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Abstract

A new method is presented for computing the fundamental matrix from point
correspondences: its singular value decomposition (SVD) is optimized by
the Levenberg-Marquard (LM) method. The search is initialized by opti-
mal correction of unconstrained ML. There is no need for tentative 3-D re-
construction. The accuracy achieves the theoretical bound (the KCR lower
bound).

1 Introduction
Computing the fundamental matrix from point correspondences is the first step of many
vision applications including camera calibration, image rectification, structure from mo-
tion, and new view generation [7].

A popular approach is to do maximum likelihood (ML) computation without imposing
the constraint that the fundamental matrix has rank 2; the rank constraint was imposed a
posteriori in a statistically optimal manner. The resulting solution has accuracy close to
the theoretical bound (KCR lower bound [2, 8]).

Another approach is to do optimization subject to the rank constraint [1, 4, 13, 14]. In
this paper, we propose a new method in this line. Following Bartoli and Sturm [1], we op-
timize the singular value decomposition (SVD) of the fundamental matrix, but there is no
need to include 3-D coordinates or camera matrices as unknowns; we use the Levenberg-
Marquard (LM) method in the reduced parameter space.

We numerically compare our LM approach with the optimal correction and show that
they have complementary properties. The optimal correction is fairly accurate and robust
but gradually deteriorates as noise increases. In contrast, LM achieves very high accuracy
when started from a good initial value but is likely to fall into local minima if poorly
initialized. From this, we conclude that starting LM from the optimal correction achieves
the highest accuracy, which agrees with the theoretical bound (the KCR lower bound).
The result is also compared with the bundle adjustment approach.



We summarize the mathematical background in Sect. 2. We describe the optimal
correction approach in Sect. 3 and our LM approach in Sect. 4. In Sect. 5, we discuss the
bundle adjustment in relation to our methods. Sect. 6 shows numerical experiments. We
conclude in Sect. 7.

2 Mathematical Background
Fundamental matrix. Given two images of the same scene, a point (x,y) in the first
image and the corresponding point (x′,y′) in the second satisfy the epipolar equation [7]

(

 x
y
f0

 ,

 F11 F12 F13
F21 F22 F23
F31 F32 F33

 x′

y′

f0

) = 0, (1)

where the image origin (0,0) is at the frame center and f0 is a scaling constant of the order
of the image size (this is for stabilizing numerical computation [6]. In our experiments,
we set f0 = 600 pixels). Throughout this paper, we denote the inner product of vectors a
and b by (a,b). The matrix F = (Fi j) in Eq. (1) is of rank 2 and called the fundamental
matrix. If we define

u = (F11,F12,F13,F21,F22,F23,F31,F32,F33)>, (2)
ξ = (xx′,xy′,x f0,yx′,yy′,y f0, f0x′, f0y′, f 2

0 )>, (3)

Equation (1) can be rewritten as
(u,ξ ) = 0. (4)

The magnitude of u is indeterminate, so we normalize it to ‖u‖ = 1. If we write N
observed noisy correspondence pairs as 9-D vectors {ξα} in the form of Eq. (3), our task
is to estimate the 9-D vector u from {ξα} using Eq. (4).

Covariance matrices. We write ξα = ξ̄α + ∆ξα , where ξ̄α is the true value and ∆ξα the
noise term. The covariance matrix of ξα is defined by

V [ξα ] = E[∆ξα ∆ξ>
α ], (5)

where E[ · ] denotes expectation over the noise distribution. If the noise in the x- and y-
coordinates is independent and of mean 0 and standard deviation σ , the covariance matrix
of ξα has the form V [ξα ] = σ2V0[ξα ] up to O(σ4), where

