image. The database items are 32×8 pixels long. (c)
features parameters defined on the images.

3.1 Database
The set of training examples consists of images of size 32× 8 pixels. The positive ex-
amples are composed of two randomly selected patches of size 128× 32 from random
images collected from the web. These patches are concatenated to each other to form an
image of size 256× 32 with a texture transition in the middle. To produce more realis-
tic texture transitions, the concatenation is done by stochastic blending of the connecting
ends of the two patches as illustrated in Fig. 1. Finally the results are downsampled to
give 32× 8 images with a smooth texture transition in the middle. The negative sam-
ples contain only one downsampled randomly selected image region. Examples of both
positive and negative samples are shown in Fig. 2.

3.2 Classifiers
The features that we use for classification of pattern changes are the mean of the different
bands on both sides of the database samples in frequency or intensity domains as shown
in Fig. 2-c. Therefore, a feature f (s) corresponding to image pixel sequence s can be
defined by 4 parameters:

f (s) = fm,g,n,h(s) = 1/(g+1)
g

∑
k=m

Il(k) − 1/(h+1)
h

∑
k=n

Ir(k) (1)

where Il and Ir are the intensity values or the magnitude of FFT coefficients of the left and
right pixel sequences of the image respectively.

3.3 Training classifiers
We associate a feature to each classifier. The training is done using Adaboost [5] that
learns by selecting the relevant features with the most discriminating information. We use
the algorithm described in [12] for the implementation of the Adaboost and at each stage

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

13

... ...
14 0

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

���
���
���
���

���
���
���
���... ...

14 0

(a) 1st weak learner (b) 2nd weak learner

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

�����
�����
�����
�����

���
���
���
���

... ...
0 3

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

	�	
	�	
	�	
	�	

�

�

�

�

... ...
14 0

(c) 3rd weak learner (d) 4th weak learner

Figure 3: The first four trained classifiers

r the trained classifier hr is given a threshold Tr, a parity Pr and a weight wr. The output
label of such classifier is then given by

hr(s) =

{

1 if Pr f (s) > Pr Tr
0 otherwise

. (2)

The first four trained classifier features are shown in Fig. 3. The bars show the indices of
pixel on left and right side of a sample image and whether features are in intensity or FFT
domain. The hatched bars indicate the parity of the classifier (i.e. Pr is −1 in Eq. 2 if the
hatched bars are on the left side). We see that the first two classifiers compare intensity
values of the last pixels on the left side with the first pixel on the right side with different
parities. That basically means that the best way to determine whether there is texture cut
in the middle of an image is simply by comparing pixels around the potential cut position.
We conjecture that the reason why there is one pixel space between the indices compared
on both sides in the case of the first two classifiers is that in most edges the two textures
tend to blend into each other. The next two classifiers are in FFT domain and compare
different frequency bands of the two sides of the image.

A boosted set of classifier with R weak learners then gives a score xi = ∑R
r=1 wr×hr(i)

to input sequence s. Once the classifiers have been trained and boosted using enough train-
ing samples, we can check the performance on the training and test databases for different
numbers of weak learners. Fig. 4 shows the error rate of classifications on training and
test sets versus the number of weak learners. The graphs shown correspond to trained
classifiers using Adaboost and regularized Adaboost [8] techniques.

We see that Adaboost error rate decreases exponentially on the training set while
it remains constant on the test dataset after about 50 weak learners due to over-fitting.
Regularized Adaboost is a way to reduce the effect of outliers. Fig. 4 shows that although
the over-fitting is reduced in the case of the training set, no significant improvement is
observed on the test set in the case of regularized Adaboost. Therefore, we use non-
regularized version of Adaboost algorithm to train of the weak classifiers.

