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Abstract

In recent years, stereo correspondence algorithms based ongraph cuts have
gained popularity due to the significant improvement in accuracy over the
local methods. Even though there has been a noticeable progress in efficient
max-flow algorithms, the computational cost for graph cut stereo is still quite
heavy, especially if the disparity search range is large. Inthis paper, we
investigate and compare several ways of limiting the disparity search range.
We show that the immediately obvious ideas based on thresholding or the
hierarchical approach do not work reasonably well. We do, however, find that
we can utilise the results of fast local correspondence methods for disparity
range reduction of the more expensive graph cuts method. Theidea is to
understand and exploit the ways in which the local stereo correspondence
methods fail. We are able to achieve 2.8 times average speed-up with only a
modest degradation in performance, 1.7% average energy increase.

1 Introduction

In recent years, there has been a significant progress in addressing stereo correspondence.
This progress can be objectively measured using to the Middlebury stereo database with
ground truth developed by Scharstein and Szeliski [13]. Algorithms based on graph cuts
are among the most successful according to the Middlebury database. The majority of
these methods are based on the approach that was introduced by Boykov, Veksler, and
Zabih in [4]. They formulate the problem in the global optimisation framework, with the
energy function defined on the disparity map. The energy function penalises intensity
differences between the corresponding pixels and discontinuities in the disparity map.

Since the original work, there were many improvements and extensions. Kolmogorov
and Zabih [9] extended [4] by treating the left and right images symmetrically and mod-
elling occlusions. This results in a better performance, but most importantly, proper oc-
clusion handling is the key to the multi-view scene reconstruction [10].

Birchfield and Tomasi [2] developed an algorithm which instead of discretizing, finds
disparity estimates in a continuous range. The algorithm iteratively segments the image
into non-overlapping regions using graph cuts, and then fitsan affine disparity model into
each region. Lin and Tomasi [11] extended [2] by modelling each region with a spline
and also modelling occlusions. Both of these methods in general work very well, but
are very computationally intensive. In addition, since thetwo iterative steps are not tied



by a common objective function, these algorithms can produce poor results if a region
segmented by graph cuts does not contain reliable information to estimate its disparity.

Another direction of research is to use segmentation in graph cuts stereo [8, 15, 6].
One or both images of the stereo pair are segmented and graph cuts optimisation is applied
to segments, not to individual pixels. Disparity within each segment is assumed to follow
one of a few specific models, for example a specific planar model. This approach saves
computational time, however it fails when the segmentationresults are misleading, that is
when pixels not obeying any of the assumed models do fall intothe same segment.

Computational efficiency of graph cut optimisation in computer vision has been greatly
improved with the min-cut/max-flow algorithm of Boykov and Kolmogorov [5]. We used
this algorithm for our implementation.

The running time of the algorithms above ranges from rather expensive (more than a
minute on the standard images) to moderately expensive (several seconds on the standard
images). Experimentally, the complexity of graph cut stereo is linear [5]. However, the
constant overhead is quite large compared to the less accurate but more efficient methods
such as the window matching or dynamic programming. Since the complexity grows
linearly with the number of disparities, a natural way of speeding the algorithm up is to
reduce the disparity search range. In this paper, we exploredifferent ways of reducing
the disparity search range. While our results can be appliedto any stereo algorithm,
we chose the graph cuts framework due to its relative efficiency and proven accuracy.
Another close competitor would be belief propagation basedstereo correspondence [14],
but the straightforward implementation of belief propagation has a higher computational
cost than graph cuts (although see [7] for an efficient implementation).

We have explored three types of approaches for limiting the disparity range. First ap-
proach is to retain only the best candidate disparities for each pixel. This simple technique
works surprisingly poorly. The second approach is to perform stereo correspondence hi-
erarchically, and use the lower resolution results to limitthe disparity range at higher
resolutions. This approach is also far from successful. Thethird approach is to use the re-
sults of a cheap local stereo algorithm to limit the disparity range for the more expensive
graph cut algorithm. The idea is to analyse and exploit the failures of local correspon-
dence algorithms. This third scheme is not only superior to the first two, but it also results
in almost no loss in accuracy with a significant efficiency improvement, see Sec. 3.