V0[ξα ] =



x̄2
α + x̄′2α x̄′α ȳ′α f0x̄′α x̄α ȳα 0 0 f0x̄α 0 0
x̄′α ȳ′α x̄2

α + ȳ′2α f0ȳ′α 0 x̄α ȳα 0 0 f0x̄α 0
f0x̄′α f0ȳ′α f 2

0 0 0 0 0 0 0
x̄α ȳα 0 0 ȳ2

α + x̄′2α x̄′α ȳ′α f0x̄′α f0ȳα 0 0
0 x̄α ȳα 0 x̄′α ȳ′α ȳ2

α + ȳ′2α f0ȳ′α 0 f0ȳα 0
0 0 0 f0x̄′α f0ȳ′α f 2

0 0 0 0
f0x̄α 0 0 f0ȳα 0 0 f 2

0 0 0
0 f0x̄α 0 0 f0ȳα 0 0 f 2

0 0
0 0 0 0 0 0 0 0 0


. (6)
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In actual computations, we replace the true positions (x̄α , ȳα) and (x̄′α , ȳ′α) by their data
(xα ,yα) and (x′α ,y′α), respectively (experiments have confirmed that this does not cause
noticeable changes in final results).

We define the covariance matrix V [û] of the resulting estimate û of u by

V [û] = E[(PU û)(PU û)>], (7)

where PU is the linear operator projecting R9 onto the domain U of u defined by the
constraints ‖u‖ = 1 and detF = 0; we evaluate the error of û by projecting it onto the
tangent space Tu(U ) to U at u.

Geometry of the constraint. The normal to the hypersurface defined by detF = 0 is
∇u detF. After scale normalization, it is written as

u† ≡ N[



u5u9 −u8u6
u6u7 −u9u4
u4u8 −u7u5
u8u3 −u2u9
u9u1 −u3u7
u7u2 −u1u8
u2u6 −u5u3
u3u4 −u6u1
u1u5 −u4u2


], (8)

where N[ · ] denotes normalization into unit norm (this vector represents the “cofactor” of
F). It is easily seen that the constraint detF = 0 is equivalently written as

(u†,u) = 0. (9)

Since the domain U is included in the unit sphere S 8 ⊂ R9, the vector u is everywhere
orthogonal to U . Hence, {u, u†} is an orthonormal basis of the orthogonal complement
of the tangent space Tu(U ). It follows that the projection operator PU in Eq. (7) has the
following matrix representation (I is the unit matrix):

PU = I−uu>−u†u†>. (10)

KCR lower bound. If the noise in {ξα} is independent and Gaussian with mean 0 and
covariance matrix σ2V0[ξα ], the following inequality holds for an arbitrary unbiased esti-
mator û of u [8]:

V [û] Â σ2
( N

∑
α=1

(PU ξ̄α)(PU ξ̄α)>

(u,V0[ξα ]u)

)−

8
. (11)

Here, Â means that the left-hand side minus the right is positive semidefinite, and ( ·)−r
denotes the pseudoinverse of rank r. Chernov and Lesort [2] called the right-hand side of
Eq. (11) the KCR (Kanatani-Cramer-Rao) lower bound and showed that Eq. (11) holds
up to O(σ4) even if û is not unbiased; it is sufficient that û → u as σ → 0.

Maximum likelihood. If the noise in {ξα} is independent and Gaussian with mean 0 and
covariance matrix σ2V0[ξα ], maximum likelihood (ML) estimation of u is to minimize the
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sum of square Mahalanobis distances

J =
N

∑
α=1

(ξα − ξ̄α ,V0[ξα ]−2 (ξα − ξ̄α)), (12)

subject to (u, ξ̄α) = 0, α = 1, ..., N. Eliminating the constraint by using Lagrange multi-
pliers, we obtain [8]

J =
N

∑
α=1

(u,ξα)2

(u,V0[ξα ]u)
. (13)

The ML estimator û minimizes this subject to ‖u‖ = 1 and (u†,u) = 0.