To study the performance of the classifier in detecting the texture boundary in an
image the following simulation was conducted. Fig. 5 shows the distribution of error in
pixels of the detected texture transition position from the real texture boundary in 1000
randomly generated images using different numbers of weak learners. The images are
256 pixels long and are made by blending two random textures in the middle, therefore
we can assume a texture change in the middle of them. The sliding window is 32 pixels
long which is the same size as the 4000 used as training examples. The detected boundary

0 50 100 150 200
rounds

0.1

0.15

0.2

0.25

0.3

0.35

0.4

er
ro

r r
at

e
Regularized Adaboost
Adaboost

0 50 100 150 200
rounds

0.1

0.15

0.2

0.25

0.3

0.35

0.4

er
ro

r r
at

e

Regularized Adaboost
Adaboost

(a) training set (b) test set

Figure 4: Classification error rate vs. number of weak learners trained using 2000 positive
and 2000 negative samples. Adaboost (thin curve) and regularized boosting (thick curve)
are used for the training of weak learners. (a) is the error rate on the original training set
and (b) is the error rate on a test set of 1000 positive and 1000 negative samples.

-100 0 100
0

50

100

150

200

250

-100 0 100
0

50

100

150

200

250

-100 0 100
0

50

100

150

200

250

-100 0 100
0

50

100

150

200

250

1 weak learners 10 weak learners 50 weak learners 100 weak learners

Figure 5: Histogram of texture transition detection error in pixels on 1000 test images
using different numbers of trained weak learners. The error decreases with higher number
of weak learners.

corresponds to the position which maximizes the weighted sum of classifiers response.
We can see in Fig. 5 that as the number of weak learners increases, the peak around zero
error gets more prominent and the distribution elsewhere becomes flat. Moreover, it can
be noted that a small number of weak learners is enough for reliable detection.

3.4 Model of the conditional probability
For each scanline and each location in that scanline, we obtain a response equal to the
weighted sum of weak learners as defined in Section 3.3. We propose to combine those
responses into a probabilistic model by first converting them into conditional probabilities
as follows.

At a given location, we denote by Y a random variable standing for the presence of
a cut, by S the pixel intensities in the considered neighborhood on the search direction
and by x the weighted sum of weak learners at that location. The posterior probability of
having a texture transition at that location is thus given by:

P(Y = 1 |S = s) = P(Y = 1|X = x) =
1

1 + P(X=x |Y=0)
P(X=x |Y=1)

. (3)

Under the assumption that X |Y = 0 and X |Y = 1 both follow normal laws of expectation
µ0 and µ1 and of same variance σ , we obtain

P(Y = 1 |S = s) = 1
1+exp{−α (x−β)} (4)

with α = (µ1 − µ0)/σ 2 and β = (µ1 + µ0)/2, and µ0, µ1 and σ estimated with a
trivial likelihood maximization.

Finally, the weighted sum of weak learners X can be seen as an approximation of
a log-likelihood log P(Y=1|X)

P(Y=0|X) , similarly to the combination of weak learners in a naive
Bayesian predictor [7]. Thus, the parameters α and β stand for a correcting factor for the
dependency between weak learners and the prior log-ratio respectively.

In the next section we show how the object model can be used, in conjunction with the
classifier responses around the object outlines, to find the most probable model silhouette
for tracking applications.

4 Experimental results
In this section we present our experimental results on tracking deformable and rigid ob-
jects. Current implementation of our system can reach a speed of 6 to 10 frames per
second on a 2.8 GHz Pentium 4. Its speed mainly depends on the number of samples on
the model, length of the pixel sequences on each sample point, and the number of weak
learners used in the conditional probability classifier. According to our experiments a low
number of classifiers such 4 to 10 depending on the complexity of the sequence is enough
for reliable contour tracking.

At each frame during tracking we have an initial guess for the object silhouette. The
conditional probability model is applied to search lines parallel to the normal directions at
each sample point. Each search line gives independently the probability of texture change
across it. These probabilities can be aggregated to yield a probability distribution for the
most probable contour, i.e. the object boundary.

Based on whether the tracked object is rigid or deformable, we use two methods
to treat independent probabilities given by the conditional probability classifier on each
search line in order to obtain the object contour in the current frame. These methods are
discussed below.

