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Abstract

In recent years, stereo correspondence algorithms basgdhph cuts have
gained popularity due to the significant improvement in aacy over the
local methods. Even though there has been a noticeablega®oiyr efficient
max-flow algorithms, the computational cost for graph oertesd is still quite

heavy, especially if the disparity search range is largethis paper, we
investigate and compare several ways of limiting the digpaearch range.
We show that the immediately obvious ideas based on thrdisigpor the

hierarchical approach do not work reasonably well. We dwgwer, find that
we can utilise the results of fast local correspondence oustifor disparity
range reduction of the more expensive graph cuts method. iddzeis to

understand and exploit the ways in which the local sterecespondence
methods fail. We are able to achieve 2.8 times average spedth only a

modest degradation in performance, 1.7% average enenpase.

1 Introduction

In recent years, there has been a significant progress ies&ldg stereo correspondence.
This progress can be objectively measured using to the Mot stereo database with
ground truth developed by Scharstein and Szeliski [13].0Athms based on graph cuts
are among the most successful according to the Middlebuabdae. The majority of
these methods are based on the approach that was intrody&uakov, Veksler, and
Zabih in [4]. They formulate the problem in the global optiation framework, with the
energy function defined on the disparity map. The energytfongenalises intensity
differences between the corresponding pixels and diswaitigs in the disparity map.

Since the original work, there were many improvements ateisions. Kolmogorov
and Zabih [9] extended [4] by treating the left and right imagymmetrically and mod-
elling occlusions. This results in a better performanceé nbost importantly, proper oc-
clusion handling is the key to the multi-view scene recarwton [10].

Birchfield and Tomasi [2] developed an algorithm which iastef discretizing, finds
disparity estimates in a continuous range. The algoritiemaiively segments the image
into non-overlapping regions using graph cuts, and theafitaffine disparity model into
each region. Lin and Tomasi [11] extended [2] by modellingheeegion with a spline
and also modelling occlusions. Both of these methods in igémeork very well, but
are very computationally intensive. In addition, sincetiie iterative steps are not tied



by a common objective function, these algorithms can predaaor results if a region
segmented by graph cuts does not contain reliable infoom#ati estimate its disparity.

Another direction of research is to use segmentation inlgcas stereo [8, 15, 6].
One or both images of the stereo pair are segmented and gregpbptimisation is applied
to segments, not to individual pixels. Disparity within baegment is assumed to follow
one of a few specific models, for example a specific planar inddes approach saves
computational time, however it fails when the segmentatisults are misleading, that is
when pixels not obeying any of the assumed models do fallth@same segment.

Computational efficiency of graph cut optimisation in conguwision has been greatly
improved with the min-cut/max-flow algorithm of Boykov andlkhogorov [5]. We used
this algorithm for our implementation.

The running time of the algorithms above ranges from ratkRpemsive (more than a
minute on the standard images) to moderately expensiver@eseconds on the standard
images). Experimentally, the complexity of graph cut steéselinear [5]. However, the
constant overhead is quite large compared to the less dedurbmore efficient methods
such as the window matching or dynamic programming. Sineectimplexity grows
linearly with the number of disparities, a natural way ofelieg the algorithm up is to
reduce the disparity search range. In this paper, we explifferent ways of reducing
the disparity search range. While our results can be applieghy stereo algorithm,
we chose the graph cuts framework due to its relative effigieand proven accuracy.
Another close competitor would be belief propagation batecko correspondence [14],
but the straightforward implementation of belief propagahas a higher computational
cost than graph cuts (although see [7] for an efficient impletation).

We have explored three types of approaches for limiting theadity range. First ap-
proach is to retain only the best candidate disparitiesdohgixel. This simple technique
works surprisingly poorly. The second approach is to penfstereo correspondence hi-
erarchically, and use the lower resolution results to lithé disparity range at higher
resolutions. This approach is also far from successful.tfing approach is to use the re-
sults of a cheap local stereo algorithm to limit the disyardinge for the more expensive
graph cut algorithm. The idea is to analyse and exploit tiilarés of local correspon-
dence algorithms. This third scheme is not only superidnéditst two, but it also results
in almost no loss in accuracy with a significant efficiency ioy@ment, see Sec. 3.