3 Optimal Correction
A common approach to solve this problem is to minimizes Eq. (13) without considering
the rank constraint, compute the SVD of the resulting fundamental matrix, and replace
the smallest singular value by 0, producing a “closest” matrix of rank 2 in norm [6]. We
call this SVD correction.

A more sophisticated method is the optimal correction [8, 12]. According to the
statistical optimization theory [8], the covariance matrix V [ũ] of the rank unconstrained
solution ũ can be evaluated, so ũ is moved in the direction of the mostly likely fluctuation
implied by V [ũ] until it satisfies the rank constraint. The procedure goes as follows [8]:

1. Compute the following 9×9 matrix M̃:

M̃ =
N

∑
α=1

ξα ξ>
α

(ũ,V0[ξα ]ũ)
. (14)

2. Compute the normalized covariance matrix V0[ũ] as follows:

V0[ũ] = M̃−
8 . (15)

3. Update the solution ũ as follows (ũ† is defined by Eq. (8) for ũ):

ũ ← N[ũ− 1
3

(ũ, ũ†)V0[ũ]ũ†

(ũ†,V0[ũ]ũ†)
]. (16)

4. If (ũ, ũ†) ≈ 0, return ũ and stop. Else, update the normalized covariance matrix
V0[ũ] in the form

Pũ = I− ũũ>, V0[ũ] ← PũV0[ũ]Pũ, (17)

and go back to Step 3.

Before doing this, we need to solve unconstrained minimization of Eq. (13), for which
several methods exist: the FNS (Fundamental Numerical Scheme) of Chojnacki et al. [3],
the HEIV (Heteroscedastic Errors-in-Variable) of Leedan and Meer [11], and the projec-
tive Gauss-Newton iterations of Kanatani and Sugaya [9]. Their convergence properties
were studies in [9].
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4 Direct Search
We now propose a new method for minimizing Eq. (13) subject to the rank constraint.
The fundamental matrix F has nine elements, on which the normalization ‖F‖ = 1 and the
rank constraint detF = 0 are imposed. So, it has seven degrees of freedom.

Many types of 7-degree parameterization have been proposed in the past. Typical
ones are based on epipoles (e.g., [13, 14]), but the resulting expressions are often com-
plicated, and the geometric meaning of the individual unknowns are not clear. This was
overcome by Bartoli and Sturm [1], who regarded the SVD of F as its parameterization.
Their expression is compact, and each parameter has its geometric meaning. However,
they included, in addition to F, the 3-D positions of the observed feature points, the rel-
ative positions of the two cameras, and their intrinsic parameters as unknowns. Using
assumed values, they computed tentative 3-D reconstruction and evaluated the reprojec-
tion error. Then, they searched the high-dimensional parameter space for the value that
minimizes the reprojection error. Since the tentative 3-D reconstruction from two images
is indeterminate, they chose the one for which the first camera matrix is in a particular
form (“canonical form”).

From the underlying geometry, however, we can see that the necessary and sufficient
condition for the corresponding points {(xα ,yα)} and {(x′α ,y′α)} to be a projection of
“some” 3-D structure is the epipolar equation of Eq. (1) for “some” F, and Eq. (12) de-
scribes the corresponding reprojection error. Hence, bundle adjustment for minimizing
the reprojection error by assuming “some” 3-D reconstruction is practically equivalent
to minimize Eq. (12) (the meaning of “practically” is discussed shortly), so we need not
consider indeterminate 3-D reconstruction.

