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Abstract

Despite the fact that color is a powerful cue in object recognition, the extrac-
tion of scale-invariant interest regions from color images frequently begins
with a conversion of the image to grayscale. The isolation of interest points
is then completely determined by luminance, and the use of color is deferred
to the stage of descriptor formation. This seemingly innocuous conversion
to grayscale is known to suppress saliency and can lead to representative
regions being undetected by procedures based only on luminance. Further-
more, grayscaled images of the same scene under even slightly different il-
luminants can appear sufficiently different as to affect the repeatability of
detections across images. We propose a method that combines information
from the color channels to drive the detection of scale-invariant keypoints.
By factoring out the local effect of the illuminant using an expressive lin-
ear model, we demonstrate robustness to a change in the illuminant without
having to estimate its properties from the image. Results are shown on chal-
lenging images from two commonly used color constancy datasets.

1 Introduction

The representation of objects and scenes by sparse local patches has proven to be well
suited to the practical challenges of occlusion, clutter and variation in viewing conditions.
Approaches employing this representation [14] typically start with the detection of a set
of distinguished points from the image. These “interest” points are often chosen as the ex-
trema of functions of the input specifically constructed to have some desirable properties,
e.g. high entropy, stability and invariance to geometric transformations. The detection
step is followed by the computation of a descriptor at each interest point, possibly after
the patch surrounding the point at its appropriate scale has been suitably normalized [13].

When the input is a color image, a common preprocessing step is the conversion of the
image to grayscale. This conversion is convenient for several reasons. Firstly, by moving
from our original vector-valued image to a scalar-valued image we make the available
theory [11] and its proven guarantees of scale-invariant behavior directly applicable to our
data. Secondly, it is well recognized that while color is a useful cue, its reliable use as a
feature is hampered by various practical difficulties. The measured pixel values in a scene
are influenced not just by the spectral reflectivity at that point, but also by the material
properties, the sensitivities of the camera sensors and the spectral profile of the illuminant.
Without additional information, inference of the “true” color at a pixel (defined, say as
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Example image pair Synthetic test images Grayscale LOG detector output

Figure 1: Example of the effect of grayscale conversion on a synthetic color image under
two perceptually similar illuminants. Note the repeatability of detected scale-invariant
LOG features (circled). This figure is best seen in color.

seen with a reference illuminant) is often under-determined and necessitates modeling
assumptions on a subset of these unknowns [5]. Reverting to grayscale and postponing
the use of color to when computing the descriptor [18] is an attractive alternative.

However the conversion to grayscale has a number of side-effects that are particularly
undesirable for reliable interest point detection. It is well recognized in neurobiology and
computer graphics that grayscaled versions of color images do not preserve chromatic
saliency [8, 12]. Regions that exhibit chromatic variation often lose their distinctive-
ness when naively mapped to scalars based on isoluminance. Figure1 (top row) shows
an example of a Laplacian of Gaussian (LOG) based interest point detector applied to a
grayscaled image from [8] with added Gaussian noise. It can be seen that the luminance
values in the grayscale image do not exhibit the original differences in chrominance be-
tween many of the disks and the gray background as in the original. This causes the
LOG-based detector to not detect significant stable extrema at several locations.

A related effect occurs due to change in illuminant. Using images of thecruncheroos
scene under a white Sylvania 75W bulb (halogen) and fluorescent Philips Ultralume (ph-
ulm) tube from the Simon Fraser University (SFU) dataset [5], we can compute the linear
transform that best numerically approximates the mapping of colors fromhalogento ph-
ulm. These two illuminants are common to indoor scenes and the only perceivable visual
difference between the two is in the form of a mild blue tone in the latter. We may then
render the image to appear as it would under theph-ulm illuminant in Figure1 (bottom
row). Note the difference between the grayscaled version of this image and that of the
original. It can also be seen that the LOG-based detector picks a larger subset of keypoints
from the content of the picture.

The above two observations indicate that the use of a grayscale intermediary to guide
the selection of keypoints poses two kinds of risks. First, by attenuating differences in
chrominance in favor of preserving luminance across the image, it can restrict the repre-
sentative power of extracted regions. Secondly, by its sensitivity to the global illuminant,
it can inconsistently accentuate parts of the scene leading to lowered repeatability of the



detected keypoints. This paper addresses the question of how to appropriately combine
information from the color channels to detect scale-invariant features in a manner that is
robust to change in illuminant.

