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Abstract

This paper describes how the generalization ability of més$tfor non-rigid
Structure-from-Motion can be improved by using priors. Mpsint tracks
are often visible only in some of the images; predicting thesing data can
be important. Previous Maximume-Likelihood (ML)-approasion implicit
non-rigid Structure-from-Motion generalize badly. Altigh the estimated
model fits well to the visible training data, it often predithe missing data
badly. To improve generalization we propose to add a tenhgaraothness
prior and a continuous surface shape prior to an ML-appro@bk tempo-
ral smoothness prior constrains the camera trajectory leddnfiguration
weights to behave smoothly. The surface shape prior constcansistently
close image point tracks to have a similar implicit struetuwe propose an
algorithm for achieving a Maximum A Posteriori (MAP)-satut and show
experimentally that the MAP-solution generalizes far drethan the ML-
solution. The proposed method is fully automatic: it hasdiesubstantial
amount of missing data as well as outlier contaminated @etd,automati-
cally estimates the rank of the measurement matrix.

1 Introduction

Non-rigid Structure-from-Motion concerns the simultangoecovery of the deforming
world structure and camera motion from image features. Soalysis extends the classi-
cal rigid setup [10] to situations with deforming scenessas expressive faces, moving
cars,etc. In[1, 3, 5, 13, 18] methods where the non-rigidity was repreed as a linear
combination obasis shapes were developed and analyzed.

Many previous methods cannot handle situations with ngsdata [1, 3, 5, 13, 16,
17], but see also [6, 9, 14]. The amount of non-rigidity — thenber of basis shapes
— often is assumed known [3, 5, 13, 14, 17]. These assumpginsusly limit the ap-
plicability of the methods. Recently an implicit low-rankoatel solving both problems
has been proposed [2]. The present paper reviews and extéa@pproach. One major
difference is the use of a MAP-estimation where priors adeddo the ML cost function.

Estimating a model from partial data allows one to predietytojection of all world
points on all images. The model generalizes well if the ftedi points, on frames where
the point is not registered, are accurate. In general, trdehminimizing the reprojection
error — the ML-estimate — does not generalize well. We daivalternative approach
where the optimization function is augmented with a tempsmaoothness prior and a
surface smoothness prior. The priors we use are different the ones favoring rigidity
in[7, 14].



The proposed MAP-estimator is based on four main steps.t, Fils compute an
initial solution with an existing ML-estimator. Second, elgange the implicit coordinate
frame such that the temporal smoothness prior is minimizad ensures that the prior is
globally satisfied since we derive a closed-form, optiméltson to this problem. Third,
we re-estimate the implicit structure by minimizing a condiion of the reprojection
error and the surface shape prior. Finally, we jointly refine motion and structure
estimates by nonlinear optimization. Experimental resolt simulated and real data
show that the generalization ability is greatly improvednpared to the standard ML-
estimation.

Section 2 reviews the implicit low-rank imaging model, itatching tensors and clo-
sure constraints. In section 3 and 4 the rank and model @stiman partial data is
described. Sections 5 and 6 describe the proposed priothaindmplementation. Sec-
tion 7 reports the experimental results. Finally, secti@oBcludes the paper.

Notation. Vectors are denoted using bold fonesg. x and matrices using sans-serif
or calligraphic charactergg. M or «/. Indexi =1,...,N is used for the imageg,=
1,...,M for the points. The Hadamard (element-wise) product istemit. Bars indicate
‘centered’ data, as iX. We use the Singular Value Decomposition, dencted, e.g.

X = UXVT whereU andV are orthonormal matrices, andis diagonal, containing the
singular values oKX in decreasing order. The operator (@Gt performs column-wise
matrix vectorization.

2 Thelmplicit Low-Rank Non-Rigid Mod€

The standard rigid model describes the affine projectipof a set oM 3D world points
Sj, represented by ax3M shape matri6 ontoN images represented by &% 3 motion
matrix J of stacked % 3 affine camera projection matricés

Xij = JiSj + 1 Q)

wheret; is the position of thé'th camera. The R x M matrix X of time varying coordi-
nates is callethe measurement matrix and has rank = 3.