Here, using the parameterization of Bartoli and Sturm [1], we directly minimize
Eq. (13) by the Levenberg-Marquard (LM) method. The fundamental matrix F has rank
2, so its SVD has the form

F = Udiag(σ1,σ2,0)V>, (18)

where U and V are orthogonal matrices, and σ1 and σ2 are the singular values. Since the
normalization ‖F‖2 = 1 is equivalent to σ2

1 +σ2
2 = 1, we adopt the following parameteri-

zation1:
σ1 = cosθ , σ2 = sinθ . (19)

The orthogonal matrices U and V have three degrees of freedom each, so they and θ
constitute the seven degrees of freedom. However, the analysis becomes complicated if
U and V are directly expressed in three parameters each (e.g., the Euler angles or the
rotations around each coordinate axis). Following Bartoli and Sturm [1], we adopt the
“Lie algebraic method”: we represent the “increment” in U and V by three parameters
each. Let ω1, ω2, and ω3 represent the increment in U, and ω ′

1, ω ′
2, and ω ′

3 in V. The
derivatives of Eq. (13) with respect to them are as follows (we omit the details):

∇ω J = F>
U Xu, ∇ω ′J = F>

V Xu. (20)

1Bartoli and Sturm [1] took the ratio γ = σ2/σ1 as a variable. Here, we adopt the angle θ for the symmetry.
As is well known, it has the value π/4 (i.e., σ1 = σ2) if the principal point is at the origin (0,0) and if there are
no image distortions [7, 8].
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Here, the matrices X, FU , and FV are defined by

X =
N

∑
α=1

ξα ξ>
α

(u,V0[ξα ]u)
−

N

∑
α=1

(u,ξα)2V0[ξα ]
(u,V0[ξα ]u)2 , (21)

FU =



0 F31 −F21
0 F32 −F22
0 F33 −F23

−F31 0 F11
−F32 0 F12
−F33 0 F13

F21 −F11 0
F22 −F12 0
F23 −F13 0


, FV =



0 F13 −F12
−F13 0 F11

F12 −F11 0
0 F23 −F22

−F23 0 F21
F22 −F21 0

0 F33 −F32
−F33 0 F31

F32 −F31 0


. (22)

The derivative of Eq. (13) with respect to θ is

∂J
∂θ

= (uθ ,Xu), (23)

where we define

uθ =



U12V12 cosθ −U11V11 sinθ
U12V22 cosθ −U11V21 sinθ
U12V32 cosθ −U11V31 sinθ
U22V12 cosθ −U21V11 sinθ
U22V22 cosθ −U21V21 sinθ
U22V32 cosθ −U21V31 sinθ
U32V12 cosθ −U31V11 sinθ
U32V22 cosθ −U31V21 sinθ
U32V32 cosθ −U31V31 sinθ


. (24)

Adopting Gauss-Newton approximation, which amounts to ignoring terms involving
(u,ξα), we obtain the second derivatives as follows (we omit the details):

∇2
ω J = F>

U XFU , ∇2
ω ′J = F>

V XFV , ∇ωω ′J = F>
U XFV ,

∂J2

∂θ 2 = (uθ ,Xuθ ),
∂∇ω J

∂θ
= F>

U Xuθ ,
∂∇ω ′J

∂θ
= F>

V Xuθ . (25)

The LM procedure goes as follows:

1. Initialize F in such a way that detF = 0 and ‖F‖ = 1, and express it as F =
Udiag(cosθ ,sinθ ,0)V>.

2. Compute J in Eq. (13), and let c = 0.0001.
3. Compute FU , FV , and uθ in Eqs. (22) and (24).
4. Compute X in Eq. (21), the first derivatives in Eqs. (20) an (23), and the second

derivatives in Eqs. (25).
5. Compute the following matrix H:

H =

 ∇2
ω J ∇ωω ′J ∂∇ω J/∂θ

(∇ωω ′J)> ∇2
ω ′J ∂∇ω ′J/∂θ

(∂∇ω J/∂θ)> (∂∇ω ′J/∂θ)> ∂J2/∂θ 2

 . (26)

6



6. Solve the 7-D simultaneous linear equations

(H+ cD[H])

 ω
ω ′

∆θ

 = −

 ∇ω J
∇ω ′J

∂J/∂θ

 , (27)

for ω , ω ′, and ∆θ , where D[ · ] denotes the diagonal matrix obtained by taking out
only the diagonal elements.