2 Approach

Our proposed method first constructs a one-parameter family of functions on the color
image analogous to the scale-space representation of scalar-valued images [11]. The
function at each level is designed to be relative invariant to the transformation group
approximating the effect of the illuminant. The extrema of this scale-space representation
along with their appropriately sized neighborhoods are chosen as the interest regions.

In Section2.1we look at two possible choices of linear transformation groups to ap-
proximate the effect of the illuminant. Section2.2then constructs normalized differential
invariants that are relative invariant to these group and are subsequently used to form a
linear scale-space representation of the color image.

2.1 Choice of Illumination Model

We choose to numerically approximate the effect of the illuminant as a linear transforma-
tion of the pixel RGB values. Finlayson [4] proposed that under this model, a diagonal
transform is sufficient to discount the illuminant if a pre-computed transformation matrix,
tuned to a particular illuminant pair, is first applied to the sensor outputs.

The diagonal model is sometimes also defended with Shafer’s dichromatic reflectance
model [3, 17] under the weaker assumption of sensor responses behaving as delta func-
tions. Consider the “Mondrian” assumption of lambertian surfaces illuminated by a single
light source. The readingci(x) recorded by sensori at locationx may be expressed as:

ci(x) = mb(x)
∫

b(λ ,x)e(λ )si(λ )dλ (1)

wheremb(x) models the effect of the illuminant geometry on surface reflectance (shad-
ows, incident angle),b(λ ,x) denotes the surface reflectance,e(λ ) is the spectral profile
of the illuminant andsi(λ ) is the spectral sensitivity of thei-th sensor.

If the sensorssi(λ ) behave as delta functionsδ (λ −λi), the sensor responsec′i(x) to
a new illuminante′(λ ) can then be trivially related by a scale factor asc′i(x) = αci(x)
with α = e′(λi)/e(λi), making the diagonal model valid exactly. Unfortunately, most
consumer cameras are nowhere near obeying this assumption [1, 19]. Several researchers
[6] have subsequently noted that a diagonal matrix model is often insufficient to explain
observed data.

We may instead adopt a non-diagonal illumination model for the scene-independent
termse(λ )si(λ ) in Eqn. (1) as:

e′(λ )si(λ )≈∑
j

αi j e(λ )si(λ ) (2)

The quality of the diagonal approximation then depends on how well the function
e′(λ )si(λ ) can be numerically approximated byαie(λ )si(λ ) for the best possible choice
of scaling factorαi for all channelsi = 1,2,3.

It is easy to verify that for real sensors and the choice ofL2 cost function, the optimal
αi j values reduce to zero fori 6= j only if si(λ )sj(λ ) = 0 for all λ . That is, the diagonal



model isL2-optimal if the sensor responses are non-overlapping. This is in agreement
with the principle behind spectral sharpening [1], and the observation that narrow-band
sensors tend to obey the diagonal model better since their profiles are “closer” to delta
functions.

To accommodate the common scenario of overlap in spectral response functions, we
will consider both the full as well as the diagonal 3×3 matrix models. Hence, the illumi-
nant dependent transformation is modeled as

c′(x) = Ac(x) (3)

wherec′(x) and c(x) are the 3-vector responses at pixelx under two illuminants, and
A∈ GL(3,R), the set of real non-singular 3×3 matrices orA∈ GD(3,R), the set of real
non-singular diagonal 3×3 matrices.

2.2 Constructing Relative Invariants

Having fixed the transformation groups GL(3,R) and GD(3,R) to model the effect of a
change in illuminant on pixel value, we now proceed to construct a 1-parameter scalar
function of the input image that is invariant to this transformation as well as exhibits a
semi-group property with respect to this parameter. We will then compute a stack of
scalar functions of the image corresponding to increasing values of this parameter to form
a scale-space representation of the image. The extrema in this 3-D representation will
then constitute our desired result of a set of interest points and their scales.