For images with ground truth, we measure the actual accuracyof stereo correspon-
dence. For the third reduction strategy based on local correspondence, we observed that
if the accuracy goes down, it does so by an insignificant amount. A surprising result is
that the accuracy occasionally goes up, we discuss the possible reasons in Sec. 3.

For images without ground truth, we use the percent of energyincrease as a measure
of performance. Although decrease in energy does not strictly corresponds to increase in
accuracy, for a well-designed energy function, smaller energy values roughly correspond
to better stereo results. This point is supported by the success of the energy optimisation
approach to stereo, where it has been demonstrated that better optimisation methods (like
graph cuts) lead to more accurate stereo results. We show that using our reduction strategy
based on local correspondence, we can reduce the running time by an average of 2.8 times
while the resulting energy is worse only by an average of 1.7%, where the analysis is done
on a large dataset of 32 stereo pairs. This is a considerable improvement in efficiency
gained for a small price in accuracy, and it moves the graph-cuts based algorithms closer
to real-time implementation.



1.1 Stereo Correspondence with Graph Cuts

In this section we review the original graph-cut stereo correspondence of [4]. LetP be
the set of all pixels in the left image, andL be the finite set of discretized disparities. For
each pixelp in the left image, we need to find its disparitydp. Let us used to denote the
set of all pixel-disparity assignments, that isd is a mapping from pixelsP to labelsL .
The desired disparity mapd should minimise the energy

E(d) = ∑
p∈P

Dp(dp)+ ∑
(p,q)∈N

Vpq(dp,dq). (1)

The setN includes all pairs of neighbouring pixels, which in our implementation is the
standard 4-connected neighbourhood system of the 2D grid. The termsDp(dp) measure
how much pixelp likes the disparitydp. This can be the absolute or squared difference
between the pixelp in the left image and pixelp shifted bydp in the right image. Follow-
ing the previous work, we use the sampling insensitive similarity measure of Birchfield
and Tomasi [1]. The smaller the values ofDp(dp) correspond to the more likely dis-
paritiesdp for pixel p. The pairwise penaltyVpq(dp,dq) expresses our prior knowledge
about the smoothness of disparity mapd. It is used to encourage nearby pixels to have
similar or the same disparities. In this paper, we use a simple discontinuity-preserving
Potts model [4], which simply penalises nearby pixels if they have different labels. That
is Vpq(dp,dq) = λI (dp 6= dq), whereI (·) is 1 if its argument is true and 0 otherwise.
Optimising the energy in equation (1) is NP-hard, and we use theα-expansion algorithm
of [4] to find an approximate solution, which is within a factor of 2 of the optimum. How-
ever, in practice, the solution is much closer to the optimum, see [12]. We found it is
sufficient to run theα-expansion algorithm for two cycles, since there is no significant
energy reduction after the second cycle.

2 Reducing the Disparity Search Range

The running time of stereo with theα-expansion depends linearly on the number of dis-
parity labels searched. Thus reducing the number of disparities explored per pixel by half
reduces the running time by half. In this section we evaluatethree different approaches
to reducing the disparity space: best-candidate based, hierarchical, and a local-method
based. We demonstrate experimentally and explain why the first two approaches do not
work well, and why the last approach is able to achieve impressive speedup without much
loss in performance. The third approach is evaluated extensively in Sec. 3.

2.1 Filtering

Before describing the reduction approaches, we explain thefiltering step which is com-
mon to all of them. For each pixelp, letLp ⊂L denote the set of all disparity candidates
chosen for pixelp by a reduction algorithm. LetPl = {p ∈ P|l ∈ Lp}, that isPl is the
set of pixels for which the disparityl is chosen as a candidate disparity. For eachl ∈ L

we will enlargePl as follows: Penlarged
l

= {p ∈ P||p− p′| < h for some p′ ∈ Pl},

where|p− p′| is the Manhattan distance between pixelsp andp′. For some of the dispar-
ity reduction algorithms, the parameterh can be chosen intelligently, as will be described
below. For other reduction algorithms, enlargingPl serves as a filtering step to fill in



any holes which may exist due to noise or other artifacts. Thefinal algorithm performsα-
expansions only for pixelsp∈Penlarged

α , for eachα ∈L . GivenPl, the setp∈Penlarged
l

can be computed very efficiently using distance transforms [3].

