Efficient clustering and matching
for object class recognition

Bastian Leibe Krystian Mikolajczyk Bernt Schiele

ETH Zurich University of Surrey TU Darmstadt
Zurich, Switzerland Guildford, UK Darmstadt, Germany
Abstract

In this paper we address the problem of building object dlepeesentations
based on local features and fast matching in a large datalvésepropose
an efficient algorithm for hierarchical agglomerative tdusg. We examine
different agglomerative and partitional clustering stgpes and compare the
quality of obtained clusters. Our combination of partiabagglomerative
clustering gives significant improvement in terms of efficg while main-
taining the same quality of clusters. We also propose a nddihrobuilding
data structures for fast matching in high dimensional feapaces. These
improvements allow to deal with large sets of training dgtadally used in
recognition of multiple object classes.

1 Introduction

Many of todays models and approaches for object class réamyare based on local fea-
tures. Local features are typically extracted from imagessubsequently grouped into
appearance clusters [1, 12, 23]. Besides reducing the §ittes deature space, appear-
ance clusters allow to capture a larger variability of Ido@dge structure than individual
features, as well as to focus on parts which re-occur on mrastgiices of the object class
and consequently generalize over new instances. Whileaappee clusters seem to be
an essential component of several successful approatlegshave been applied only to
a relatively small number of object classes using smalhingi and test sets. A typical
feature detector might extract 10s-100s of features pegémhearning models for 100s
of object classes using 10s or even 100s of images per clagd imaply that the approach
has to deal with 100,000s to 1,000,000s of features duraigitrg. This number is but a
conservative estimate, since we might want to scale to mamg object classes or use far
more images in the context of unsupervised learning or tigiovery [24]. It is however
unclear if and how approaches based on appearance clustedgal with such massive
amounts of high-dimensional data.

In general, clustering is a powerful tool for finding struetun large data sets [10].
However, the question what is a good clustering method dammanswered without the
context of a task. Our main interest is the use of clusterangbject class recognition
using local-feature based approaches. When using appestiasters for building object
models we can differentiate three aspectslajteringto obtain the appearance clusters,
2) matchingduring training and recognition, and 3) tlecognitionmethod. In this paper
we focus on the first two aspects, namellysteringandmatching

In computer vision, frequently used clustering strategresk-means [23, 26] and ag-
glomerative clustering [1, 12, 17]. Other methods like M&duift [6] also become more
and more popular. However, their performance has not bespaced for computer vi-
sion tasks, and no guidelines are available for judging théebffs in representational

capacity, accuracy, and run-time. K-means is frequenthdusecause of its computa-
tional simplicity. However, the clustering solution is sytimal when the number of

outliers in the point distribution is large. Moreover, th@wion depends on an arbitrar-
ily set number of clusters and random initialization, whiclakes it less attractive for

object categorization. In the agglomerative clusteringesee the number of clusters is
automatically determined. However, both the runtime anchory requirements are of-

ten significantly higher for agglomerative methods. GiMes large amounts of data that
need to be processed, an efficient implementation of theéeclng algorithm is therefore

crucial for its applicability.

The second important aspect is to efficiently match feattoegppearance clusters.
Numerous methods have been proposed for efficient sear@®].3In high-dimensional
spaces, however, these methods are no longer effectively Mathods therefore use
approximate nearest-neighbor search techniques [2, 9, tMpbject recognition and
categorization, however, we are interested in matchesmwihsimilarity distance to a
feature point. This type of volume search is much harder tefficiently. In contrast to
k-means clustering, the result of agglomerative clustecan be used directly to obtain
a data structure for efficient volume search, namely a bedlf20]. In experiments we
observe speedup factors of 20- 200 for matching throughgheofithis technique.

In this paper we introduce several improvements to agglativerclustering (Sec. 3),
making it tractable for large data sets while preservingteluquality. We use the cluster-
ing results to build a data structure for efficient volumeskén high-dimensional spaces
(Sec. 4). In the experiments we show significant speedupr&ébr matching and we
also compare the performance of k-means and the agglonesatieme, both in terms
of computational cost and recognition performance (Sec. 5)

2 Recognition approach

We briefly describe two main stages of a recognition algorigrhich are similar in many
state-of-the art approaches [1, 12, 17]. While there exflgrénces between the indi-
vidual approaches, the following describes an object e¢ls®esentation and a matching
procedure which may be seen as a common basis of many appsoach

Object representation. Inour approach clustering is used to build an appearanceimod
in which each cluster is represented by its center. For elastet, an occurrence distri-
bution is computed, specifying where and at which scalefotted appearance occurs on
the objects. The location distribution significantly ingses the discriminative power of
the representation and it allows to localize the objectiwithe image.