7. Update U, V, and θ by

U′ = R(ω)U, V′ = R(ω ′)V, θ ′ = θ +∆θ , (28)

where R(ω) denotes rotation around N[ω] by angle ‖ω‖.
8. Update F as follows:

F′ = U′diag(cosθ ′,sinθ ′,0)V′>. (29)

9. Let J′ be the value of Eq. (13) for F′.
10. Unless J′ < J or J′ ≈ J, let c ← 10c, and go back to Step 6.
11. If F′ ≈ F, return F′ and stop. Else, let F ← F′, U ← U′, V ← V′, θ ← θ ′, and c ←

c/10, and go back to Step 3.

5 Bundle Adjustment
In the discussion of Sect. 2, there is a subtle point to be clarified. The transition from
Eq. (12) to Eq. (13) is exact; no approximation is involved. Although terms of O(σ4)
are omitted and the true values are replaced by their data in Eq. (6), it is numerically
confirmed that these do not affect the final results in any noticeable way.

However, although the “analysis” may be exact, the “interpretation” is not strict.
Namely, despite the fact that Eq. (13) is the (squared) Mahalanobis distance in the ξ -
space, its minimization can be ML only when the noise in the ξ -space is Gaussian, be-
cause then and only then is the likelihood proportional to e−J/constant. Strictly speaking, if
the noise in the image plane is Gaussian, the transformed noise in the ξ -space is no longer
Gaussian, so minimizing Eq. (13) is not strictly ML in the image plane.

In order to test how much difference is incurred, we implemented the bundle adjust-
ment in the image plane (we omit the details) and did comparison experiments.

6 Experiments
Figure 1 shows simulated images of two planar grid surfaces viewed from different angles.
The image size is 600 × 600 pixels with 1200 pixel focal length. We added random
Gaussian noise of mean 0 and standard deviation σ to the x- and y-coordinates of each
grid point independently and from them computed the fundamental matrix by 1) SVD-
corrected LS, 2) SVD-corrected ML, 3) CFNS, 4) optimally corrected ML, and 5) LM.

“LS” means least squares (also called “eight-point algorithm” [6]) minimizing
∑N

α=1(u,ξα)2, which reduces to simple eigenvalue computation [9]. For brevity, we use
the shorthand “ML” for unconstrained minimization of Eq. (13), for which we used the
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Figure 1: Simulated images of planar grid surfaces and the RMS error vs. noise level. 1) SVD-
corrected LS. 2) SVD-corrected ML. 3) CFNS, 4) Optimally corrected ML 5) LM. The dotted line
indicates the KCR lower bound.

FNS of Chojnacki et al. [3]. “CFNS” [4] computes the rank-constrained fundamental ma-
trix by repeated eigenvalue computation. The LM and CFNS are initialized by LS. All
iterations are stopped when the update of F is less than 10−6 in norm.

On the right Fig. 1 is plotted for σ on the horizontal axis the following root-mean-
square (RMS) error D corresponding to Eq. (7) over 10000 independent trials:

D =

√
1

10000

10000

∑
a=1

‖PU û(a)‖2. (30)

Here, û(a) is the ath value, and PU is the projection matrix in Eq. (10). The dotted line is
the bound implied by the KCR lower bound (the trace of the right-hand side of Eq. (11)).

Preliminary observations. We can see that the most popular SVD-corrected LS [6]
performs very poorly. We can also see that SVD-corrected ML is inferior to optimally
corrected ML [8, 12], whose accuracy is close to the KCR lower bound. The accuracy of
LM is nearly the same as optimally corrected ML when the noise is small but gradually
outperforms it as the noise increases.

Doing many experiments (not all shown here), we have observed that i) optimally
corrected ML is fairly accurate and very robust to noise but gradually deteriorates as
noise increases, and ii) LM achieves very high accuracy when started from a good initial
value but is likely to fall into local minima if poorly initialized.