For images with ground truth, we measure the actual accufstereo correspon-
dence. For the third reduction strategy based on local spomdence, we observed that
if the accuracy goes down, it does so by an insignificant amodirsurprising result is
that the accuracy occasionally goes up, we discuss thelp@seasons in Sec. 3.

For images without ground truth, we use the percent of eniekygase as a measure
of performance. Although decrease in energy does notlgtdotresponds to increase in
accuracy, for a well-designed energy function, smallergynealues roughly correspond
to better stereo results. This point is supported by theesscof the energy optimisation
approach to stereo, where it has been demonstrated that bptimisation methods (like
graph cuts) lead to more accurate stereo results. We shousting our reduction strategy
based on local correspondence, we can reduce the runniadgyimn average of 2.8 times
while the resulting energy is worse only by an average of 1wPere the analysis is done
on a large dataset of 32 stereo pairs. This is a considenaipiovement in efficiency
gained for a small price in accuracy, and it moves the grajpib{zased algorithms closer
to real-time implementation.



1.1 Stereo Correspondence with Graph Cuts

In this section we review the original graph-cut stereo €spondence of [4]. Le?” be
the set of all pixels in the leftimage, ard be the finite set of discretized disparities. For
each pixelp in the left image, we need to find its disparity. Let us used to denote the
set of all pixel-disparity assignments, thatliss a mapping from pixels? to labels.Z.
The desired disparity mappshould minimise the energy

E(d)= ) Dp(dp)+ 3 Vpq(dp,dg). (1)
pe (p,gq)et

The set#” includes all pairs of neighbouring pixels, which in our irplentation is the
standard 4-connected neighbourhood system of the 2D ghid.tdrmsDp(d,) measure
how much pixelp likes the disparityd,. This can be the absolute or squared difference
between the pixeb in the left image and pixgb shifted byd, in the rightimage. Follow-
ing the previous work, we use the sampling insensitive sirtyl measure of Birchfield
and Tomasi [1]. The smaller the values @f(dp) correspond to the more likely dis-
paritiesdp, for pixel p. The pairwise penaltypq(dp, dg) expresses our prior knowledge
about the smoothness of disparity maplt is used to encourage nearby pixels to have
similar or the same disparities. In this paper, we use a sird@continuity-preserving
Potts model [4], which simply penalises nearby pixels ifythave different labels. That
is Vpg(dp,dg) = A #(dp # dg), where.#(-) is 1 if its argument is true and O otherwise.
Optimising the energy in equation (1) is NP-hard, and we hsetexpansion algorithm
of [4] to find an approximate solution, which is within a factd 2 of the optimum. How-
ever, in practice, the solution is much closer to the optimsee [12]. We found it is
sufficient to run thear-expansion algorithm for two cycles, since there is no $iggut
energy reduction after the second cycle.

2 Reducing the Disparity Search Range

The running time of stereo with the-expansion depends linearly on the number of dis-
parity labels searched. Thus reducing the number of disgsexplored per pixel by half
reduces the running time by half. In this section we evaltlatee different approaches
to reducing the disparity space: best-candidate basedirbigcal, and a local-method
based. We demonstrate experimentally and explain why tsietfin approaches do not
work well, and why the last approach is able to achieve ingivespeedup without much
loss in performance. The third approach is evaluated eixdgisn Sec. 3.