Matching. The next stage of many recognition methods is matching.rGivguery im-
age, features are detected and matched to the object mpdeteated by the appearance
clusters. Typically, this stage involves a distance megsasimilarity threshold, and a
search technique. The distance measure and similaritghtbleg depend on the feature
descriptor at hand. A fast search method is necessary iftifeetorepresentation con-
tains a large number of clusters. The clusters that matclhiéoyfeatures cast votes for
possible object identities, locations, and scales bas¢deolearned location distribution.
Finally, local maxima are searched in multi-dimensiongingspaces. Additional stages
can be applied to refine the hypotheses and improve detqmigaision [12].

3 Clustering methods

In this section, we present an efficient method for clustglange numbers of features. We
discuss two main clustering techniques, namely partiti8rmeans and agglomerative
method. We propose an efficient algorithm for the latter aricbduce a multi-stage

procedure combining the benefits of both techniques.

K-means. The k-means algorithm [15] is one of the simplest and mostifzoziuster-
ing methods. It is initialized randomly by seed points for the clusters. In all following
iterations, each data point is assigned to the closesteclushter, where the centers are
computed as the means of associated data points. In pratiiegrocess converges to
a local optimum within a few iterations. Many approaches leymg-means because of
its computational simplicity, which is convenient for lardata sets [23, 26]. Its time
complexity isO(Nkéd) when clusterindN data points ofl dimensions wittk centers and

{ iterations. However, the complexity is high whkris comparable wittN. It can be
improved by using kd-trees [22] or triangular inequalit). [R-means is often initialized
randomly, which may result in different clustering solutfoom run to run. Several meth-
ods [21] were proposed to overcome this problem but they adtpatational overhead
to k-means. Finally, there is no guarantee that the obtadhesters are visually com-
pact. Because of the fixed valuelgfsome cluster centers may lie in-between several real
clusters, so that the centers are not representative.

Agglomerative clustering. Agglomerative clustering builds the solution by initiafg-
signing each point to its own cluster and then repeatedictaly and merging pairs of
clusters. Thus, it builds a hierarchical merging tree fromlottom (leaves) towards the
top (root). The key parameter here is the criterion useddigcsing clusters to be merged.
We focus on the Group Average criterion (UPGMA in [11]), wihimeasures the similar-
ity of two candidate clusters as the average pairwise siityilaetween their members.
Thus, the average-link criterion allows to specify the sizeompactness of the resulting
clusters. This property is very useful in building compamp@arance clusters and makes
the algorithm robust to outliers. A similarity thresholdatiproduces visually compact
clusters only depends on the employed feature descrighurs.can be estimated experi-
mentally and used on different data sets. Another advambagglomerative methods is
that given the clustering trace from a full hierarchicalstéring, i.e. the indices of clus-
ters merged in every step and the similarities between tentan rebuild the clusters
for a different similarity threshold at almost no computatil cost.

The main drawback of the standard average-link algorithits ®(N?logN) run-time
andO(N?) space complexity. This comes from the requirement thatelsshould be
merged in decreasing order of similarity and that the distanmust be recomputed after
each agglomeration. In order to make agglomerative clingt@mpplicable to large data
sets, both complexities have to be reduced. The improveprepbsed here is based on
the insight from [4] that for some criteria the same clustgrolution can be achieved
with different merging order. Furthermore, the simil@#tibetween clusters can be effi-
ciently recomputed based only on the centers and variances.

