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Abstract

This paper addresses the problem of structure and motion from silhou-
ettes for turntable sequences. Previous works have exploited corresponding
points induced by epipolar tangencies to estimate the image invariants un-
der turntable motion and recover the epipolar geometry. In these approaches,
however, camera intrinsics are needed in order to obtain Euclidean motion
and reconstruction. This paper proposes a novel approach to precisely esti-
mate the image invariants and the rotation angles in the absence of the camera
intrinsics, and to perform auto-calibration. By exploiting a special parame-
terization of the epipoles, it is shown that the imaged circular points can be
formulated in terms of the image invariants. A fixed scalarκ, introduced to
account for the different scales in the homogeneous representations of the
image invariants used in the parameterizations, is found crucial in both cali-
bration and motion estimation. Given the image invariants, namely the hori-
zon, the imaged rotation axis and its orthogonal vanishing point, this scalar
can be determined from the epipoles in an image triplet. A robust method
for estimatingκ is proposed and the rotation angles can be recovered using
this estimated value ofκ. All the estimated variables are then refined using
bundle-adjustment and auto-calibration is performed using the imaged circu-
lar points, the imaged rotation axis and the associated vanishing point. This
allows the recovery of the full camera positions and orientations, and hence
Euclidean reconstruction. Experimental results demonstrate the simplicity
of this novel approach and the high precision in the estimated motion and
reconstruction.

1 Introduction

Turntable motion refers to the situation where the relative motion between a scene and a
camera can be described as a rotation about a fixed axis. It has been widely used by com-
puter vision and graphics researchers for generating 3D models. The most important and
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difficult step in the modelling process is to recover the relative pose of the camera and
the rotation angles. Traditional approaches accomplish this task by careful calibration
[15][10]. In [14], Fitzgibbon et al. introduced a point-based method to handle uncali-
brated camera with unknown rotation angles. Their method is based on the projective ge-
ometry of the single axis motion, and it involves the computation of fundamental matrices
and trifocal tensors. Jiang et al. [1][2] further extended this approach by making use of
conic trajectories, and developed an algorithm that requires neither the computation of the
fundamental matrices nor the trifocal tensors. However, all the above approaches require
point correspondences and would therefore be unfeasible if the scene surfaces are smooth
and textureless. In this situation, silhouettes become the only predominant and stable im-
age feature. Approaches based on silhouettes generally exploit epipolar tangencies [3][9]
to induce correspondences. However, such approaches require at least 7 epipolar tangen-
cies and involve a nonlinear optimization with non-trivial initialization. Wong et al. [6]
proposed a method based on only 2 epipolar tangencies between image pairs. However,
this approach still involves a high-dimensional optimization and requires the knowledge
of the camera intrinsics. Mendonça et al. [13] suggested that the epipolar tangencies
can be obtained by an optimization based on a one-dimensional search. Nonetheless, the
recovery of the rotation angles and furthermore the Euclidean reconstruction still require
the knowledge of the camera intrinsics.

In this paper, we propose a novel approach to recover the rotation angles and camera
intrinsics from silhouettes for turntable motion. Based on a special parameterization of
the epipoles, we derive a formulation for the pair of imaged circular points in terms of the
image invariants. Moreover, a fixed scalar, introduced to account for the different scales in
the homogeneous representations of the image invariants used in the parameterizations,
is found to be important and can be easily obtained from triples of images. A robust
method for estimating this scalar is introduced, and the rotation angles between each pair
of images can be easily and precisely recovered using this estimated scalar value. Auto-
calibration is then performed using the estimated circular points, the imaged rotation axis
and the vanishing point. The estimated camera intrinsics then allows the recovery of the
full camera positions and orientations, and hence a Euclidean reconstruction.

This paper is organized as follows.§2 reviews the recovery of the image invariants.
§3 presents the recovery of the fixed scalar and the relative rotation angles.§4 proposes
a novel formulation for the imaged circular points based on the image invariants and the
fixed scalar. The camera calibration matrix is thus obtainable.§5 presents the algorithm
and the implementations.§6 shows the experimental results and§7 gives the conclusions.