2.1 Filtering

Before describing the reduction approaches, we explaifilteeng step which is com-
mon to all of them. For each pixgl let.#, C .# denote the set of all disparity candidates
chosen for pixep by a reduction algorithm. Le?”, = {p € 2|l € %}, thatisZ, is the
set of pixels for which the disparitlyis chosen as a candidate disparity. For daeh?

we will enlargeZ, as follows: ™49 — {p ¢ Z||p—p/| < h forsome p' € 2},
where|p— p'| is the Manhattan distance between pixgEndp’. For some of the dispar-
ity reduction algorithms, the parametecan be chosen intelligently, as will be described
below. For other reduction algorithms, enlargizgy serves as a filtering step to fill in



any holes which may exist due to noise or other artifacts. fifla algorithm performsr-
expansions only for pixels € Z"2%, for eacha € .. Given, the sepp e 7o
can be computed very efficiently using distance transfoBhs [

2.2 Reduction Approach 1: Best Candidate Based

The most obvious way to reduce the search space is to selgahert‘'best” disparities

for each pixel based on the individual matching scdgé). There are two simple ways

to select the “best” disparities. First way is for each ppghreshold the values @p(),

that is select all € . such thatDp(l) <t for some threshold. The second way is to

simply select thék best disparity labels, i.e. the labélsorresponding to thk smallest

Dp(l)’s. In both cases, we have to make a choice for a nuisance pteamamely the

threshold in the first case, anklin the second case. It turns out that in general, there is

no good value for either parameteor k, if the image has large low texture areas.
Consider the “tsukuba” scehén Fig. 2(a). The chart of energy vs. paramekés

in Fig. 1(a). For each value & above the square we show the running time in seconds

(which is the time to compute the disparity reduction andtthe to do optimisation

with two cycles ofa-expansion algorithm). Below the square we show the peagent

of all possible disparity labels for all pixels evaluatellaftis 100k %‘g“‘, where|S|

denotes the size of a s8f. To get a reasonable approximation to the energy which can
be achieved with the full disparity range (which correspotuk=15, since|.Z| = 15),
we have to takd to be at least 3, in which case we have to evaluate already 7Hb o
possible disparity/pixel pairs, which means there is almosavings in time, Z seconds
vs. 34 seconds if no disparity reduction is perforrie@ihe chart of percentage error vs.
parametek is shown in Fig. 1(b). Here we compute the error as the pemiepixels
which are more than 1 disparity away from the ground truth séaime measure as the one
used in [13]. Again, to get a reasonable accuracy in steréchimg, we have to sét= 3,
and there is almost no computational savings for this valle o

We conclude from Fig. 1 that for no valuelofve get a significant speed up in compu-
tational time without a significant gain in the energy. Thmeas true if look at the other
way of choosing the best candidates, by choosing only theadty labelsl such that
Dp(l) <t for some threshold If we construct the graph of energy \s(omitted here to
save space), we will see a chart similar to that in Fig. 2. kangle, the percentage error
corresponding td = 2 is 4.63, which is significantly worse than the error 002 which
we get with no disparity space reduction. However the rugtime fort = 2 is already
2.4 seconds, which is not much better than the full disparitgeagraph-cuts time of.3
seconds. Notice that the degradation in energy directlsesponds to the quality of the
disparity map. For both methods discussed in this sectiersetthe filtering parametey
discussed in section 2.1 to 3. This filtering step fills in aapg)in<?, due to noise. If we
choose a smaller value for the running time will improve but at the cost of significantl
worse energy value. If we choose a larger valuetftine energy values will improve at
the cost of significantly larger running time. For no valuehofe found the results on
the scene in Fig. 2(a) to be satisfactory, that is either tteegy value is too far from the

1This stereo pair is taken from the Middlebury database, thstdriginally from the University of Tsukuba.

2The running time shown in the graph in cdse 15 (34 seconds) does not include the time to perform the
reduction step, since it's redundant foe= 15. That is why the savings in time fér= 3 is slightly worse than
29%, because the running time for= 3 is the total running time which does include the reducti@p.s
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Figure 1: Results on stereo pair in Fig. 2(a). In (a) we shogrgynvs.k; running times
are in seconds above squares; percent of disparity rangetied is below the squares.
In (b) we show error percent vk, where error is counted as in [13]

desired one, or the running time is not significantly bettenpared to the running time
without the disparity space reduction.