The robustness of optimally corrected ML is due to the fact that the computation is
done in the redundant (“external”) u-space, where J has a simple form of Eq. (13). In
fact, we have never experienced local minima in our experiments. The deterioration in
the presence of large noise is because linear approximation is involved in Eq. (16).

The fragility of LM is attributed to the complexity of the function J when expressed
in seven parameters, resulting in many local minima in the reduced (“internal”) parameter
space, as pointed out in [13].

Thus, we conclude that the best result is obtained by LM initialized by optimally
corrected ML. The CFNS of Chojnacki et al. [4] performs as poorly as SVD-corrected
ML. They asserted superiority of CFNS to optimally corrected ML by numerical examples
[4], but Fig. 1 contradicts their assertion. The reason for this is fully investigated in [10],
where a new method called EFNS is proposed to complement CFNS. So, we do not go
into the details here.
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Figure 2: (a) The RMS error relative to the KCR lower bound. (b) The average residual minus
(N − 7)σ2. 1) Optimally corrected ML. 2) LM from LS. 3) LM from optimally corrected ML. 4)
Bundle adjustment in the image plane.

residual time
1) 45.550 . 00052
2) 45.556 . 00652
3) 45.556 . 01300
4) 45.378 . 00764
5) 45.378 . 01136
6) 45.378 . 01748
7) 45.378 . 02580

Figure 3: Left: Real images and 100 corresponding points. Right: Residuals and execution times
(sec) for 1) SVD-corrected LS, 2) SVD-corrected ML, 3) CFNS, 4) optimally corrected ML, 5) LM
from LS, 6) LM from optimally corrected ML, 7) bundle adjustment in the image plane.

Detailed observations. Figure 2(a) compares 1) optimally corrected ML, 2) LM initial-
ized by LS, 3) LM initialized by optimally corrected ML, and 4) bundle adjustment in
the image plane (see Sect. 5). Since the error plots almost coincide if displayed as in
Fig. 1, we plot here the ratio D/DKCR of D in Eq. (30) to the corresponding KCR lower
bound. Figure 2(b) shows the corresponding residual J (minimum of Eq. (13)). For vi-
sual ease, we plot its difference from (N−7)σ2, where N is the number of corresponding
pairs (J/σ2 is to a first approximation subject to a χ2 distribution with N −7 degrees of
freedom [8], so the expectation of J is approximately (N −7)σ2).

We can observe that i) the RMS error of optimally corrected ML increases as noise
increases, yet the corresponding residual remains low, meaning that Eq. (13) is very “flat”,
having nearly the same value around its minimum, ii) LM from LS appears to have high
accuracy for noise levels for which the corresponding residual is high, indicating that the
solution falls into local minima nearer to the true value, iii) the accuracy of LM improves
if initialized by optimally corrected ML, and iv) the result agrees with bundle adjustment
in the image plane.

Real image example. Figure 3 shows real images, from which we manually selected 100
pairs of corresponding points and computed the fundamental matrix from them. Since
the true value is unknown, we evaluated the final residual J together with the execu-
tion time (sec) as listed there. We used Core2Duo E6700 2.66GHz for the CPU with
4GB main memory and Linux for the OS. As expected, SVD-corrected ML is very poor.
Again, CFNS performs no better than SVD-corrected ML. Optimally corrected ML and
LM (from LS or from optimally corrected ML) arrive at the same solution, which also
results from bundle adjustment with a much longer computation time.
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7 Conclusions
We presented a new method for computing the fundamental matrix from point correspon-
dences over two images2: we adopted the SVD representation of Bartoli and Sturm [1]
and optimized it by LM. There is no need for tentative 3-D reconstruction. We concluded
that our LM method initialized by optimally corrected ML achieves the accuracy compa-
rable to the KCR lower bound and much time-consuming bundle adjustment.

Acknowledgments: The authors thank Wojciech Chojnacki of the University of Ade-
laide, Australia for providing
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