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Abstract

This paper describes how the generalization ability of methods for non-rigid
Structure-from-Motion can be improved by using priors. Most point tracks
are often visible only in some of the images; predicting the missing data can
be important. Previous Maximum-Likelihood (ML)-approaches on implicit
non-rigid Structure-from-Motion generalize badly. Although the estimated
model fits well to the visible training data, it often predicts the missing data
badly. To improve generalization we propose to add a temporal smoothness
prior and a continuous surface shape prior to an ML-approach. The tempo-
ral smoothness prior constrains the camera trajectory and the configuration
weights to behave smoothly. The surface shape prior constrains consistently
close image point tracks to have a similar implicit structure. We propose an
algorithm for achieving a Maximum A Posteriori (MAP)-solution and show
experimentally that the MAP-solution generalizes far better than the ML-
solution. The proposed method is fully automatic: it handles a substantial
amount of missing data as well as outlier contaminated data,and automati-
cally estimates the rank of the measurement matrix.

1 Introduction

Non-rigid Structure-from-Motion concerns the simultaneous recovery of the deforming
world structure and camera motion from image features. Suchanalysis extends the classi-
cal rigid setup [10] to situations with deforming scenes such as expressive faces, moving
cars,etc. In [1, 3, 5, 13, 18] methods where the non-rigidity was represented as a linear
combination ofbasis shapes were developed and analyzed.

Many previous methods cannot handle situations with missing data [1, 3, 5, 13, 16,
17], but see also [6, 9, 14]. The amount of non-rigidity – the number of basis shapes
– often is assumed known [3, 5, 13, 14, 17]. These assumptionsseriously limit the ap-
plicability of the methods. Recently an implicit low-rank model solving both problems
has been proposed [2]. The present paper reviews and extendsthis approach. One major
difference is the use of a MAP-estimation where priors are added to the ML cost function.

Estimating a model from partial data allows one to predict the projection of all world
points on all images. The model generalizes well if the predicted points, on frames where
the point is not registered, are accurate. In general, the model minimizing the reprojection
error – the ML-estimate – does not generalize well. We derivean alternative approach
where the optimization function is augmented with a temporal smoothness prior and a
surface smoothness prior. The priors we use are different from the ones favoring rigidity
in [7, 14].



The proposed MAP-estimator is based on four main steps. First, we compute an
initial solution with an existing ML-estimator. Second, wechange the implicit coordinate
frame such that the temporal smoothness prior is minimized.This ensures that the prior is
globally satisfied since we derive a closed-form, optimal solution to this problem. Third,
we re-estimate the implicit structure by minimizing a combination of the reprojection
error and the surface shape prior. Finally, we jointly refinethe motion and structure
estimates by nonlinear optimization. Experimental results on simulated and real data
show that the generalization ability is greatly improved compared to the standard ML-
estimation.

Section 2 reviews the implicit low-rank imaging model, its matching tensors and clo-
sure constraints. In section 3 and 4 the rank and model estimation on partial data is
described. Sections 5 and 6 describe the proposed priors andtheir implementation. Sec-
tion 7 reports the experimental results. Finally, section 8concludes the paper.

Notation. Vectors are denoted using bold fonts,e.g. x and matrices using sans-serif
or calligraphic characters,e.g. M or A . Index i = 1, . . . ,N is used for the images,j =
1, . . . ,M for the points. The Hadamard (element-wise) product is written⊙. Bars indicate
‘centered’ data, as in̄X. We use the Singular Value Decomposition, denotedSVD, e.g.
X = UΣVT whereU andV are orthonormal matrices, andΣ is diagonal, containing the
singular values ofX in decreasing order. The operator vect(X) performs column-wise
matrix vectorization.

2 The Implicit Low-Rank Non-Rigid Model

The standard rigid model describes the affine projectionxi j of a set ofM 3D world points
S j, represented by a 3×M shape matrixS ontoN images represented by a 2N×3 motion
matrixJ of stacked 2×3 affine camera projection matricesJi:

xi j = JiS j + ti (1)

whereti is the position of thei’th camera. The 2N×M matrixX of time varying coordi-
nates is calledthe measurement matrix and has rankr = 3.