The reasons for such a poor performance of the best canditlategy reduction are
easy to understand. When the scene has significant areaw téxture, the pixels in
the low texture areas have many good disparity candidateeogingk best candidates
selects some disparities essentially at random, and foy mpixels the correct disparity
is not included among thiebest candidates unlekss large. However ik is large, then
many disparity/pixel pairs will need to be evaluated, thues tesulting energy will be
good (not far from the energy with no disparity space reduntibut the there will be
very little savings in the running time. This is exactly thetpre we observe in the graph
in figure 1. Similar analysis holds with the best candidakectmn based on thresholding.
With the appropriate choice of(that ist large enough to include the correct disparity in
the selected disparity candidates set) the pixels in theitexess areas will have many
disparity candidates selected, and thus there will be nafgignt savings in speed.

2.3 Reduction Approach 2: Hierarchical

In this section, we explore the hierarchical approach fepdliity range reduction, which
is a standard approach to reducing search space. We cdrest@aussian pyramid and
compute disparities at each level using graph cuts. We gpaudiy results at coarser lev-
els to restrict the disparity range at higher levels. Morc#jrally, suppose the disparity
of pixel p computed at a course levellis Then we allow the disparity gb at the next
level of the pyramid to be betweén- 6 andl 4+ 8. To get reasonable results, we found
that it is also necessary to redutén the energy function at coarser levels, we divided
A by 2 for each level of the pyramid. After experimenting witheage ofd, we came to
the conclusion similar to that in section 2.2. Choosing alkwadue of d results in good
efficiency but a significant loss in accuracy. Larger values cesult in good accuracy
but no gain in efficiency. Here is a summary of performanceherstene in Fig. 2(a): if

0 =1, the error is 9% and the running time is 0.87 seconds) i 2, the error is 88%
and the running time is 1.46 secondsdit= 3, the error is 4.7% and the running time
is 1.98 seconds. The results idr= 3 are shown in Fig. 2. As can been seen from this
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Figure 2: (a) “Tsukuba” stereo scene; (b) results of hidviaad reduction fod = 3.

figure, if there is a mistake made at a coarser level, it getsagated to the finer and final
levels.

2.4 Reduction Approach 3: Local Algorithm Based

Stereo correspondence is an inherently ambiguous probitiere each pixel needs to
cooperate with neighbours to reduce the matching ambig8itypose a pixgb has ten
disparity candidates with almost equally low matching sddp. Without cooperation
from its neighbours, we cannot know which disparity cantiida the correct one. Thus
we must include all ten disparity candidates#fy, which does not help to reduce the dis-
parity search space much. In other words, the problem weélb#st candidate reduction
strategy is that no steps are taken to reduce the matchinigiaityowhen constructing the
reduced disparity space. In this section, we will show housfast but not very accurate
stereo algorithms to reduce the ambiguity in matching, awvdthis will help to construct
a much smaller disparity search space without significagtatkation in the results. We
explore two fast stereo algorithms, window matching andadyic programming.

Reduction Strategy Based on Window Matching

In this section, we show how to use the results of a window hiagralgorithm to reduce

matching ambiguities and to produce a smaller disparitycbespace which is still quite

likely to contain the correct match. We use a variation ofdtesmdard window matching

algorithm, where each pix@with coordinategx,y) gets assigned disparit, such that
dp = argmirki” z D(x—s—i,y+j)(|)7

—s<i<s—s<j<s

wheresis the window size an@®
disparityl.

It is well known that when performing window matching with @andow of radiush,
the object boundaries either shrink or fatten by a marginpfaih, depending on the
image texture. This gives a simple idea for producing an @myete reduced disparity
space from the results of the window matching: a lats#ould be in the set of candidate
disparities for pixelp if there is a pixelq within Manhattan distance df which got
assigned disparity by the window matching algorithm. Visually this correspertd
taking the results of window matching, expanding each regi&signed to disparityby

(ot y+J.)(I) is the matching cost for pix¢k+i,y+ j) at



a margin ofh, and taking the resulting region to bg,, that is the set of pixels for which
disparityl is a candidate disparity in the reduced search space. Thibeaone very
efficiently using the technique described in section 2.1.tidéothat using notation of
section 2.1,27, = {p|d}"™" = |}, whered}"@" is the disparity of pixep computed by
the window matching algorithmz®@9d s defined in section 2.1 is then exactly the set
we use for the reduced disparity space as described in thimpsgparagraph.