RNN algorithm. The improved clustering method is based on the construdfice-
ciprocal nearest neighbgpairs (RNN pairs), that is of pairs of poindsandb, such that
ais b's nearest neighbor and vice versa [4]. RNN is applicabldustering criteria that
fulfill reducibility property[5] :

d(ci,cj) <inf(d(ci,c),d(cj,cx)) = inf(d(ci,c),d(cj,cx)) < d(cUcj,c)

Algorithm 1 Average-Link algorithm with RNNs foR points.

last— —1
while R# 0do
if last < Othen /I Initialize a new chain with a random pointR.
last — 0; Chainlast] — v e R, R— R\{v}; Sinflast] < 0; 1)
s «— findNearestNeighboBhainlast], R); sm«— simChainlast],s) (2)
if sm> Sinflast] then / No RNNs, add s to the chain.
last «— last+1; Chainlast] < s; R+« R\{s}; Sinflast] < sm (3)
else /I Found RNNs— agglomerate the last two points in the chain

if Sinflast] > SimT hresholdhen
s « agglomerateghainlast],Chainlast — 1]); R« RuU {s}; last « last— 2; 4)
elselast — —1 // Discard the current chain.

wherec;,c; andcy are clusters and(cj,cy) is a distance measure. This property effec-
tively states that the agglomeration of a RNN pair does nietr dhe nearest-neighbor
relations of other clusters. It is fulfilled for the averagek criterion regardless of the
employed similarity measure. The key to an efficient impletagon is therefore to en-
sure that RNNs can be found with as little computation asiptessThis can be achieved
by building anearest-neighbor chaifd]. An NN-chain consists of an arbitrary point,
followed by its NN, which is again followed by its NN from amgthe remaining points,
and so on. Thus, each NN-chain ends with an RNN pair. Theeglyadf the algorithm is
thus to start with an arbitrary point (Alg. 1, step (1)) anddup an NN-chain (2,3). As
soon as an RNN pair is found, the corresponding clusters eagblomerated (4). The
reducibility property guarantees that after the last twstdrs from the chain are merged,
the NN assignments stay valid for the remaining chain memlérich can then be used
in the next iteration. Whenever the current chain is emptyew chain is started with
another random point (1). When a new cluster is created bgimgan RNN pair, its
new distance to other clusters has to be recomputed. Insfeadensively computing
the average of all distances between cluster members, wieegalowing equivalence:

SiMeyclid(Cx; Cy) = Nl\/l Z Z = UX2 + 05-1— (Ux— Hy)z

wherex andy are the cluster memberﬂx and py are the centroidsg? and 02 are the
variances. Both the mean and variance of the new clusterneamtie computed incre-

mentally:
Nux+Mpyy o1 NM 2
N+M Unew_N+M NU +MG+N+M(“X “)’)

An amortized analysis shows that this algorithm has a coatjauial complexity oD(N?d)
with only linear space requirements. This is an importargromement compared to the
standard algorithm, since it makes it possible to clust&,d@s of data points, which
was not feasible before. However, the time complexity i Isigh whenN is large. In
the following, we present a strategy to further improve @eorun-time efficiency.

Combined partitional-agglomerative algorithm (CPA). The idea of this improved
algorithm is to first partition the set of features and perfagglomerative clustering
within each partition independently [27]. However, there aeveral issues with this
method. The first is how to set the partitions so that theyaiarfeatures that cluster
well. A possible solution is to use a natural partition of the#a points, stemming from
properties of the employed interest point detector. Théedogariant interest points are

Mnew=

detected at local maxima and minima of the Laplacian [13, If6§.g. SIFT descriptors
are used, which make a clear distinction between bright arkistructures, these extrema
form two distinct groups which do not intersect. For othesatitors, this property has
to be verified. Anothers suitable partitioning method is &ams. The number of initial
partitions has to be small, otherwise k-means is not effici@rproblem occurs if a real
cluster is split over several partitions, since the aggl@tien is initially done between
points which are NNs within one partition only. This can altiee cluster centers and
variances and thus produce a different clustering treeedaae the impact of this effect
on the final clustering solution, we agglomerate clustethiwieach partition only up to
a certain similarity threshold. Next, given the clusterteemand variances obtained from
all partitions, we continue the agglomeration up to the wfdhe tree. If the similarity
threshold for initial clustering is smaller than for the fia@pearance clusters, then the
initial agglomeration provides small building blocks udscthe next level. However, the
initial threshold should produce a number of clusters whsdignificantly lower than N,
otherwise the complexity reduction would be limited.