Our procedure to construct a relative differential invariant is similar to that of [15],
although that work focused on semi-differential invariants. We will denote the image
f (x) by a 3-tuple of functions asf (x) =

[
r(x) g(x) b(x)

]T
denoting the three color

channels.
We will work with the larger group GL(3,R) from which construction of invariants

to the subgroup GD(3,R) will be self-evident. We define a relative invariant to the trans-
formation group GL(3,R) as a real valued functionh : f (x)→ R for which there exists a
weight functionξ : GL(3,R)→ R such that

h(A f) = ξ (A)h( f ) (4)

whereA∈GL(3,R). In the special case ofξ = 1, h( f ) is called an absolute invariant.
From the definition of the group action, we know thath((AB) f ) = h(A(B f)) for all

A,B ∈ GL(3,R). This implies that for non-trivial invariants (h 6= 0), this relation will
hold only if the weight function satisfies the propertyξ (AB) = ξ (A)ξ (B) for all A,B∈
GL(3,R). It is a standard result in Lie group theory [15] that for the group GL(3,R), the
weight function must take the form

ξ (A) = [det(A)]β (5)

for someβ ∈R. We will consider the case ofβ = 1 since invariants for other values may
be reduced to this case.

2.2.1 Case of 1-D signals

We first analyze the case of a 1-D signal, i.e.f (x) : R→ R3. Consider the function

h( f ) = det

r(x) rx(x) rxx(x)
g(x) gx(x) gxx(x)
b(x) bx(x) bxx(x)

 (6)
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Figure 2: Interest points matched between the (a) referencehalogenlamp and the (b-d)
the mb-5000+3202 Macbeth 5000 tube with Roscolux #3202 full blue filter illuminants
and rotation by 0◦, 45◦ and 90◦. Top row uses the invarianthfull and bottom row uses the
diagonal invarianthdiag. Presented images have been contrast-enhanced for clarity.

where the subscripts denote first and second order derivatives of the signals. By the lin-
earity of the differentiation operator, the effect of a change in illuminant modeled by a
group elementA∈GL(3,R) can be expressed as

h(A f) = det

A

r(x)
g(x)
b(x)

 A

rx(x)
gx(x)
bx(x)

 A

rxx(x)
gxx(x)
bxx(x)

 = det(A) h( f ) (7)

using the property of determinants. Hence by our definition in Eqn. (5), h( f ) is a relative
invariant to the group GL(3,R). The assumption of non-singularity of the transformation
matrices avoids reduction to the trivial case ofh(A f) = 0. Physically this corresponds to
the absence of degenerate lighting such as monochromatic light sources that would elicit
sensor response only in a small part of the spectrum.

In practice, differentiation is not a well-defined operator in the Hadamard sense, and
we are forced to look for locally regularized alternatives for computing Eqn. (6). The
pioneering work by Iijima [9] followed by Witkin [20] and others introduced the idea
of constructing a regularized multi-resolution representations of a signal through a one-
parameter family of functions. The functions were obtained by convolution with Gaussian
kernelsG(x,σ) of increasing width parameterσ , also termed as thescale. Later work by
Lindeberg [11] showed that by a clever change of variables, one can obtain normalized
derivatives whose extrema positions are covariant to spatial scaling of the signal.

Following [11], we normalize the terms of the relative invariant in Eqn. (6) to yield

h
(

f (x),σ2) = det

G(x,σ2)∗ r(x) σ Gx(x,σ2)∗ r(x) σ2 Gxx(x,σ2)∗ r(x)
G(x,σ2)∗g(x) σ Gx(x,σ2)∗g(x) σ2 Gxx(x,σ2)∗g(x)
G(x,σ2)∗b(x) σ Gx(x,σ2)∗b(x) σ2 Gxx(x,σ2)∗b(x)





= σ
3 det

G(x,σ2)∗ r(x) Gx(x,σ2)∗ r(x) Gxx(x,σ2)∗ r(x)
G(x,σ2)∗g(x) Gx(x,σ2)∗g(x) Gxx(x,σ2)∗g(x)
G(x,σ2)∗b(x) Gx(x,σ2)∗b(x) Gxx(x,σ2)∗b(x)

 (8)

where the ’∗’ denotes convolution and the subscripts denote the appropriate order of Gaus-
sian derivative.

Combined with Eqn. (7), the scale invariance property of each term in the 3rd order
polynomial formed by the determinant Eqn. (8) implies the property

h
(
A f(γx),σ2) = det(A)h

(
f (x),σ2/γ

)
(9)

for a spatial scaling factorγ ∈ R andA∈ GL(3,R). Hence the set of 2-D extrema of the
functionh( f ,σ2) in x andσ is invariant to illumination change and relative invariant to
spatial scaling of the signal.