In the non-rigid case > 3. The low-rank assumption is< min{2N,M}. The im-
plicit low-rank non-rigid model extends (1) by letting theroera and shape matrices have
dimensions Rl x r andr x M. The model is implicit because no assumptions are made
on the replicated block structure of the camera matricesattan is used in explicit ap-
proache®.g. [4, 5, 14]. Thus the implicit model is simpler than the explone and gives
weaker constraints on point tracks. Note that the implicéts{s) shape vectofs are
more difficult to interpret in terms of world coordinates.miarly, the implicit camera
matrix Ji (comprising camera pose and configuration weights) doesmgel directly
relate to the camera orientation. _

The factorization of the centered measurement mateixJS = (J.o7) (7 ~1S) is am-
biguous since the equation holds for any full rank r mixing matrix .oz defining the
coordinate frame in which the cameras and shapes are reprdsé X is filled (no miss-
ing data), one factorization can be found usgp asX = UZVT. The joint implicit
camera and shape matrickandS, are recovered as thideading columns oé.g. U and
the rows of=VT respectively.



Matching tensors [15] relate corresponding points ovettiplelimages. In the non-
rigid affine case the matching tensor is a matfixwhose columns span tliedimensional
left nullspace of the centered measurement madrix

HTX = 0. )

The size of 4" is (2N x d) where the tensor dimensionds= 2N —r. .4 constrains
each point track; — thej-th column ofX — byd linear homogeneous equationsTx; =

0. The closure constraints introduced by Triggs in [15] fgidiscenes relate matching
tensors to projection matrices. From (1) and (2) and fomagilicit shape pointS; € R’
we have #TJS;j = 0, which gives the# -closure constraint:

AT = 0. )

The joint implicit camera matrid consequently lies in the right nullspace.gf . From
J, Sj is retrieved point-wise by triangulation. Fram= JS; we getS; = J'x;, whereJ'

is the pseudoinverse df In case of outlier contaminated data the computation/ohs
well as the triangulation must be robust so that blundersad@orrupt the computation.
We use eRANSAC-based approach calledsac [12]. Finally, we need to compute /.
As described later we apply tleriCc model selection criterion [11] in conjunction with
MSAC to estimate the optimal model sides. r.

3 Handling Partial Data

As a number of previous methods [1, 3, 5, 13, 17] we factohezermheasurement matrix
X usingsvD. SinceX often is banded because of occlusions and imperfect trgckin
handling of missing data is important. As [8, 9] we use a bldsk approach where the
measurement matrix is partitioned into a set of highly eyaping blocks. Givem, a
d-dimensional matching tensofy, can be computed robustly for each bldzkFor each
matching tensor, equation (3) gives a closure constraitit@ipint camera matriz:

(O(dxz(ib—l)) v O(dXZ(N—iL)))J =0 4)

whereiy, andij, are indexes of the first and last frame in bldckStacking the constraints
for all blocks yields an homogeneous linear least squarasie@m||AJ||2 which must be
solved such that has full column rank. Without loss of generality the full aoin rank
constraint can be replaced by constrainintp be column orthonormal. A solution is
given by ther last columns o¥ in thesvb A = UL VT.

For each block the translation vect8iis computed prior to44. The joint translation
vectort can be found by minimizing the reprojection eripg |[t® — J,Tp — tp||2, where
T is the reconstructed centroid, and where the subsbrpt),, Ty, andt, denotes the
restriction of the joint matrices and vectors to the fram#hiwblockb. The reprojection
error is rewritter| Bw — b||?, where the unknown vectev containsT andt. The solution
is given by using the pseudo-inverse since thereriglemensional ambiguity, making
rank deficient with a left nullspace of dimensionThis correspond to the translational
ambiguity between the basis shapes and the joint translatidy € R', xj = JSj +t =
J(Sj—y) +Iy+t=IJS| +t.



Given the estimates aof andt, the shape vectorS; could now be computed by a
robust minimization of the reprojection error. Howeverdascribed in section 6.2, we
prefer to postpone this computation until the prior is imield.