2.2 Reduction Approach 1: Best Candidate Based

The most obvious way to reduce the search space is to select only the “best” disparities
for each pixel based on the individual matching scoresDp(). There are two simple ways
to select the “best” disparities. First way is for each pixelp, threshold the values ofDp(),
that is select alll ∈ L such thatDp(l) < t for some thresholdt. The second way is to
simply select thek best disparity labels, i.e. the labelsl corresponding to thek smallest
Dp(l)’s. In both cases, we have to make a choice for a nuisance parameter, namely the
thresholdt in the first case, andk in the second case. It turns out that in general, there is
no good value for either parametert or k, if the image has large low texture areas.

Consider the “tsukuba” scene1 in Fig. 2(a). The chart of energy vs. parameterk is
in Fig. 1(a). For each value ofk, above the square we show the running time in seconds
(which is the time to compute the disparity reduction and thetime to do optimisation
with two cycles ofα-expansion algorithm). Below the square we show the percentage

of all possible disparity labels for all pixels evaluated (that is 100∗ ∑l∈L
|Pl |

|L |∗|P| , where|S|
denotes the size of a setS). To get a reasonable approximation to the energy which can
be achieved with the full disparity range (which corresponds to k=15, since|L | = 15),
we have to takek to be at least 3, in which case we have to evaluate already 71% of all
possible disparity/pixel pairs, which means there is almost no savings in time, 2.7 seconds
vs. 3.4 seconds if no disparity reduction is performed2. The chart of percentage error vs.
parameterk is shown in Fig. 1(b). Here we compute the error as the percentof pixels
which are more than 1 disparity away from the ground truth, the same measure as the one
used in [13]. Again, to get a reasonable accuracy in stereo matching, we have to setk = 3,
and there is almost no computational savings for this value of k.

We conclude from Fig. 1 that for no value ofk we get a significant speed up in compu-
tational time without a significant gain in the energy. The same is true if look at the other
way of choosing the best candidates, by choosing only the disparity labelsl such that
Dp(l) < t for some thresholdt. If we construct the graph of energy vs.t (omitted here to
save space), we will see a chart similar to that in Fig. 2. For example, the percentage error
corresponding tot = 2 is 4.63, which is significantly worse than the error of 2.09 which
we get with no disparity space reduction. However the running time fort = 2 is already
2.4 seconds, which is not much better than the full disparity range graph-cuts time of 3.4
seconds. Notice that the degradation in energy directly corresponds to the quality of the
disparity map. For both methods discussed in this section, we set the filtering parameterh,
discussed in section 2.1 to 3. This filtering step fills in any gaps inPl due to noise. If we
choose a smaller value forh, the running time will improve but at the cost of significantly
worse energy value. If we choose a larger value forh the energy values will improve at
the cost of significantly larger running time. For no value ofh we found the results on
the scene in Fig. 2(a) to be satisfactory, that is either the energy value is too far from the

1This stereo pair is taken from the Middlebury database, but it is originally from the University of Tsukuba.
2The running time shown in the graph in casek = 15 (3.4 seconds) does not include the time to perform the

reduction step, since it’s redundant fork = 15. That is why the savings in time fork = 3 is slightly worse than
29%, because the running time fork = 3 is the total running time which does include the reduction step.



(a) (b)

Figure 1: Results on stereo pair in Fig. 2(a). In (a) we show energy vs.k; running times
are in seconds above squares; percent of disparity range reduction is below the squares.
In (b) we show error percent vs.k, where error is counted as in [13]

desired one, or the running time is not significantly better compared to the running time
without the disparity space reduction.