Another way of looking at the proposed reduction algorittaras follows. When
we aggregate the matching costs in a window centred at pixald find the disparity
corresponding to the best aggregated cost, what we arg deafig is finding the correct
disparity for the majority of pixels in a window centred @t but we do not know for
which pixels in the window the computed disparity is the eotrone. Thus when we
assign the winning disparityto p, what we are really saying is that dispatitig likely to
be the true disparity for the majority of pixels in the windoantred ap. Thus to collect
the likely disparity candidates fqy, we must find all disparities assigned to any pigel
that may include in the window centred aj. Such pixelsy are exactly those which lie
at Manhattan distance of less thiafrom p, if the window radius i, and thus we have
an intelligent choice ofi to be used in the “filtering” step of section 2.1.

The only question that remains is how to set the ratliug should not be too large
so that the thin objects do not completely disappear frondisarity map and then there
is no chance to recover their disparities in our reducedadligpspace. And, of coursa,
should not be too small so that there is enough disambiguatioour implementation,
we actually use 2 window sizes, a smaller window and a largedew. This way, the
time to perform window matching is still small, while the dieaobjects are not “erased”
and the disambiguities are significantly reduced. We usetdiow radiuses oh = 2
andh = 8. Thus in the final algorithm, we perform window matchinghwlit= 2, then
perform the filtering step of section 2.1 to get the reducapatity range{P|2|I €2},
where superscript 2 denotes the fact that we performed iingtetith window of size
2. Then we do the same steps for window of radius 8, to get the second reduced
disparity space{P8|l € .#}. Finally we combine both disparity spaces, and the final
disparity search space {& = PZUPE|l € .£}.

Reduction Strategy Based on Dynamic Programming

Another efficient stereo algorithm is based on dynamic @ogning. Here we use the
idea of [13] that stereo correspondence can be performedbmiging the energy in
Eqg. (1) on each scanline individually using dynamic prograng, ignoring the vertical
penalty terms. In our implementation, we use the speed-[if fior efficiency.

After we perform dynamic programming, we need to extractialvke reduced dispar-
ity space. The correct disparities for each scanline maespond not to the best solution
for that scanline, but to a solution which is not too far imterof energy form the best
solution. Extracting the first several best solutions fréwe matrix computed during DP
is not very efficient, and thus we have opted for a heuristt #xtracts several solutions
with energies which are not too far from the best solution.

Here is how our heuristic works. Suppose we are performimgahic programming
on a scanline corresponding to some fiye®uring dynamic programming, we compute
cost matrixC(x, 1), whereC(x,1) is the cost of the best possible assignment to pixels with
coordinateX < x if pixel with coordinatex+ 1 is assigned disparity We also store the



Figure 3: Some of the 32 stereo scenes we used in evaluation.

label of pixelx corresponding to such best cost assignment in mhfsix). In addition

to this information, we compute the cost of the second besgasient to pixels with
coordinatest < x if pixel with coordinatex+ 1 is assigned disparity, as well as the
label of pixelxin this second best cost assignment. Having computed tlossard label
matrices, we can now finll paths with costs close to the cost of the best path. When
computing the best path, we have to trace from the end of thglise to the beginning
tracing the best label assignments. Suppose that at somlenpik coordinatex, the cost

of the best path i€, and the cost of the second best pat@jsandC, is not much larger
thanC,. Let P be the path that follows the best path until pixel with conedéex and then
switches to the second choice at pixelnd tracing that new path to the beginning of the
scanline. Then the cost of pakhis larger than the best path by or®2 — C1. Thus in
order to findk paths with costs not too far from the best path cost, weKipikels with
the smallest difference between the second and the firstelpaith costs.