To summarize the approach, we first partition features onsete of Laplacian max-
ima and minima. Then we apply k-means to each set to furthréitipa the features. Ag-
glomerative clustering is applied within each partitiomdfly, the agglomerative method
is applied once more on all the cluster centers computeckiptévious step. This com-
bined partitional-agglomerative method leads to an apprate clustering solution, but
as the experimental results show, the difference from thetesolution is negligible.

4 Fast matching

In this section, we propose a data structure for fast seart¢tigh dimensional feature
spaces. Many fast NN search methods are based on hyperciiypaenrectangle ap-
proximations [2, 19]. They partition each feature dimensitdependently and trim the
candidates for NN dimension by dimension. However, in thigraach the efficiency de-
pends critically on the size of the hypercube. It also relirghe fact that a single NN
is searched in the whole space, for which thg (hypercube) norm can be used. How-
ever, in object class recognition we are often interestdthding all features which are
similar to our query point, for which thie, (hypersphere) norm is needed. Although

is bounded by, in high-dimensional spaces the corners of the hypercubtizofar
more volume (data points) than the inscribed hypersphersolétion to this problem is
a data structure based on thenorm. We describe a fast data structure and an algorithm
for range search based only on a triangle-inequality-atgegiistance metric.

4.1 Ball tree search

Ball tree structure. A ball tree (or metric tree) is a hierarchical structure fepresent-

ing a set of points with the only assumption that the distdooetion between points is

a metric [25]. Each nodéa...r) of the tree is represented by two parameters: center and
radius (Fig. 1(a)). The node center is a mean vector of alctiiklren nodes, and the
radius is determined by the point farthest from the centke fadius can also be smaller

if we are ready to accept a subset of the points similar to tieeygin return for a possible
speedup. We propose to set the radius as a quantile of orfierienle distances from the
node center.

Building ball trees. The problem of building an optimal ball tree structure isérdmtly
similar to that of agglomerative clustering [18, 20]. In #hgglomerative tree each node

AT AN AN
4 NAR ANV

VW V2V3V4V5V6V7V8....... VV

a b c

Figure 1: (é\) i3al| tree data structur(e.)(b) Correspondirigtbee. (c) Agglomerative tree.
contains two child nodes, since the algorithm merges twetets at a time. However,
given the clustering trace which contains the indices ofgeérclusters and their sim-
ilarities, we can easily reconstruct a tree in which the neirdd children of a node is
determined as a function of their similarity. This is illceged in Fig. 1(b,c). Intermediate
nodesta,tb andte are merged with correspondirggb ande. The size of the nodes is
increasing from the leaves to the root of the tree. Thus waiola ball-tree structure
from the agglomerative clustering trace with minimal aibdhial cost.

Ball-tree search. A range search is a simple recursive procedure, which istitited
in Figs. 1(a) and 1(b). We start by computing the similarita@uery poinfg to the top
nodesa andb and use the triangle inequality property. The search isiwoat if the
distance to the node center minus the nodes radius is lasgitbauery radius, i.e. if the
query ball intersects with the node ball. The search is ooetd further to all children
nodes that intersect with the query ball. Exhaustive se@ralpplied within each node.
The speed of the search thus depends on the number of tré tbeenode radii, and the
query radius. The number of levels and the node radii can bsechexperimentally at a
low cost using the precomputed clustering trace. If we atgioterested in the NNs, the
search can be made more efficient, since the search radidseganogressively reduced
with each new NN candidate that is found.

5 Experiments
In this section we present and discuss the evaluation sesult

5.1 TestData

Our test data consists of 1,000,000 scale invariant fesjorevided by Harris-Laplace
and Hessian-Laplace detectors [16] with SIFT descript8}.[Features are detected in
5,000 images from the Caltech database and the PASCAL amttaining pedestrians,
cars, motorbikes, faces, and cows. To validate the resuisalso compare the recog-
nition performance of the baseline approach using the megholustering and matching
methods and the UIUC multi-scale car set [1]. Additional@exments on more object
classes can be found in [17].