In the non-rigid caser > 3. The low-rank assumption isr≪ min{2N,M}. The im-
plicit low-rank non-rigid model extends (1) by letting the camera and shape matrices have
dimensions 2N× r andr×M. The model is implicit because no assumptions are made
on the replicated block structure of the camera matrices that often is used in explicit ap-
proachese.g. [4, 5, 14]. Thus the implicit model is simpler than the explicit one and gives
weaker constraints on point tracks. Note that the implicit (basis) shape vectorsS j are
more difficult to interpret in terms of world coordinates. Similarly, the implicit camera
matrix Ji (comprising camera pose and configuration weights) does no longer directly
relate to the camera orientation.

The factorization of the centered measurement matrixX̄ = JS = (JA )(A −1S) is am-
biguous since the equation holds for any full rankr× r mixing matrix A defining the
coordinate frame in which the cameras and shapes are represented. IfX is filled (no miss-
ing data), one factorization can be found usingSVD as X̄ = UΣVT. The joint implicit
camera and shape matricesJ andS, are recovered as ther leading columns ofe.g. U and
the rows ofΣVT respectively.



Matching tensors [15] relate corresponding points over multiple images. In the non-
rigid affine case the matching tensor is a matrixN whose columns span thed dimensional
left nullspace of the centered measurement matrixX̄:

N
T
X̄ = 0. (2)

The size ofN is (2N × d) where the tensor dimension isd = 2N− r. N constrains
each point track̄x j – the j-th column ofX̄ – byd linear homogeneous equationsN Tx̄ j =
0. The closure constraints introduced by Triggs in [15] for rigid scenes relate matching
tensors to projection matrices. From (1) and (2) and for all implicit shape pointsS j ∈ R

r

we haveN TJS j = 0, which gives theN -closure constraint:

N
TJ = 0. (3)

The joint implicit camera matrixJ consequently lies in the right nullspace ofN T. From
J, S j is retrieved point-wise by triangulation. Fromx j = JS j we getS j = J†x j, whereJ†

is the pseudoinverse ofJ. In case of outlier contaminated data the computation ofN as
well as the triangulation must be robust so that blunders do not corrupt the computation.
We use aRANSAC-based approach calledMSAC [12]. Finally, we needr to computeN .
As described later we apply theGRIC model selection criterion [11] in conjunction with
MSAC to estimate the optimal model size,i.e. r.

3 Handling Partial Data

As a number of previous methods [1, 3, 5, 13, 17] we factorize the measurement matrix
X using SVD. SinceX often is banded because of occlusions and imperfect tracking,
handling of missing data is important. As [8, 9] we use a blockwise approach where the
measurement matrix is partitioned into a set of highly overlapping blocks. Givenr, a
d-dimensional matching tensorNb can be computed robustly for each blockb. For each
matching tensor, equation (3) gives a closure constraint onthe joint camera matrixJ:

(

0(d×2(ib−1)) Nb
T 0(d×2(N−i′b))

)

J = 0 (4)

whereib andi′b are indexes of the first and last frame in blockb. Stacking the constraints
for all blocks yields an homogeneous linear least squares problem||AJ||2 which must be
solved such thatJ has full column rank. Without loss of generality the full column rank
constraint can be replaced by constrainingJ to be column orthonormal. A solution is
given by ther last columns ofV in theSVD A = UΣVT.

For each block the translation vectortb is computed prior toNb. The joint translation
vectort can be found by minimizing the reprojection error∑b ‖t

b− JbTb− tb‖
2, where

T is the reconstructed centroid, and where the subscriptb in Jb, Tb, andtb denotes the
restriction of the joint matrices and vectors to the frames within blockb. The reprojection
error is rewritten‖Bw−b‖2, where the unknown vectorw containsT andt. The solution
is given by using the pseudo-inverse since there is ar-dimensional ambiguity, makingB
rank deficient with a left nullspace of dimensionr. This correspond to the translational
ambiguity between the basis shapes and the joint translation t: ∀γ ∈ R

r, x j = JS j + t =
J(S j− γ)+ Jγ + t = JS′j + t′.



Given the estimates ofJ and t, the shape vectorsS j could now be computed by a
robust minimization of the reprojection error. However, asdescribed in section 6.2, we
prefer to postpone this computation until the prior is included.