The reasons for such a poor performance of the best candidatestrategy reduction are
easy to understand. When the scene has significant areas of low texture, the pixels in
the low texture areas have many good disparity candidates. Choosingk best candidates
selects some disparities essentially at random, and for many pixels the correct disparity
is not included among thek best candidates unlessk is large. However ifk is large, then
many disparity/pixel pairs will need to be evaluated, thus the resulting energy will be
good (not far from the energy with no disparity space reduction), but the there will be
very little savings in the running time. This is exactly the picture we observe in the graph
in figure 1. Similar analysis holds with the best candidate selection based on thresholding.
With the appropriate choice oft (that ist large enough to include the correct disparity in
the selected disparity candidates set) the pixels in the texture-less areas will have many
disparity candidates selected, and thus there will be no significant savings in speed.

2.3 Reduction Approach 2: Hierarchical

In this section, we explore the hierarchical approach for disparity range reduction, which
is a standard approach to reducing search space. We construct a Gaussian pyramid and
compute disparities at each level using graph cuts. We use disparity results at coarser lev-
els to restrict the disparity range at higher levels. More specifically, suppose the disparity
of pixel p computed at a course level isl. Then we allow the disparity ofp at the next
level of the pyramid to be betweenl − δ andl + δ . To get reasonable results, we found
that it is also necessary to reduceλ in the energy function at coarser levels, we divided
λ by 2 for each level of the pyramid. After experimenting with arange ofδ , we came to
the conclusion similar to that in section 2.2. Choosing a small value of δ results in good
efficiency but a significant loss in accuracy. Larger values of δ result in good accuracy
but no gain in efficiency. Here is a summary of performance on the scene in Fig. 2(a): if
δ = 1, the error is 9.7% and the running time is 0.87 seconds; ifδ = 2, the error is 6.88%
and the running time is 1.46 seconds; ifδ = 3, the error is 4.17% and the running time
is 1.98 seconds. The results forδ = 3 are shown in Fig. 2. As can been seen from this



(a) (b)

Figure 2: (a) “Tsukuba” stereo scene; (b) results of hierarchical reduction forδ = 3.

figure, if there is a mistake made at a coarser level, it gets propagated to the finer and final
levels.

2.4 Reduction Approach 3: Local Algorithm Based

Stereo correspondence is an inherently ambiguous problem,where each pixel needs to
cooperate with neighbours to reduce the matching ambiguity. Suppose a pixelp has ten
disparity candidates with almost equally low matching score Dp. Without cooperation
from its neighbours, we cannot know which disparity candidate is the correct one. Thus
we must include all ten disparity candidates inLp, which does not help to reduce the dis-
parity search space much. In other words, the problem with the best candidate reduction
strategy is that no steps are taken to reduce the matching ambiguity when constructing the
reduced disparity space. In this section, we will show how touse fast but not very accurate
stereo algorithms to reduce the ambiguity in matching, and how this will help to construct
a much smaller disparity search space without significant degradation in the results. We
explore two fast stereo algorithms, window matching and dynamic programming.

Reduction Strategy Based on Window Matching

In this section, we show how to use the results of a window matching algorithm to reduce
matching ambiguities and to produce a smaller disparity search space which is still quite
likely to contain the correct match. We use a variation of thestandard window matching
algorithm, where each pixelp with coordinates(x,y) gets assigned disparitydp such that

dp = argminl∈L ∑
−s≤i≤s,−s≤ j≤s

D(x+i,y+ j)(l),

wheres is the window size andD(x+i,y+ j)(l) is the matching cost for pixel(x+ i,y+ j) at
disparityl.

It is well known that when performing window matching with a window of radiush,
the object boundaries either shrink or fatten by a margin of up to h, depending on the
image texture. This gives a simple idea for producing an appropriate reduced disparity
space from the results of the window matching: a labell should be in the set of candidate
disparities for pixelp if there is a pixelq within Manhattan distance ofh which got
assigned disparityl by the window matching algorithm. Visually this corresponds to
taking the results of window matching, expanding each region assigned to disparityl by



a margin ofh, and taking the resulting region to bePl, that is the set of pixels for which
disparity l is a candidate disparity in the reduced search space. This can be done very
efficiently using the technique described in section 2.1. Notice that using notation of
section 2.1,Pl = {p|dwindow

p = l}, wheredwindow
p is the disparity of pixelp computed by

the window matching algorithm.Penlarged as defined in section 2.1 is then exactly the set
we use for the reduced disparity space as described in the previous paragraph.