5.2 Clustering

Similarity measure. As described in Section 3, the agglomerative clusterinchodet
is driven by the similarity measure and a threshold. To pcedueaningful clusters we
determine a reasonable range for the similarity distanasguke evaluation protocol
from [16], originally developed for matching pairs of imagdt computes precision (i.e.
the ratio of correct to false matches) and recall of matchiés nespect to the similarity
threshold. Precision is high up to a given similarity thi@ghand decreases for larger

Lhttp://www.pascal-network.org/challenges/VOC/

precision

run time (sec)
run time (sec.)

®0e o

15 2 25 3 35 4 a5 5 10° 10° 10 10 10 10°
Similarity threshold x10® #features #elusters

Figure 2: (a) Matching precision vs. similarity distancé) Run-time vs. number of
features. (c) Run time vs. number of clusters.

thresholds (cf. Fig. 2(a)). The useful thresholds are instieep part of the curve. For
small thresholds, only very similar features match, résglin a poor generalization of
the model to new object instances. For large thresholdss fahtches dominate, thus the
recognition performance is low and the complexity increa3ée above method provides
a reliable and computationally inexpensive insight on tinglarity thresholds that can
be used for agglomerative clustering. In contrast, the aim distribution of k-means
clusters depend on tlkgparameter, which is difficult to optimize if the real distrtion of
features is unknown.

Run-time. Given a set of features, we first run the RNN method with a fixelarity
threshold obtained from Fig. 2(a), which results in a nundfeclusters. We then run
standard k-means for the same number of clusters with thémuax number of iterations
set to 25. Finally, we run the CPA method with initial numbé&kemeans partitions set
to #featureg20000, and the initial agglomerative threshold set to Heéfdne obtained
from Fig. 2(a). Thus the methods are compared for the saméeuai features and the
same number of clusters. Fig. 2(b) shows the run-time wisipeet to the number of
features in the database. The run-time of CPA is an order ghihale lower than for k-
means and 2 orders of magnitude lower than the RNN algoriBunexample, clustering
of 1M features takes 555h for RNIN41h for k-means, and 5h for CPA.

Fig. 2(c) shows the run-time with respect to the number afiltesy clusters, using
200k features. For k-means, the run time increases lineattyk. This is to be expected
since the complexity is directly related to the number obtdus if the exhaustive search
is used during clustering. However, it is important to ndtat tthis is the upper bound,
since the run time can be shorter if convergence is obtamézss iterationsk ~ N, fast
NN search techniques [22], or other speedups [8] are usegl rdriitime of the RNN is
high but almost independent of the number of clusters, simest of the computation is
spent at the bottom of the clustering tree, when the numbelusters is still large. For
a large number of clusters, the run-time for k-means exctexisne for RNN. From our
experience, the compression ratibefatureg#clusterswhich gives the best recognition
performance is in the range, where the proposed CPA methpéidarms k-means.

Cluster quality. Fig 3(a) displays the average intra-class variance of etasibtained

with the three methods. The results are reported with réspebe number of features,
and using the same number of clusters as in Fig. 2(b). Smgleber clusters were dis-
carded from this experiment in order not to bias the resilt® diagram shows that the
variance of clusters obtained for both agglomerative naghse lower than for k-means

2The run-times for RNN agglomerative clustering in the ran§&00,000-1,000,000 points are estimated
since we were not able to run the clustering due to time caimss:.

iance (x10%

matched clusters members %

06 1 1z 14 16 18 2 %2 o0a o5 o8 1 12 1a 1s 18 2 22 %2 o0s o0s o8 1 12 14
#eatures #clusters Hclusters

Figure 3: (a) Average variance of clusters. (b) Average nremath matched clusters per
feature. (c) Average percentage of matched features pehetitluster.

clusters. The variances for RNN and CPA are nearly the sameopare the distribu-
tion of cluster centers and the compactness of the clustergarried out an additional
experiment. We count the number of cluster centers whichvithén a given similarity
radius of a query point (cf. Fig. 3(b)). For k-means, the nantdf matched clusters per
query feature is significantly larger than for RNN and CPAFIg. 3(c) we measure how
many cluster members do indeed match to the query featueep@itentage of matched
cluster members is higher for agglomerated clusters. hegghese results show that the
k-means clusters are less compact and therefore match ®features compared to ag-
glomerated clusters, and that k-means cluster centeresgedpresentative for the cluster
members.