2 Image Invariants under Turntable Motion

Consider a reference cameraC1 lying on the negativeZ-axis of the world coordinate
system, and rotating about theY-axis (see Fig. 1(a)). The relative positions of the camera
center describe a circle on a planeΠh orthogonal to the rotation axis. The image ofΠh is
the horizon (vanishing line)lh, whereas the image of the rotation axis is the linels. Let
the plane defined by the camera center and the rotation axis beΠs, and we consider three
orthogonal directionsNx, Ny andNz, given by the normal direction ofΠs, theY-axis, and
Nx×Ny, respectively. These three directions will have vanishing pointsvx, vy andvz,
respectively. Note thatls is also the image ofΠs and hencevx and ls form a pole-polar



relationship with respect to the image of the absolute conic [7]. By construction,Nx is
parallel toΠh, andNz is parallel to bothΠh andΠs. Hence,vx must lie onlh andvz is
given by the intersection oflh andls. The pair of imaged circular pointsi andj must also
lie on lh, hencelh = i× j . If the intrinsic parameters of the camera is kept constant, then
all the aforementioned image entities will be fixed (see Fig. 1(b)).
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Figure 1: Turntable motion.(a)3D geometry. (b)2D Image invariants.

In [13], it has been shown thatls andvx can be recovered by exploiting the symmetry
property exhibited in the image of the surface of revolution (SOR) swept out by the rotat-
ing object. Images in a dense sequence are overlapped to obtain the image profile of the
virtual SOR which is invariant to aharmonic homology[11][13], given by

W = I −2
vxlTs
lTx ls

. (1)

Initial estimates forls andvx can then be obtained by locating bi-tangent points in the
profile, and are further refined by minimizing the transformation error introduced byW
(see [13] for details).

The horizonlh can be estimated as the line robustly fitted to the epipoles (i.e., the
images of the camera center) between all image pairs and passing throughvx. To obtain
an initial set of epipoles, epipolar tangents have to be recovered first. This requires finding
a line tangent to one silhouette which is transformed byW−T to a line tangent to the
silhouette in the other image (see Fig. 2). The search for corresponding tangents may be
carried out as a one dimensional optimization problem by minimizing the distance from
the transformed linel′i = W−T l i to the profile in the second image. The single parameter
is the angle that defines the orientation of the epipolar linel i in the first image [13]. The
epipoles can then be computed as the intersection of epipolar lines in the same image.

Note that under turntable motion, the fundamental matrix relating any two views can
be explicitly parameterized in terms of the image invariants, and is given by [14][13]

F(θ) = [vx]×+κ tan
θ
2

(lslTh + lhlTs ), (2)

whereθ is the rotation angle between the two views. The terms in (2) are in homogeneous
coordinates, and the scalarκ is therefore necessary to account for the different scales used
in the representations. The scalarκ is unknown but fixed for any angleθ , and cannot be
obtained from two images alone. Note that in (2), the only variable is the rotation angle
θ . It will be shown in§4 that the imaged circular points can be parameterized in terms of
the remaining fixed entities (i.e.,vx, ls, lh andκ).
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Figure 2: The overlapping of two silhouettes and their epipolar tangents.l1,l′1,l2 and l′2 are the
outer epipolar tangent lines.

3 Recovery of the Fixed Scalar and the Rotation Angles

Using the parameterization in (2), the epipolesei (i = 1,2) in an image pair, obtained from
the left and right nullspaces of the fundamental matrix, are given by [13]

ei ∼ vx− (−1)iκ tan
θ
2

ls× lh. (3)

Given the estimatedls, vx andlh (see§2), the only missing term in the parameterization of
the epipole is the coefficientκ tanθ

2 . This parameter can be found by a one-dimensional
search that minimizes the distance between the transformed epipolar lines and the corre-
sponding tangent points [13].

Consider a triplet of views with relative rotation anglesθpq (p,q = 1,2,3 p 6= q) (see
Fig. 3(b), which only shows the variables relating views 1 and 2, and 2 and 3). Let
γ1 = κ tanθ12

2 , γ2 = κ tanθ23
2 , andγ3 = κ tanθ13

2 . Using the fact thatθ13 = θ12+ θ23, the
fixed scalarκ can be easily obtained as

κ =
√

γ1γ2γ3

γ3− γ1− γ2
. (4)

The rotation angles between each pair of images can then be directly obtained by dividing
γ by κ.

4 Recovery of the imaged circular points and intrinsics

In this section, a new parameterization for the imaged circular points in terms of the image
invariants under turntable motion and the fixed scalarκ (introduced in§2) is presented.
Such a parameterization allows the imaged circular points to be recovered directly from
those estimated fixed entities and provides constraints for auto-calibration.

Theorem I. Given the vanishing pointvx, the imagels of the rotation axis and the horizon
lh of the turntable plane, the pair of circular pointsi, j of the turntable plane are given by

i, j ∼ vx± j κ ls× lh, (5)

where j2 = −1, κ is the fixed scalar in (2), and the left and right hand sides of∼ are
equal up to a scalar.
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Figure 3: (a)A pair of camerasP1, P2 are related by a rotation with an angleθ about the
Y-axis. (b)Three views under turntable motion. Epipoleepq is the projection of the camera center
of view p onto viewq. θpq is the rotation angle between viewp and viewq (p,q = 1,2,3 p 6= q).