4 Estimating the rank

With the exception of [1] most of the previous work assumes that the rank ofX is given.
We propose to use the robust estimatorMSAC in conjunction with theGRIC model selec-
tion criterion proposed in [11]. Lettingk be the number of parameters of the model andL

the log-likelihood of the error distribution obtained by marginalizing a mixture of a Gaus-
sian inlier part and a uniform outlier part,GRIC is defined by:GRIC = −2L + k log(M).
Expanding and removing constants the measure becomes:

GRIC =
M

∑
j=1

ρ

(

e2
j

σ2

)

+ Mrλ −
1
2

r(r−1) log(M) (5)

wheree j is the prediction error for thej-th point track,σ2 is the variance of the point
tracker localization error, whereλ = 2log(U)− log(2πσ2), and where the functionρ is
ρ(x) = x for x < T andρ(x) = T otherwise.T is the point of intersection of the Gaussian

inlier distribution and the uniform outlier distribution and defined by:T = 2log
(

γ
1−γ

)

+

(2N − r)λ whereγ is the percentage of inliers. The value ofU is determined by the
relative weighting of the inlier and outlier distribution and have a major influence on the
rank estimation. To estimateU we notice that an alternative approach to the estimation of
T is by the value of inverse cumulativeχ2 distribution with 2N− r degrees of freedom.
For relevant values of 2N− r this is approximately linear with a slope ofλ . More details
are given in [2]. To estimate the rank robustly we must sampletheGRIC value repeatedly
for all relevant values ofr. To limit the computational cost the sequence of trials is divided
into groups using gradually narrower intervals of possiblerank values.

5 The Priors

Below we motivate and formulate the temporal smoothness prior and the surface shape
prior. In the following section the implementation of the priors is described.

5.1 Temporal Smoothness

For most image sequences, the camera motion is smooth. For points on a smoothly de-
forming surface the configuration weights smoothly vary as well which means that the sur-
face does not ‘jump’ between poses but rather smoothly interpolates them. Since both the
configuration weights and the camera coordinate axes are encapsulated in theJi-matrices,
these should vary smoothly from frame to frame giving the smoothness measure:

EJ(J) =
N−1

∑
i=1
||Ji− Ji+1||

2 = ||L||2 (6)



whereL is the 2(N−1)× r matrix of stacked projection difference matrices. The previ-
ously described factorization is ambiguous up to ar× r full rank mixing matrixA . From
(6) we see thatEJ(J) 6= EJ(JA ).

5.2 Surface Shape

Points which are close in space also are close in the images. In case of points on a de-
forming continuous surface the opposite is true as well. Solutions obtained by the method
described above does not encourage such behavior. As a consequence the projected tra-
jectories for such close tracks may deviate significantly outside the estimation area. Often
the ability to generalize acceptably disappears just 2-5 frames away from the images in
which the points are visible. To improve generalization a surface shape prior is imposed.
The shape similarityα( j1, j2) of two point tracksj1 6= j2 is measured by a Gaussian func-
tion eλ d2( j1, j2) of the maximal distanced( j1, j2) = maxi

{

||xi j1−xi j2||2
}

in the images in
which both tracks are visible. The surface shape prior then is:

ES(S) = ∑
( j1, j2)

α( j1, j2) · ||S j1−S j2||
2. (7)

As for the smoothness prior we see thatES(S) 6= ES(A −1S).

6 Non-Rigid SfM With Priors

The model simultaneously minimizing the reprojection error, the smoothness prior and
the surface shape prior,i.e. the cost:

ERE+ γEJ+ βES (8)

must be obtained by nonlinear optimization. To ensure a goodstarting point, and be-
cause the coordinate frame in which the shapes are represented influences the solution,
we choose (initially) this frame by minimizing the temporalsmoothness prior. As shown
below this fixes the mixing matrix up to an orthogonal matrix,to which the surface shape
prior is invariant. Next, by using the surface shape prior aninitial guess forS is estimated.
Finally J andS are jointly refined by nonlinear least-squares optimization. The constants
γ andβ in (8) are chosenad hoc such that the two priors initially contribute relative to the
reprojection error with certain amounts, say 0.2 and 0.02. Below, the initial application
of the two priors is described.