5.3 Matching

In this section we compare the efficiency of the ball tree iilgm to exhaustive search.
We report the speedup factor as the ratio of run-times fa@@r@&ndom queries. The effi-
ciency depends on several parameters: the number of featutiee dataset, the number
of tree levels, the node radii, and the query radius. We hhesan experimentally 10
levels between the size of the appearance clusters (bottdeshand the size of the top
node. The impact of the other parameters on the speedupestigated in the following
experiments. We use 200k of 128 dimensional descriptor280& of 36 dimensional
descriptors obtained with PCA. To show the results for déffe numbers of features, we
also use a set of 50k points with 128-dim. descriptors.

Fig. 4(a) shows the speedup factor with respect to the &maaf lost matches. We
vary the radius of the nodes and compare the efficiency andethened matches with
exhaustive search. If we are looking for the exact matchedall tree is nearly 80 times
faster than exhaustive search (for 200k features of 128.diimi}s factor significantly in-
creases up to 200 with 20% of lost matche$he gain is smaller for the dataset of 50k
points and for low dimensional features, which indicatex the can expect further im-
provementwith increasing number of features and dimessieig. 4(b) shows the results
for different query radii (as a fraction of the top node siz€he efficiency significantly
drops as the size of the query increases, since many mors hade to be examined. In
most of our recognition experiments, the root node radius Watimes larger than the
size of the appearance clusters. Thus, the useful quenysrain the range of 0.1-0.2.

5.4 Recognition performance.

Finally, we compare the recognition performance of objeat<representations obtained
with the different clustering methods. We use the UIUC msiiale car database and

SWhile it is difficult to make a general claim how many lost niats are acceptable we experimentally
observed that we can accept 10% and more lost matches wihguibss in recognition performance

speedup factor

o 1000 2000 4000 5000
#

3000
clusters

Figure 4: (a) Ball-tree speedup factor vs. number of lostcineg. (b) Ball-tree speedup
factor vs. query radius. (c) Recognition performance.

5 10 12 14 15 18 2 0 o1 02 03 04 05 06
lost matches % query radius / root radius

the evaluation criteria from [1]. We learn object repreatiohs on a training set of 50
car images from the PASCAL collection (cf. Sec. 5.1), fromiahhwve extract a total of
10,351 features with 36 dimensions. We use the evaluatiterierfrom [1] based on the
overlap of ground truth and detected bounding boxes.

Fig. 4(c) shows precision-recall performance at the equal eate (EER) as a func-
tion of the the number of clusters for both k-means and théoaggrative method. The
solid curves depict the performance when the simple retiognapproach is used (cf.
Sec. 2); this performance can then still be improved by dpglyhe MDL verifica-
tion [12], as shown by the dashed curves. We make three aligmrs. First, the recog-
nition score is higher for agglomerated clusters (EER: %8.than for k-means (EER:
68%). The methods reach different performance levelsaihitibut can both be taken to
approximately the same performance (EERs: 96.4% and 9§ % verification stage.
Second, for both clustering schemes the performances diegracefully for different
number of clusters, which is a result of our soft matchindhimita search hypersphere.
Third, since the cost of the soft matching increases withnilmber of clusters that fall
inside the search radius and k-means does in fact produagsmmare such matches for
the same number of clusters (see Fig. 3(b)) we conclude tligdmerative clustering is
preferable to k-means in terms of recognition costs.

Conclusions

Many of todays object class recognition approaches uséecing and matching of local
features to build object models. While k-means is the mopufgr method, this paper
shows that agglomerative clustering has several inherepgpties that make it highly at-
tractive for object class recognition: first, matching cardione efficiently using ball-tree
search in high-dimensional spaces and with large numbelssters; second the clusters
reflect the distribution of features resulting in fewer nhats and lower complexity; and
third, recognition performance is often better than for &ems clusters.

This paper introduces various improvements of agglomeraiustering in the con-
text of processing large numbers of high-dimensional festuln addition, it shows how
to use the clustering result to build a data structure focieffit matching. These improve-
ments result not only in a practically feasible and efficidnstering scheme (we report
clustering results up to 1,000,000 features), but alsogniicant speedups for matching
(up to 200 times faster). Last but not least, the proposedritthgns and the expected
improvements are experimentally validated.