4.1 3–D tracking of rigid objects
For a rigid object robust stochastic search methods such as RANSAC [3] can be used to
determine the optimal pose which maximizes the posterior boundary probability. We use
a system similar to Drummond and Cipolla’s [2] in which the search starts from the esti-
mated projection of a 3-D object model and performs a line search in the direction perpen-
dicular to the projected edges. Our proposed algorithm gives the conditional probability
of texture change along these lines. At each iteration of our RANSAC-style algorithm,
for each visible model edge two scanlines are selected randomly. Two points are then
drawn randomly on those scanlines according to the conditional probability given by the
classifier. The straight line defined by those two points is used as the observation for the
current model edge for which the RANSAC support is equal to the sum of the conditional
probabilities of the pixels on it. After enough iterations we pick up the line with largest

support for each model edge. Pose parameters are then taken to be those that minimize
the distance of the model’s projection to the selected lines. Fig. 7 shows several frames
of tracking results in presence of clutter on a sequence of 600 frames with large and fast
camera motions.

For the purpose of evaluation, we have tried the same system using our method and
three other edge-based trackers, namely, gradient-based tracker [2], Fisher discriminant
classifier [4], and a fast texture boundary detector [10]. The results obtained on a short
sequence are shown in Fig. 8 and are discussed below.

Gradient-based tracker: The corresponding implementation of the gradient-based
tracker works well and is very fast when the target object stands out clearly against the
background. However it tends to fail for textured object whose boundaries are hard to
detect unambiguously. An example of such failure is shown in the second row of Fig. 8.

Fisher’s discriminant function: As an example of linear discriminant we take Fisher’s
discriminant [4]. The goal is to find a position that maximizes the between class variance
while minimizing the within class variance of intensity values at the same time on either
side of the potential texture boundary. Fisher’s discriminant analysis has been used suc-
cessfully in applications such as lip tracking [6] in a framework similar to that described
in this paper. As can be expected from its definition, Fisher’s criterion for edge-based
tracking works well only when the assumption of two classes with normal distribution
is valid around the object boundary. The tracking results are shown in the third row of
Fig. 8, where some of the detected edges are drifted from the real ones.

Texture boundary detection: Finally, we compare our method with a fast texture
boundary detector [10], which assumes uniform prior for all texture distributions and up-
dates the estimated texture distribution as new pixel on scanlines are encountered. This
method is fast and adapted for real-time tracking. However, correct estimation of texture
distribution relies on a relatively long scanline in order for the transition matrices to con-
verge. The 4th row in Fig. 8 shows tracking results using this method. It can be noticed
that edges lacking texture around them cause the tracking to break gradually.

Replacing the boundary detector part of our system with our proposed method based
on the classifier and RANSAC not only reduces the length of the search line required
to almost half (60 pixels) but also yields good tracking results on the same sequence as
shown in the first row of Fig. 8.

4.2 Tracking deformable object
When the model has a high number of degrees of freedom, stochastic search for the op-
timum model parameters is not trivial. In this case we present a Hidden Markov Model
to relate the responses of the classifier along different lines orthogonal to the candidate
edge. This is the case when the model does not consist of straight or geometrically well
defined edges.

We define a HMM with, as observable state, a set of pixel sequences S = {Si | i =
1, ...,N} where each sequence Si has M pixels as illustrated in Fig. 6. The HMM is char-
acterized by the visible state Si which is the sequence of pixel intensities on line i and the
hidden state Zi which is the location of the real edge along the line i. The likelihood dis-
tribution in each of the states, P(St |Zt), is given by individual sequence conditional prob-
abilities of section 3 and the dependency between successive hidden states, P(Zt+1 |Zt), is
modeled by a Gaussian kernel which ensures connectivity and smoothness of the bound-

S1

SN

S2

Z iZ i+1

.

.
.

.

search region

true object contour

hidden state

pixel sequence

Figure 6: Definition of the HMM on the conditional probability classifier responses over
a search image

Figure 7: Tracking textured object against cluttered background.

ary. Finally, the initial state distribution P(Z0) is assumed to be uniform. We wish to
maximize the probability of the hidden states for a given set of sequences, S:

arg max
z1,...,zN

P(Z1 = z1, ...,ZN = zN |S1, ...,SN) (5)

Solving Eq. 5 yields the state sequence which corresponds to the most likely contour
in the search line and it can be efficiently done by dynamic programming.