4 Estimating therank

With the exception of [1] most of the previous work assumes the rank ofX is given.
We propose to use the robust estimati@Ac in conjunction with thesriIC model selec-
tion criterion proposed in [11]. Lettinigbe the number of parameters of the model #id
the log-likelihood of the error distribution obtained by mimalizing a mixture of a Gaus-
sian inlier part and a uniform outlier padRric is defined by:GrRiIC = —2.% + klog(M).
Expanding and removing constants the measure becomes:

S eJZ MrA 1 1)log(M
GRIC:JZl,D 52 +Mr —Er(r— )log(M) (5)

wheree; is the prediction error for thg-th point track,o? is the variance of the point
tracker localization error, wherke = 2log(U) — log(2716?), and where the functiop is
p(x) =xforx < T andp(x) =T otherwise.T is the point of intersection of the Gaussian

inlier distribution and the uniform outlier distributiomd defined byT = 2log (r"y) +

(2N —r)A wherey is the percentage of inliers. The value Wfis determined by the
relative weighting of the inlier and outlier distributioné have a major influence on the
rank estimation. To estimaté we notice that an alternative approach to the estimation of
T is by the value of inverse cumulatiye distribution with 2N —r degrees of freedom.
For relevant values off®— r this is approximately linear with a slope #f More details

are given in [2]. To estimate the rank robustly we must sarti&RIC value repeatedly
for all relevant values af. To limit the computational cost the sequence of trials\védgid

into groups using gradually narrower intervals of possiblek values.

5 ThePriors

Below we motivate and formulate the temporal smoothness pnd the surface shape
prior. In the following section the implementation of thequs is described.

5.1 Temporal Smoothness

For most image sequences, the camera motion is smooth. kds po a smoothly de-
forming surface the configuration weights smoothly vary al which means that the sur-
face does not ‘jump’ between poses but rather smoothlypotates them. Since both the
configuration weights and the camera coordinate axes aspsulated in the;-matrices,
these should vary smoothly from frame to frame giving the cifnoess measure:

N-1
&) = ;IIJi—JmIIZ:IILIIZ (6)



wherelL is the 2N — 1) x r matrix of stacked projection difference matrices. The prev
ously described factorization is ambiguous up to<a full rank mixing matrixe?. From
(6) we see that’y(J) # &(J).

5.2 Surface Shape

Points which are close in space also are close in the imagesask of points on a de-
forming continuous surface the opposite is true as wellutBnis obtained by the method
described above does not encourage such behavior. As ageemse the projected tra-
jectories for such close tracks may deviate significantlgide the estimation area. Often
the ability to generalize acceptably disappears just 2Bés away from the images in
which the points are visible. To improve generalization daste shape prior is imposed.
The shape similarity (j1, j2) of two point tracksj; # j» is measured by a Gaussian func-
tion e 4*(ir.j2) of the maximal distance(jy, j») = max {IIXij, — Xij,||2} in the images in
which both tracks are visible. The surface shape prior then i

E5(S) =3 aliniz) IS, - Spll* (7)
(j1,J2)

As for the smoothness prior we see tHa(S) # &g(o7 1S).

6 Non-Rigid SfM With Priors

The model simultaneously minimizing the reprojection grtbe smoothness prior and
the surface shape priare. the cost:

SRET Y&+ Bés (8)

must be obtained by nonlinear optimization. To ensure a gading point, and be-
cause the coordinate frame in which the shapes are repeés@fiuences the solution,
we choose (initially) this frame by minimizing the temposaioothness prior. As shown
below this fixes the mixing matrix up to an orthogonal matrixwhich the surface shape
prior is invariant. Next, by using the surface shape prianéial guess foiS is estimated.
Finally J andS are jointly refined by nonlinear least-squares optimizatibhe constants
yandp in (8) are chosend hoc such that the two priors initially contribute relative teth
reprojection error with certain amounts, say 0.2 and 0.0&210\, the initial application
of the two priors is described.