Proof. Consider a pair of camerasP1=KR [I |−C] andP2=KR [RY(θ)|−C], whereRY(θ)
is a rotation about theY-axis by an angleθ andC = [00−1]T is the camera center (see
Fig. 3(a)). The imagex of a pointX = [X 0Z1]T on theX-Z plane underP1 is given by

x∼ [
p1 p2 p3 p3

]



X
0
Z
1


 =

[
p1 p3

][
X

Z+1

]
, (6)

wherepc (c = 1,2,3) are the columns ofP1. It can be easily seen thatp1∼ vx, p3∼ vz∼
ls× lh [14]. The epipoleei is the projection of[sin(π +(−1)iθ)0cos(π +(−1)iθ)1]T on
the image of cameraPi , and is given by

ei ∼
[

vx β [ls]×lh
][

sin(π +(−1)iθ)
cos(π +(−1)iθ)+1

]
∼ vx− (−1)iβ tan

θ
2

[ls]×lh, (7)

whereβ is an unknown fixed scalar used to fix the relative scale betweenvx and ls× lh.
By comparing (3) and (7), it can be easily derived thatβ = κ. Note i, j are the image of
the circular pointsI ,J = [10±j 0]T , i.e.,

i, j ∼ p1± jp3. (8)

By putting the corresponding terms into (8), the theorem is proved.
The obtained images of the circular points can be used to find the camera intrinsics.

As they lie on the image of the absolute conic (IAC)ω, it results in the following two
constraint:

iTω i = 0 and jTω j = 0. (9)

Besides, the imaged rotation axisls and the vanishing pointvx define a pole-polar rela-
tionship w.r.t. the IAC [11], i.e.,

l = ωv, (10)

and this provides one additional independent constraints onω. By Cholesky decomposi-
tion [4] of ω, a natural camera with zero skew and unit aspect ratio can be calibrated.



5 Implementation

A dense image sequence is used here to generate the image of the virtual SOR swept out
by the rotating object, and good estimates forls andvx can be obtained by exploiting
the symmetry property of this image. A sub-sequence is then used for a precise recov-
ery of the motion and the camera intrinsics. Cubic B-spline snake [8] is used to extract
silhouettes from the image sequence since it can achieve sub-pixel localization accuracy.
Besides, it also facilitates the search of epipolar tangents. An initial set of epipoles from
some randomly sampled image pairs in the sub-sequence is obtained, and the horizonlh
is then recovered by RANSAC.

For successive image pairs, an initial set of epipoles is calculated using (3) where the
coefficientκ tan(θ/2) is found by an one-dimensional search that minimizes the distance
between the epipolar lines transformed byW−T and the corresponding tangent points
[13]. The fixed scalarκ can then be recovered from successive image triplets by (4).
However, due to the existence of noises, the values ofκ estimated from different triplets
may have different values. A robust method is therefore proposed to estimateκ. A set
of κ is recovered from some randomly sampled image triplets and the modeκ0 is then
selected as the best estimate. The initial values of the rotation angles can be precisely
obtained by dividing the coefficientκ tan(θ/2) by κ0.

However, in practice, a few angles may be poorly estimated and a refinement is
needed. The error angles can be identified by the ratio between the estimatedκ and
κ0. The angle between viewp and view p+ 1 can be refined by using eight adjacent
view triplets, i.e.,(p− 4, p, p+ 1), (p− 3, p, p+ 1), (p− 2, p, p+ 1), (p− 1, p, p+ 1),
(p, p+ 1, p+ 2), (p, p+ 1, p+ 3), (p, p+ 1, p+ 4), (p, p+ 1, p+ 5), and the best angle
can be identified by the smallest difference between the estimatedκ andκ0.

Finally, a bundle-adjustment using Levenberg Marquardt minimization [5] could be
applied to refine all the parameters, i.e.,ls, lh, vx, κ and then−1 rotation angles for a
sequence ofn images. AslTh vx = 0, 5+ n parameters are to be refined. The intrinsics
are then estimated with the optimized entities, followed by a Euclidean reconstruction.
Algorithm 1 summarized the complete procedures of the technique.