We have applied our algorithm to tracking of the upper body motion as an example
of deformable body motion. The user draws an initial path by clicking on some points
around the body outline. These points define an spline curve which is used as the starting
guess for the body outline. The outline is then obtained using the conditional probability
classifier in conjunction with HMM and it serves as the initial guess for the successive
frames. Several frames of the tracking results are shown in Fig. 9.

5 Conclusion
We have presented a classification-based method to detect boundaries between potentially
textured regions and applied it to tracking of rigid or deformable objects. The classifica-

Figure 8: Comparison between different contour tracking algorithms. First row: Tracking
results using our classifier based method and RANSAC. Second row: tracking results us-
ing an edge-based tracker. Third row: Tracking results using Fisher discriminant function.
Fourth row: tracking results using texture boundary detection

Figure 9: Tracking deforming body outlines.

tion is handled by a small set of trained weak learners which estimate the conditional
probability of texture cut, given the neighborhood.

The tracked object model provides constraints which can be combined with the likeli-
hood distribution given in the vicinity of each contour point, thus allowing the extraction
of the optimum contour for tracking. These constraints are enforced by either of the fol-
lowing fashions.

HMM. A Hidden Markov Model is defined to calculate the joint law of local condi-
tional probabilities along the contour which is particularly useful in case of tracking free
meshed objects.

Stochastic pose estimation in case of rigid objects. RANSAC method is used to find
a pose that maximizes the sum of probabilities of contour points given by the classifier.

Training classifiers to distinguish texture cut is a novel approach to contour tracking
and is validated through our reported experimental results on tracking deformable and
rigid objects. Moreover, a simple comparison shows that it outperforms three other edge-
based trackers, namely, gradient-based tracker, Fisher discriminant classifier, and a fast
texture boundary detector.

Finally, it is possible to concentrate the training of the weak learners on specific sub-
jects, such as faces, hands or objects. This will be the focus of our future work in that
area. Another issue for future work is to study the performance of other features such as
cooccurrence matrices as texture transition classifiers.

References
[1] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmentation using

an adaptive gmmrf model. In European Conference on Computer Vision, volume 1, pages
428–441, 2004.

[2] T. Drummond and R. Cipolla. Real-time visual tracking of complex structures. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 27(7):932–946, july 2002.

[3] M.A Fischler and R.C Bolles. Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography. Communications ACM,
24(6):381–395, 1981.

[4] R.A. Fisher. The statistical utilization of multiple measurements. Annals of Eugenics, 8:376–
386, 1938.

[5] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. In European Conference on Computational Learning Theory,
pages 23–37, 1995.

[6] Robert Kaucic and Andrew Blake. Accurate, real-time, unadorned lip tracking. In ICCV,
pages 370–375, 1998.

[7] P. Langley, W. Iba, and K. Thompson. An analysis of bayesian classifiers. In Proceedings of
AAAI-92, pages 223–228, 1992.

[8] G. Rätsch, T. Onoda, and K. R. Müller. Regularizing adaboost. In Neural Information Pro-
cessing Systems, pages 564–570. MIT Press, 1998.

[9] C. Rother, V. Kolmogorov, and A. Blake. ”GrabCut”: Interactive Foreground Extraction using
Iterated Graph Cuts. ACM Transactions on Graphics, 23(3):309–314, 2004.

[10] A. Shahrokni, T. Drummond, and P. Fua. Texture Boundary Detection for Real-Time Track-
ing. In European Conference on Computer Vision, pages Vol II: 566–577, Prague, Czech
Republic, May 2004.

[11] A. Thayananthan, P.H.S. Torr, and R. Cipolla. Likelihood models for template matching. In
British Machine Vision Conference, pages 949–958, 2004.

[12] P. Viola and M. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features.
In Conference on Computer Vision and Pattern Recognition, pages 511–518, 2001.