6.1 TheCoordinate Frame

The prior measure (6) obviously depends on the mixing matignsequently we (par-
tially) determine this as thex r full rank matrix.eZ minimizing &(J.<7) = ||L<||2. The
motivation is that determining the mixing matrix ensurest the camera motion is ‘close’
to the optimal one. To avoid the shrinking effect of reduding prior value by simply
scaling downJ) we require dete7) = 1. LetL = UXVT be a (reduced3vp of L. Below
we sketch a proof for a closed-form solution fef:

o = ( ﬁ ak> vl (9)

k=1



Given.&7 we change the coordinate frame by- J.7 andS — <7 ~1S without changing
the reprojection error. However the value of the pag(J) is significantly reduced. It
should be noted that (9) only fixes the mixing matrix up toxar orthogonal matrix.

A proof of equation (9). Let .« = QDW be ansvD of «#. We parameterizer as
o/ = QD since&y(J«/) = &(JQD). LetY =VTQ € O(r). We can rewrite)(J.«7) as:

ILe/|[> = |JUEVTQD||* = [[ZYD|* = df||Tyl[*+-- +df|[Zyi[[*  (10)

whered, > d,_1 > --- > d; > 0 and withy; the columns ofY. We want to find they;
and thedy minimizing the expression under the constraints {fjal = 1, and thaty is
orthonormal. Due to the ordering of the singular values we salit the minimization
problem intor subproblems corresponding to the terms in the sum. Fromathiget
Y =1, i.e. Q = V. The minimization problem then is reduced to:

r
min ovd)2. "
{dk}ﬂdk:l’drz'”zdlzokZl( k) (11)

Introducing Lagrange multiplierd andp; a compound object function is formulated:

r

?(}i? Y (okd)?+A (ﬂdz— 1) + gluj (dj —dj_1). (12)

k} k=1

It can easily be shown that this function has a minimum giwen b

202d¢ = A ( ﬁ dz> :i. (13)

z=1,z#k
Letting o = \/A /2 and checking the unit determinant constraint it is seen tha

r

a=/{ |_| Ok. (14)

Putting things together we reach expression (9).

To show that the minimum is global the Karush-Kuhn-Tuckerditions can be ap-
plied. A sufficient condition for the minimum to be global it the three terms in (12)
are twice differentiable and that the Hessian matrix evallign R"" is positive semi-
definite. The Hessian for the first term is diagonal with elete@s?. The last term is
linear so the Hessian is a positive semi-definite null maffilke Hessian for the second
term[]5_, d; can easily be show to be positive semi-definite.

6.2 Surface Shape Prior Implementation

Having fixed the non-rotational part of the mixing matrix @mmes meaningful to com-
pute an estimate of the structuBeGiven the modified joint motion matrix, S is sought
to minimize a weighted sum of the reprojection error and tivéase shape prior:

SRE+BEs = [V OX=IS—t-1N)|2+B S a(i,i2)- IS —Spl>  (15)
(j1,j2)eQ



where? is the combined inlier and visibility matrix an@ is the set of ‘close’ point
tracks. TheS minimizing this expression leads to a larger reprojectionrecompared
to the initial solution. The reprojection error increasatvB. We choose a value @
such that the increase in reprojection error is limited bgcdr of 0.1 to 0.5. This is done
using an iterative approach. Equation (15) can be rewréten

SRE+BEs = |Iv- (X—.9)|*+ BI|.L3||? (16)

wherex = vect(X) ands = vectS). .# = diagy,(J) is a(2NM) x (rM) block diagonal
matrix with M repetitions ofl. If p=|Q| is the number of ‘close’ pairs of tracks thefi
hasp row blocks.Z(;, ;,) of the form:

v = alisi2) - (0..0,1,0,...0,~1,0...0) (17)

where | and0 are ther x r identity and zero matrices, and where the positions of the
two identity matrices correspond to the positigasand j,. Thus.Z will have the size
(rp) x (rM). With this rewriting we can directly see that the least sqaaolution is

s=[#"M+BLT L) x. (18)

7 Experimental Results

In the experiments reported below we concentrate on theawgmnent with respect to
generalization by using the camera smoothness and sulfape griors.