Algorithm 1 Generation of 3D model from silhouettes
1: from the dense sequence, extract the silhouettes with cubic B-Spline snakes and over-

lap the images to get the image profileε of the virtual SOR swept out by the rotating
object;

2: recover the fixed featuresls andvx by making use of the symmetry ofε (see§2);
3: estimate a set of the epipoles from some randomly sampled image pairs in a sub-

sequence, and fit the horizonlh to the epipoles by RANSAC;
4: compute the modeκ0 of theκ estimated from some randomly sampled image triplets;
5: for each successive image triplet, compute the initial value of the rotation angle and

refine by making use ofκ0;
6: optimize ls, lh, vx, κ and all then− 1 rotation angles by minimizing the distance

between the outer tangent lines and the silhouettes;
7: recover the camera intrinsics and the projection matrices;
8: reconstruct the object model by carving the octree with silhouettes, followed by sur-

face triangulation and texture-mapping.



6 Experimental Results

Experiments on real turntable sequences were carried out to test the feasibility of the pro-
posed approach. The first sequence consisted 72 images of a vase (see Fig. 4). The image
had a resolution of640×480. Each image was taken by sequentially rotating the object
by 5◦ on a manually operated turntable with a resolution of0.01◦. After obtainingls, vx

andlh from this dense sequence, a sub-sequence consisting of 18 images with successive
rotation angles of20◦ was extracted for the auto-calibration and motion estimation. Fig.
5(a) shows the histogram of the fixed factorκ estimated from some randomly sampled
image triplets in the sub-sequence, and the peak indicates the bestκ0. Fig. 6(a) shows the
ratios of the initially estimatedκs using a single triplet of successive images to the best
estimateκ0. Fig. 6(b) shows both the initially recovered angles and the refined angles. It
can be seen that the initial angles already had a good precision while the refined angles
were even better, with a rms error of only0.174◦. These angles were further refined using
the bundle-adjustment optimization and a rms error of0.123◦ was achieved, which is bet-
ter than the rms error of0.2◦ for the same vase sequence in [13]. Under the assumption of
a natural camera (zero-skew and unit aspect ratio), table 1 compares the auto-calibration
result with that of the ground-truth, which was obtained with the classical L-shape grid
pattern [12]. It can be seen that the focal lengthf and theu0 coordinate of the principal
point were both precisely estimated whilev0 was not. This is due to the error in the es-
timatedvx. Fig. 7 shows three views of the 3D model reconstructed from the estimated
motion.

Similarly, the second sequence consists of 72 images of a head model with successive
rotation angles of5◦ (see Fig. 8). The electronic turntable used has a resolution of0.2◦.
After obtainingls, vx and lh from this dense sequence, a sub-sequence consisting of 18
images with successive rotation angles of20◦ was extracted. Fig. 5(b) shows the his-
togram of the fixed factorκ estimated. Fig. 9(a) shows the ratios of the initially estimated
values forκ using triplet of images to the best estimateκ0. Fig. 9(b) shows the initially
recovered angles, the refined angles (with a rms error of0.233◦), and those obtained by
bundle-adjustment (with a rms error of0.171◦). The reconstructed model is shown in Fig.
10, which reflects good qualities of our estimated parameters.

Figure 4:An image sequence of a vase under turntable motion.

7 Conclusions

In this paper, we have presented a simple and practical approach for recovering the cam-
era intrinsics and the relative angles using silhouettes under turntable motion. The system
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Figure 5:Histogram of the estimated values forκ, and the mode is chosen as the ”best estimate”.
(a) For the vase sequence. (b) For the head sequence.
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Figure 6:Vase sequence. (a) The ratio of initially estimatedκs toκ0. The larger the difference,
the worse theκ. (b) Angles estimated usingκ0 alone, which are refined by using multiple triples
and finally obtained after bundle adjustment.

input is only uncalibrated images of a dense turntable sequence. We have proposed a
simple formulation of the imaged circular points in terms of the image invariants and the
fixed scalar. The fixed scalar can be robustly estimated and used for angle estimation and
refinement. The rotation angles can therefore be estimated with a high precision without
the knowledge of camera intrinsics. The system only involves some simple minimization
procedures. Auto-calibration has been carried out in our work to achieve Euclidean recon-
struction. Experiments on two image sequences have produced convincing 3D models,
demonstrating the practicality of our algorithm.
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Figure 8:An image sequence of a polystyrene head model under turntable motion.
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Figure 9:Head sequence. (a) The ratio of initially estimatedκs toκ0. The larger the difference,
the worse theκ. (b) Angles estimated usingκ0 alone, which are refined by using multiple triples
and finally obtained after bundle adjustment.

Figure 10:3D model of the polystyrene head built from the estimated turntable motion.