6.1 The Coordinate Frame

The prior measure (6) obviously depends on the mixing matrix. Consequently we (par-
tially) determine this as ther× r full rank matrixA minimizingEJ(JA ) = ||LA ||2. The
motivation is that determining the mixing matrix ensures that the camera motion is ‘close’
to the optimal one. To avoid the shrinking effect of reducingthe prior value by simply
scaling downJ we require det(A ) = 1. LetL = UΣVT be a (reduced)SVD of L. Below
we sketch a proof for a closed-form solution forA :

A =

(

r

√

r

∏
k=1

σk

)

VΣ−1. (9)



GivenA we change the coordinate frame byJ← JA andS←A −1S without changing
the reprojection error. However the value of the priorEJ(J) is significantly reduced. It
should be noted that (9) only fixes the mixing matrix up to ar× r orthogonal matrix.

A proof of equation (9). Let A = QDW be anSVD of A . We parameterizeA as
A = QD sinceEJ(JA ) = EJ(JQD). Let Y = VTQ ∈ O(r). We can rewriteEJ(JA ) as:

||LA ||2 = ||UΣVTQD||2 = ||ΣYD||2 = d2
1||Σy1||

2 + · · ·+ d2
r ||Σyr||

2 (10)

wheredr ≥ dr−1 ≥ ·· · ≥ d1 ≥ 0 and withyi the columns ofY. We want to find theyi

and thedk minimizing the expression under the constraints that∏dk = 1, and thatY is
orthonormal. Due to the ordering of the singular values we can split the minimization
problem intor subproblems corresponding to the terms in the sum. From thiswe get
Y = I, i.e. Q = V. The minimization problem then is reduced to:

min
{dk},∏dk=1,dr≥···≥d1≥0

r

∑
k=1

(σkdk)
2. (11)

Introducing Lagrange multipliersλ andµ j a compound object function is formulated:

min
{dk}

r

∑
k=1

(σkdk)
2 + λ

(

r

∏
z=1

dz−1

)

+
r

∑
j=1

µ j(d j−d j−1). (12)

It can easily be shown that this function has a minimum given by:

2σ2
k dk = λ

(

r

∏
z=1,z 6=k

dz

)

=
λ
dk

. (13)

Letting α =
√

λ/2 and checking the unit determinant constraint it is seen that:

α = r

√

r

∏
k=1

σk. (14)

Putting things together we reach expression (9).
To show that the minimum is global the Karush-Kuhn-Tucker conditions can be ap-

plied. A sufficient condition for the minimum to be global is that the three terms in (12)
are twice differentiable and that the Hessian matrix evaluated in R

r+ is positive semi-
definite. The Hessian for the first term is diagonal with elements 2σ2

k . The last term is
linear so the Hessian is a positive semi-definite null matrix. The Hessian for the second
term∏r

z=1 dz can easily be show to be positive semi-definite.

6.2 Surface Shape Prior Implementation

Having fixed the non-rotational part of the mixing matrix it becomes meaningful to com-
pute an estimate of the structureS. Given the modified joint motion matrixJ, S is sought
to minimize a weighted sum of the reprojection error and the surface shape prior:

ERE+ βES = ‖V ⊙ (X− JS− t ·1T)‖2 + β ∑
( j1, j2)∈Ω

α( j1, j2) · ||S j1−S j2||
2 (15)



whereV is the combined inlier and visibility matrix andΩ is the set of ‘close’ point
tracks. TheS minimizing this expression leads to a larger reprojection error compared
to the initial solution. The reprojection error increases with β . We choose a value ofβ
such that the increase in reprojection error is limited by a factor of 0.1 to 0.5. This is done
using an iterative approach. Equation (15) can be rewrittenas:

ERE+ βES = ||v · (x̄−M s)||2 + β ||L s||2 (16)

wherex̄ = vect(X̄) ands = vect(S). M = diagM(J) is a (2NM)× (rM) block diagonal
matrix with M repetitions ofJ. If p = |Ω| is the number of ‘close’ pairs of tracks thenL

hasp row blocksL( j1, j2) of the form:

L( j1, j2) = α( j1, j2) · (0...0, I,0, ...0,−I,0...0) (17)

where I and0 are ther× r identity and zero matrices, and where the positions of the
two identity matrices correspond to the positionsj1 and j2. ThusL will have the size
(rp)× (rM). With this rewriting we can directly see that the least squares solution is

s = [M⊤
M + βL

⊤
L ]−1

M
⊤x . (18)

7 Experimental Results

In the experiments reported below we concentrate on the improvement with respect to
generalization by using the camera smoothness and surface shape priors.