Another way of looking at the proposed reduction algorithm is as follows. When
we aggregate the matching costs in a window centred at pixelp and find the disparity
corresponding to the best aggregated cost, what we are really doing is finding the correct
disparity for the majority of pixels in a window centred atp, but we do not know for
which pixels in the window the computed disparity is the correct one. Thus when we
assign the winning disparityl to p, what we are really saying is that disparityl is likely to
be the true disparity for the majority of pixels in the windowcentred atp. Thus to collect
the likely disparity candidates forp, we must find all disparities assigned to any pixelq
that may includep in the window centred atq. Such pixelsq are exactly those which lie
at Manhattan distance of less thanh from p, if the window radius ish, and thus we have
an intelligent choice ofh to be used in the “filtering” step of section 2.1.

The only question that remains is how to set the radiush. It should not be too large
so that the thin objects do not completely disappear from thedisparity map and then there
is no chance to recover their disparities in our reduced disparity space. And, of course,h
should not be too small so that there is enough disambiguation. In our implementation,
we actually use 2 window sizes, a smaller window and a larger window. This way, the
time to perform window matching is still small, while the smaller objects are not “erased”
and the disambiguities are significantly reduced. We used window radiuses ofh = 2
andh = 8. Thus in the final algorithm, we perform window matching with h = 2, then
perform the filtering step of section 2.1 to get the reduced disparity range{P2

l |l ∈ L },
where superscript 2 denotes the fact that we performed matching with window of size
2. Then we do the same steps for window of radiush = 8, to get the second reduced
disparity space{P8

l |l ∈ L }. Finally we combine both disparity spaces, and the final
disparity search space is{Pl = P2

l ∪P8
l |l ∈ L }.

Reduction Strategy Based on Dynamic Programming

Another efficient stereo algorithm is based on dynamic programming. Here we use the
idea of [13] that stereo correspondence can be performed by optimising the energy in
Eq. (1) on each scanline individually using dynamic programming, ignoring the vertical
penalty terms. In our implementation, we use the speed-up in[7] for efficiency.

After we perform dynamic programming, we need to extract a reliable reduced dispar-
ity space. The correct disparities for each scanline may correspond not to the best solution
for that scanline, but to a solution which is not too far in terms of energy form the best
solution. Extracting the first several best solutions from the matrix computed during DP
is not very efficient, and thus we have opted for a heuristic that extracts several solutions
with energies which are not too far from the best solution.

Here is how our heuristic works. Suppose we are performing dynamic programming
on a scanline corresponding to some fixedy. During dynamic programming, we compute
cost matrixC(x, l), whereC(x, l) is the cost of the best possible assignment to pixels with
coordinatex′ ≤ x if pixel with coordinatex +1 is assigned disparityl. We also store the



Figure 3: Some of the 32 stereo scenes we used in evaluation.

label of pixelx corresponding to such best cost assignment in matrixL(x, l). In addition
to this information, we compute the cost of the second best assignment to pixels with
coordinatesx′ ≤ x if pixel with coordinatex + 1 is assigned disparityl, as well as the
label of pixelx in this second best cost assignment. Having computed these cost and label
matrices, we can now findk paths with costs close to the cost of the best path. When
computing the best path, we have to trace from the end of the scanline to the beginning
tracing the best label assignments. Suppose that at some pixel with coordinatex, the cost
of the best path isC1 and the cost of the second best path isC2, andC2 is not much larger
thanC1. Let P be the path that follows the best path until pixel with coordinatex and then
switches to the second choice at pixelx and tracing that new path to the beginning of the
scanline. Then the cost of pathP is larger than the best path by onlyC2−C1. Thus in
order to findk paths with costs not too far from the best path cost, we findk pixels with
the smallest difference between the second and the first choice path costs.