Note that because the effect of the illuminant is factored out in the invariant through
the scalar det(A), the detection of extrema does not require the actual estimation of matrix
A. Also, the effect of the illuminant throughA is treatedlocally though the particular value
of scale. Hence we may expect that the detection of extrema will be robust to gradual
changes in the value ofA across the image.

2.2.2 Case of 2-D signals

For 2-D images, we desire the additional property of invariance to spatial rotation. This is
done by choosing the appropriate rotationally invariant 2-D form of the terms in Eqn. (8).
We henceforth useG(x,σ2) to denote a circular 2-D Gaussian.

The zero-th order termG(x,σ2) ∗ r(x) requires no modification as it is already rota-
tionally invariant. Also the second order terms in the Eqn. (8) can be easily corrected
by replacingGxx with the rotationally symmetric Laplacian of Gaussian∇G(x,σ2) =
Gxx(x,σ2)+Gyy(x,σ2).

The first order derivative terms, however, cannot be corrected easily. Because the
Gaussian function is radially symmetric, it is not possible to generate a linear combina-
tion of odd-order spatial derivatives that is invariant to rotation. Some remedies include
(a) using a different family of scale-space generators such as the Poisson kernel [16] and
its derivatives to replace the odd-order Gaussian derivatives, and (b) using regularized
higher order even derivatives ofG(x,σ2). However the former requires more computa-
tion and the latter risks susceptibility to noise.

We opt to compute a local invariant frame{u,v} at each pixel with itsu axis aligned
with the direction of maximal norm in intensity change in all 3 channels. The value of
Gx(x,σ2) ∗ r(x) is then replaced byGu(x,σ2) ∗ r(x). This is a computationally efficient
alternative but with the drawback that it is only invariant to a subgroup of GL(3,R).
However, we show experimentally that it works well over a broad range of illuminants.

Another alternative is to settle for the diagonal illumination model which, as outlined
in Section2.1, will work well for narrow band sensors. This reduction in the number
of model parameters vastly increases the space of available relative invariants. We will
consider the invariant formed by a simple modification to the LOG detector as

hdiag( f (x),σ2) = σ
6 ∏

c={r,g,b}
∇G(x,σ2)∗c(x) (10)
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Figure 3: Scatter plot of LOG repeatability against the (a) full and (b) diagonal matrix
illumination models between halogen and 10 other illuminants.

The final algorithm then proceeds as follows in a manner much similar to traditional
interest point detection:

1. Construct pyramids of Gaussian blurred and 1st order derivatives of the color image
following the procedure of [13].

2. Compute the invariant

hfull
(

f (x),σ2) = σ
3 det

([
G(x,σ2)∗ f (x) Gu(x,σ2)∗ f (x) ∇G(x,σ2)∗ f (x)

])
(11)

(or hdiag) using the image channels and their derivatives at each pyramid level.

3. Find the extrema in the invariant scale-space pyramid and their corresponding scales.

3 Experiments

In this section we evaluate the repeatability of the detected regions across illuminants.
We use images from two online color constancy datasets from SFU. The older dataset,
which we labelobjects98, is associated with work in [5] and contains static household
objects under 5 different illuminants. The second, labeledmondrian, is more recent [2]
and contains scenes captured under as many as 11 illuminants. Images in both datasets
were taken with a camera having narrow-band sensors [19].

We adopt the error metric of area repeatability used in the survey of [14] that compared
affine-invariant detectors. The repeatability score between a pair of images is defined as
the ratio of the number of pairs of interest points matched between the images to the mini-
mum of the number of detected points in the pair. Two detected keypoints are determined
to overlap if the ratio of their area of intersection to their union exceeds 60%.

Figure 2 shows an example of matched interest points between the referencetide
image inobjects98and rotated images under the harsh bluemb-5000+3202 illuminant.
The top and bottom rows shows keypoints detected using the full and diagonal illuminant
model respectively.
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Figure 4: Variation in area repeatability with in-plane rotation betweenhalogenand the
ph-ulmandsyl-cwf illuminants for the full matrix illumination model.

For each object inobjects98, we pick its image under thehalogenilluminant as the
fixed reference image and record its pairwise repeatability rate with test images taken
under the other illuminants. We also evaluate repeatability when the test images are trans-
formed by in-plane rotation (Figure4) and spatial scaling (Figure5). Due to space lim-
itations, we show only a subset of the objects for two test illuminants for only the full
invariant hfull . It may be seen from the plots that the detection rate is quite stable to
geometric transformations.