7.1 Synthetic Data

In the first test we generated synthetic data with 100 franmels1®0 point tracks and
with true rank varying from 3 to 18. For each data set, modéik and without use
of the two priors were estimated from the diagonal 60% esitri€he estimation error
is measured as a function of the generalization distanceamds. For medium to large
distances the error distribution were very long tailed. rEfiare for each distance we mea-
sured the improvement in generalization by the ratio of rmesliwithout and with prior
use. The generalization improvement measure increaskdhveirank as well as with the
generalization distance. Figure 1 shows to the left theameefover all data sets) of the
improvement. In more absolute terms we relate the errordrgéneralization area to the
error in the training area by the percentage of points withegalization error exceeding
a valueu + ko, whereu ando are the mean and spread of the reconstruction error and
k=25, 5, and 10. An example is shown to the right in Figure 1. Theathmess measure
(6) decreased by a factor between 80 and 500. The resultsntimesiz data showed that
at the expense of a small increase of the reprojection dtrergeneralization error can
be significantly reduced. In particular the number of vergdeerrors is reduced. Exper-
iments that are not reported here showed that the gendiatizmprovement increased
with the difficulty of the datae.g. with the amount of measurement noise and with

7.2 Real Data

We applied the same testing procedure on data from two rgaksees calleBears and
Groundhog day. Figure 2 shows single frames from the two sequences. Frenb
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Figure 1: Results on synthetic data. Left: Average gensatitin improvement factor as
a function of the generalization distance. Right: Peragmte point tracks with reprojec-
tion error exceeding three thresholds (see text), with aitldowt prior use, as functions
of the generalization distance.

Figure 2: Images from the 94-framBsars sequence (left) and the 75-fram@soundhog
day sequence (right) with marked points.

(originally banded) measurement matrices filled sub-roesrivere extracted and a diag-
onal band with 50 % entries selected for training. The meamant matrices showed 94
and 75 frames with 94 and 117 point tracks. OnBiears sequence the camera smooth-
ness measure was reduced by a factor of 108.7. The rank wamtst to 5. After
initial estimationérg = 0.82 pixels. Applying the priors increased this to 1.20 pixals
small payment for the improved generalization. Figure 3aghplots of the percentage
of point tracks as function of the generalization distamc&ames, with and without use
of the priors, and with reprojection error exceeding thevimesly described thresholds
U+ ko, usingk = 2.5, 5 and 10. Figure 3 shows that without prior use the gerzatidin
becomes bad even for short generalization distances. \Wiith ysse the error is signifi-
cantly reduced. For the sequer®ears the generalization becomes possible at least up
to a distance of 30 frames. On the more difficult sequeBindhog day the camera
smoothness measure was reduced by a factor of 5660.3. Tkeveanestimated to 14.
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Figure 3: Percentages of point tracks in the sequeBeass (left) and Groundhog day
(right) with reprojection error exceeding three threskdkke text), with and without prior
use, as functions of the generalization distance.

Figure 3 shows to the right that the generalization distéstereased by a factor of 2 to
4. This is still significant, but less impressive compareth® sequencBears. A main
reason is that a continuous surface is seen orB#aes sequence giving strength to the
surface shape prior. This is not the case for@neundhog day sequence.

In figure 4 a close-up of 4 tracks from tlBzars sequence is shown. The positions

frame 47 frame 52 frame 57 frame 62 frame 67

Figure 4: Close-up sequence of 4 point tracks which visilalgsp(use for training) all
ended close to frame number 47. ‘True’ positions, given lgyttacker, are shown by
stars. Predicted positions estimated without using therprre shown by diamonds.
Predicted positions estimated with use of the priors areveHiy squares.

computed by using the two are much closer to the true positioan the ones obtained
by not using the priors.

8 Conclusions

We proposed an implicit non-rigid Structure-from-Motigmpeoach with priors for tem-
poral smoothness and surface shape coherency. We showehdetmiors significantly
improves the prediction of points in frames where data issinggi.e. the generalization
ability. Building on previous work the approach automdticastimates the rank of the
measurement matrix, handles outliers and a substantialigined missing data. Future



work will show if the improved generalization allows deiagtand gluing point tracks
split because of imperfect tracking. We expect the tempmalothness prior to drive the
estimated model closer to an explicit configuration. Furtierk how much this will help
in such ‘self-calibration’.
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