Acknowledgments. This work has been funded, in part, by the EU project CoSy-@802-
004250).

10

References

(1]
(2]

(6]
(7]
(8]
9]

[10]
(11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21]

[22]
(23]
[24]
[25]
[26]

[27]

S. Agarwal, A. Awan, and D. Roth, Learning to detect objeio images via a sparse, part-
based representatioRAMI, 26(11):1475-1490, 2004.

J. Beis and D. Lowe, Shape Indexing Using ApproximaterdsaNeighbour Search in High-
Dimensional Spaces. IBVPR pages 1000-1006, 1997.

J.L. Bentley, Multidimensional binary search treesdif associative searching. Gommu-
nications of the ACM18(9):509-517, 1975.

J.P. Benzécri, Construction d’'une Classification Amtante Hiérarchique par la Recherche
en Chaine des \Voisins Réciproqu&AD, 7(2):209-218, 1982.

M. Bruynooghe, Méthodes Nouvelles en Classificationtokuatique des Données Taxi-
nomiques NombreuseStatistique et Analyse des Donngg4-42, 1977.

D. Comaniciu and P Meer, Mean Shift: A Robust Approachamiieature Space Analysis
PAMI, 24(5):603-619, 2002.

W.H.E. Day and H. Edelsbrunner, Efficient Algorithms Ragglomerative Hierarchical Clus-
tering Methods.Journal of Classificationl:7—-24, 1984.

C. Elkan, Using the Triangle Inequality to Accelerate K&hs In ICML, pages 147-153,
2003.

P. Indyk, R. Motwani, Approximate Nearest Neighbors:wBnds Removing the Curse of
Dimensionality. INSTOC pages 604—613, 1998.

A.K. Jain and R.C. Dubes, Algorithms for Clustering BaPrentice-Hall, 1988

G.N. Lance and W.T. Williams, A General Theory of Cldigsitory Sorting Strategies: II.
Clustering SystemsComputer Journall0:271-277, 1967.

B. Leibe, E. Seemann, and B. Schiele, Pedestrian deteirt crowded scenes. 18VPR
pages 878-885, 2005.

D. Lowe, Distinctive image features from scale-ineati keypoints. IJCV, 2(60):91-110,
2004.

T. Liu, A. Moore, A. Gray, and K. Yang, An Investigatioti Bractical Approximate Nearest
Neighbor Algorithms. I'NIPS pages 825-832, 2004.

J. MacQueen, Some Methods for Classification and AmatyfMultivariate Observations. In
Symp. on Math. Statistics and Probabilipages 281-297, 1967.

K. Mikolajczyk and C. Schmid, A performance evaluatioh local descriptors. PAMI,
27(10):1615-1630, 2005.

K. Mikolajczyk, B. Leibe and B. Schiele, Multiple Obje€lass Detection with a Generative
Model. CVPR 2006.

A.W. Moore, The Anchors Hierarchy: Using the Triangheguality to Survive High Dimen-
sional Data. IMJAI, AAAI Press, pages 397-405, 2000.

S. Nene, S. Nayar, A Simple Algorithm for Nearest NeighBearch in High Dimensions.
PAMI, 19(9):989-1003, 1997.

S.M. Omohundro, Five balltree construction algorithriftechnical Report TR-89-063, 1989.
K. Popat and R.W. Picard, Cluster-Based Probabilitydsl@and Its Application to Image and
Texture ProcessinglIP, 1997.

V. Ramasubramanian and K.K. Paliwal, A Generalizedrogation of the k-d tree for fast
nearest neighbour searchRENCON pages 565-568, 1989.

J. Sivic and A. Zisserman, Video google: A text retriespproach to object matching in
videos. InICCV. pages 1470-1478, 2003.

J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Fne®, Discovering object categories
in image collections. IRCCV, 2005.

J.K. Uhlmann, Satisfying general proximity/simitgriqueries with metric trees. Imforma-
tion Processing Letters, 4@ages 175-179, 1991.

M. Weber, M. Welling, and P. Perona, Unsupervised Lewayiof Models for Recognition. In
ECCV, pages 628-0641, 2000.

Y. Zhao and G. Karypis, Evaluation of hierarchical ¢aring algorithms for document
datasets. I€IKM, pages 515-524, 2002.