After thek low cost solutions are produced, a labi putintoL j, if pixel pis assigned
disparityl by at least one of thk solutions. Finally, we perform the filtering described in
section 2.1. Unlike the window matching approach, thereislear intuition on how to
set parametdr for filtering. For all our experiments, we det= 6 andk = 10.

3 Experimental Results

In this section we present the experimental results. Foettergy in eq. (1) we chose
A = 40. All the other parameters are as discussed in sectionar@l®.4. We only
give the results for the reduction strategies in Sec. 2ntesthe reduction strategies in
Sec. 2.2 and Sec. 2.3 are too poor to be useful, as discusdied &dl experiments were
performed on Pentium 4CPU 2.6GHz.

We have evaluated the reduction algorithms on a dataseti@f32tereo pairs. Some
of these images are from the Middlebury database and haunditouth. Other images
were found on the Internet and include images from CMU, Miofg Tsukuba and Stan-
ford universities. A few examples of the images we used ave/shn figure 3.

The results are summarised in figure 4. The second line hakse$ window based
reduction, and the third line has the results of DP basedcteiu The second column
gives the average (over the dataset of 32 stereo pairs)aseraf energy as compared



MeantStd. Dev.| MeantStd. Dev. Eng. Incr. Speedup

% Energ. Incr. | Speedup (factors Range Range
Window Based 1.65+1.03 2.814+0.82 [0.0947,4.32]| [1.53,4.43]
DP Based 3.44+2.23 3.22+0.89 [0.076,9.27] | [1.63,4.9]

Figure 4: Summary of Results on the 32 stereo pairs. Seedegkplanation.

to the full disparity search algorithm. The energy increasmeasured as percentage
increase from the non-reduced disparity version. The sahuenn also show the standard
deviation of the percentage energy increase. The thirdhoolshows the average and
the standard deviation of the speed-up factors achievddthit reduction over the full
disparity search space. Notice that for the reduced digpange versions, we count the
total time, i.e. the time to do disparity reduction and tirnedb graph cuts. The last 2
columns show the ranges of percent energy increase andrthe of speedup factors, to
give the idea about the best and worst case performance médhietion algorithms.

The window-based scheme works better, on average. Thegavererease in energy
is only 1.65% and the average running time speed-up is arfat®88. One reason why
window-based scheme may work better is that we have a bettlarstanding the types
of errors made by the window-based algorithm and how to coasthe reduced disparity
range not effected by these errors.

For the Middlebury images with ground truth, we can comphestercentage errors
made by the full search and the reduced search algoritiiimsse errors are summarised
in figure 5. In most cases, the errors for the window reduati@mthod are not signifi-
cantly worse, and in some cases, like the Venus scene, thiésrase significantly better
than the non-reduced graph cuts stereo. This suggests tieat thie disparity at some
pixel p differs between the full search algorithm and window basshliction algorithm,
neither algorithm finds the correct disparity fmrwhich implies that establishing the cor-
rect disparity atp is difficult. The results on the Venus scene suggest thatsimeally
the window based reduction discards certain disparitiasttte full search algorithm er-
roneously assigns. Due to unfortunate choice of paranetdre full search algorithm
might have oversmoothed the Venus scene, whereas the wirediowtion algorithm does
not have the opportunity to oversmooth because the digganéeeded for oversmoothing
are recognised as erroneous and are not included in thee@dligparity space. Run-
ning times in seconds for the images in Fig. 5 for the full disy search were: 3.57,
9.29, 20.9, 21.2, 7.6, 4.35, listed in the same order as tagémappear in the table in
Fig. 5. For the window based disparity reduction the runninges, in the same order,
were: 1.29, 2.6, 6.09, 5.8, 1.87, 0.96, thus the speeduprfamt average, for these im-
ages is 3.7. Maximum speed up of 4.5 is onkhap, which is the most textured one, and
minimum speedup of 2.7 is on tAsukuba, which is most textureless one.
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