7.1 Synthetic Data

In the first test we generated synthetic data with 100 frames and 100 point tracks and
with true rank varying from 3 to 18. For each data set, models with and without use
of the two priors were estimated from the diagonal 60% entries. The estimation error
is measured as a function of the generalization distance in frames. For medium to large
distances the error distribution were very long tailed. Therefore for each distance we mea-
sured the improvement in generalization by the ratio of medians without and with prior
use. The generalization improvement measure increased with the rank as well as with the
generalization distance. Figure 1 shows to the left the average (over all data sets) of the
improvement. In more absolute terms we relate the error in the generalization area to the
error in the training area by the percentage of points with generalization error exceeding
a valueµ + kσ , whereµ andσ are the mean and spread of the reconstruction error and
k = 2.5, 5, and 10. An example is shown to the right in Figure 1. The smoothness measure
(6) decreased by a factor between 80 and 500. The results on synthetic data showed that
at the expense of a small increase of the reprojection error,the generalization error can
be significantly reduced. In particular the number of very large errors is reduced. Exper-
iments that are not reported here showed that the generalization improvement increased
with the difficulty of the data,e.g. with the amount of measurement noise and withr.

7.2 Real Data

We applied the same testing procedure on data from two real sequences calledBears and
Groundhog day. Figure 2 shows single frames from the two sequences. From the two
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Figure 1: Results on synthetic data. Left: Average generalization improvement factor as
a function of the generalization distance. Right: Percentage of point tracks with reprojec-
tion error exceeding three thresholds (see text), with and without prior use, as functions
of the generalization distance.

Figure 2: Images from the 94-framesBears sequence (left) and the 75-framesGroundhog
day sequence (right) with marked points.

(originally banded) measurement matrices filled sub-matrices were extracted and a diag-
onal band with 50 % entries selected for training. The measurement matrices showed 94
and 75 frames with 94 and 117 point tracks. On theBears sequence the camera smooth-
ness measure was reduced by a factor of 108.7. The rank was estimated to 5. After
initial estimationERE = 0.82 pixels. Applying the priors increased this to 1.20 pixels, a
small payment for the improved generalization. Figure 3 shows plots of the percentage
of point tracks as function of the generalization distance in frames, with and without use
of the priors, and with reprojection error exceeding the previously described thresholds
µ + kσ , usingk = 2.5, 5 and 10. Figure 3 shows that without prior use the generalization
becomes bad even for short generalization distances. With prior use the error is signifi-
cantly reduced. For the sequenceBears the generalization becomes possible at least up
to a distance of 30 frames. On the more difficult sequenceGroundhog day the camera
smoothness measure was reduced by a factor of 5660.3. The rank was estimated to 14.
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Figure 3: Percentages of point tracks in the sequencesBears (left) andGroundhog day
(right) with reprojection error exceeding three thresholds (see text), with and without prior
use, as functions of the generalization distance.

Figure 3 shows to the right that the generalization distanceis increased by a factor of 2 to
4. This is still significant, but less impressive compared tothe sequenceBears. A main
reason is that a continuous surface is seen on theBears sequence giving strength to the
surface shape prior. This is not the case for theGroundhog day sequence.

In figure 4 a close-up of 4 tracks from theBears sequence is shown. The positions

frame 47 frame 52 frame 57 frame 62 frame 67

Figure 4: Close-up sequence of 4 point tracks which visible parts (use for training) all
ended close to frame number 47. ‘True’ positions, given by the tracker, are shown by
stars. Predicted positions estimated without using the priors are shown by diamonds.
Predicted positions estimated with use of the priors are shown by squares.

computed by using the two are much closer to the true positions than the ones obtained
by not using the priors.

8 Conclusions

We proposed an implicit non-rigid Structure-from-Motion approach with priors for tem-
poral smoothness and surface shape coherency. We showed that the priors significantly
improves the prediction of points in frames where data is missing,i.e. the generalization
ability. Building on previous work the approach automatically estimates the rank of the
measurement matrix, handles outliers and a substantial amount of missing data. Future



work will show if the improved generalization allows detecting and gluing point tracks
split because of imperfect tracking. We expect the temporalsmoothness prior to drive the
estimated model closer to an explicit configuration. Further work how much this will help
in such ‘self-calibration’.
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