After thek low cost solutions are produced, a labell is put intoLp if pixel p is assigned
disparityl by at least one of thek solutions. Finally, we perform the filtering described in
section 2.1. Unlike the window matching approach, there is no clear intuition on how to
set parameterh for filtering. For all our experiments, we seth = 6 andk = 10.

3 Experimental Results

In this section we present the experimental results. For theenergy in eq. (1) we chose
λ = 40. All the other parameters are as discussed in sections 2.4and 2.4. We only
give the results for the reduction strategies in Sec. 2.4, since the reduction strategies in
Sec. 2.2 and Sec. 2.3 are too poor to be useful, as discussed earlier. All experiments were
performed on Pentium 4CPU 2.6GHz.

We have evaluated the reduction algorithms on a dataset of 32real stereo pairs. Some
of these images are from the Middlebury database and have ground truth. Other images
were found on the Internet and include images from CMU, Microsoft, Tsukuba and Stan-
ford universities. A few examples of the images we used are shown in figure 3.

The results are summarised in figure 4. The second line has results of window based
reduction, and the third line has the results of DP based reduction. The second column
gives the average (over the dataset of 32 stereo pairs) increase of energy as compared



Mean±Std. Dev. Mean±Std. Dev. Eng. Incr. Speedup
% Energ. Incr. Speedup (factors) Range Range

Window Based 1.65±1.03 2.81±0.82 [0.0947,4.32] [1.53,4.43]
DP Based 3.44±2.23 3.22±0.89 [0.076,9.27] [1.63,4.9]

Figure 4: Summary of Results on the 32 stereo pairs. See text for explanation.

to the full disparity search algorithm. The energy increaseis measured as percentage
increase from the non-reduced disparity version. The same column also show the standard
deviation of the percentage energy increase. The third column shows the average and
the standard deviation of the speed-up factors achieved with the reduction over the full
disparity search space. Notice that for the reduced disparity range versions, we count the
total time, i.e. the time to do disparity reduction and time to do graph cuts. The last 2
columns show the ranges of percent energy increase and the range of speedup factors, to
give the idea about the best and worst case performance of thereduction algorithms.

The window-based scheme works better, on average. The average increase in energy
is only 1.65% and the average running time speed-up is a factor of 2.88. One reason why
window-based scheme may work better is that we have a better understanding the types
of errors made by the window-based algorithm and how to construct the reduced disparity
range not effected by these errors.

For the Middlebury images with ground truth, we can compare the percentage errors
made by the full search and the reduced search algorithms3.These errors are summarised
in figure 5. In most cases, the errors for the window reductionmethod are not signifi-
cantly worse, and in some cases, like the Venus scene, the results are significantly better
than the non-reduced graph cuts stereo. This suggests that when the disparity at some
pixel p differs between the full search algorithm and window based reduction algorithm,
neither algorithm finds the correct disparity forp, which implies that establishing the cor-
rect disparity atp is difficult. The results on the Venus scene suggest that occasionally
the window based reduction discards certain disparities that the full search algorithm er-
roneously assigns. Due to unfortunate choice of parameterλ , the full search algorithm
might have oversmoothed the Venus scene, whereas the windowreduction algorithm does
not have the opportunity to oversmooth because the disparities needed for oversmoothing
are recognised as erroneous and are not included in the reduced disparity space. Run-
ning times in seconds for the images in Fig. 5 for the full disparity search were: 3.57,
9.29, 20.9, 21.2, 7.6, 4.35, listed in the same order as the images appear in the table in
Fig. 5. For the window based disparity reduction the runningtimes, in the same order,
were: 1.29, 2.6, 6.09, 5.8, 1.87, 0.96, thus the speedup factor, on average, for these im-
ages is 3.7. Maximum speed up of 4.5 is on theMap, which is the most textured one, and
minimum speedup of 2.7 is on theTsukuba, which is most textureless one.
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