Figure 3 shows a scatter plot of repeatability rates for images from themondrian
dataset. Each point in the plot represents the repeatability rate using a luminance-based
LOG detector and that with the full (hfull ) or diagonal (hdiag) invariants for the indicated
test illuminant. It can be seen that both invariants tend to either appreciably increase the
repeatability rate or leave it relatively unchanged.

We consider the null hypothesis that the median difference in repeatability between
the LOG andhfull / hdiag detectors is zero. The Wilcoxon two-sided paired sign test con-
vincingly rejects the null hypothesis for thehfull detector with ap-value of 1.21×10−5 at
a 5% significance level, and similarly rejects the same for thehdiag detector with ap-value
of 1.73×10−11. Thus the use of illuminant invariants has a statistically significant and
favorable influence on the repeatability rate.

4 Related Work

The goal of scale and illuminant invariance from color images relates to two kinds of
endeavors in the literature, and to the authors’ knowledge they have only been pursued
independently. The first is that of the extraction of scale invariant features from scalar
images [11], popularized by [13] and recently surveyed in [14] for the affine invariance
setting. The detectors were designed to be at most invariant to affine transformations of
the luminance values. Recent work in [18] independently formed color invariants and
concatenated them to the chosen descriptor only after the initial detection of keypoints
from luminance.

The second is that of color constancy and extracting features that are illumination in-
variant. The main challenge here is how to correctly combine information from each chan-
nel of a vector-valued image. Work in [7] constructed color invariants using the Kubelka-



1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Scale factor

A
re

a 
re

pe
at

ab
ili

ty
halogen vs ph−ulm: Repeatability with scaling: 

 

 

tide
book
cruncheroos
javex
shampoo

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Scale factor

A
re

a 
re

pe
at

ab
ili

ty

halogen vs syl−cwf: Repeatability with scaling: 

 

 

tide
book
cruncheroos
javex
shampoo

Figure 5: Variation in area repeatability with spatial scaling betweenhalogenand the
ph-ulmandsyl-cwf illuminants for the full matrix illumination model.

Munk model and was based on approximating the Gaussian function and its derivatives
by linear combinations of implicitly known sensor profiles. Lenz et al [10] constructed
semi-differential invariants for 2×2 transformations of color values, but only for a fixed
pair of points having the same material properties. An early paper by Di Zenzo [21] pro-
posed a modified structure tensor, termed the color tensor, that has been adapted in [3, 17]
and others for detecting edges and corners from an illuminant invariant representation of
the image. However the non-linearities normally associated with the formation of these
invariants do not preserve the relationships required for a linear scale-space representa-
tion. The target illuminant invariance is also traditionally restricted to the diagonal model
for simplicity [3, 18] or to a rigid rotation of the color coordinate axis [17].

In contrast to the above work, this paper focused on the use and construction of
joint invariants that are covariant with spatial scaling while being robust to the traditional
GD(3,R) and the larger GL(3,R) group of transformations.

5 Conclusions

The use of grayscale to represent a color image can have adverse effects depending on the
distribution of colors in the image. While scale invariant detectors have reached a suffi-
cient level of maturity, the next step, as also concluded in [14], consists of generalizing
them to other representations such as RGB.

In this paper, we proposed to complement the existing class of interest region detec-
tors by using an alternate intermediate representation. The constructed invariants enjoy
robustness to a larger class of illuminant transformations that is traditionally addressed,
while retaining the much desirable property of scale invariance.

Qualitatively we have observed that the detector using the full model finds fewer key-
points that its diagonal model counterpart. By our choice ofhdiag, the latter also yields
many keypoints at locations common to those found using the traditional LOG detector.
As seen in Figure3, the influence of using a full invariant is either large, particularly in
scenes where the repeatability with the traditional luminance-based LOG detector is low,
or negligible. We hypothesize that invariants to the larger GL(3,R) group tend to form
smoother functions with extrema that are not as well localized in some scenes as extrema
of invariants to the diagonal subgroup. Hence, an appropriate practical strategy would



be to combine the detector outputs using both the full and diagonal models. Future di-
rections include a more rigorous characterization of possible joint invariants, experiments
using images acquired with broad-band sensors, as well as the design of better metrics to
compare detectors in a manner that is independent of the scheme for threshold selection.
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