
Abstract 
 

Automatic player detection, labeling and tracking in broadcast soccer video 
are significant while quite challenging tasks. In this paper, we present a solution 
to perform automatic multiple player detection, unsupervised labeling and 
efficient tracking. Players’ position and scale are determined by a boosting based 
detector. Players’ appearance models are unsupervised learned from hundreds of 
samples automatically collected by detection. Thereafter, these models can be 
utilized for player labeling (Team A, Team B and Referee). Player tracking is 
achieved by Markov Chain Monte Carlo (MCMC) data association. Some data 
driven dynamics are proposed to improve the Markov chain’s efficiency. The 
testing results on FIFA World Cup 2006 video demonstrate that our method can 
reach high detection and labeling precision, and reliably tracking in cases of 
scenes such as multiple player occlusion, moderate camera motion and pose 
variation.  

1 Introduction 
Automatic player localization, labeling and tracking is critical for team tactics, player 
activity analysis and enjoyment in broadcast sports videos. It is quite challenging due to 
many difficulties such as player-to-player occlusion, similar player appearance, varying 
number of players, abrupt camera motion, various noises, video blur, etc.  

Many algorithms have been presented to deal with the multiple target tracking 
problem, such as particle filter [1][2], joint probabilistic data association filter (JPDAF) 
[3], multiple hypothesis tracking (MHT) [4], MCMC data association [5][6] and track 
linking [7][8][9]. Several researchers also investigated the specific problem of labeling 
and tracking of players in sports video [2][10][11]. In [10], a clustering based trajectory 
matching method was proposed to solve the tracking of players in soccer video. In their 
work, labeling of individuals was achieved by supervised classification. [11] built a 
track graph, and took the tracking problem as inference in a Bayesian network. In both 
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of these two works, a multi-camera system was used to get a stationary, high-resolution 
and wide-field view of soccer game. This setting ensured a reliable background 
subtraction can be obtained. In our application, the camera is not fixed, which results in 
moving background. Thus, we need robust and adaptive background modeling and 
effective object association technologies. In another aspect, unsupervised player 
labeling is preferred for its generalization ability. 

In this paper, we propose a solution for player detection, labeling and tracking in 
broadcast soccer video. The system framework is illustrated in Figure 1. The whole 
procedure is a two-pass video scan. In the first scan, we (1) learn video dominant color 
via accumulated color histograms, and (2) unsupervised learn players’ appearance 
models over hundreds of player samples collected by a boosted player detector. In the 
second scan, that is the testing procedure, we first use the dominant color for playfield 
segmentation and view-type classification. Then we apply a boosting player detector to 
localize players. Afterwards, the players are labeled as Team A, Team B or Referee 
with prior learned models. Finally, we perform data-driven MCMC association to 
generate players’ trajectories, in which track length, label consistency and motion 
consistency are used as criterions for associating observations across frames.  

The main contributions of our method are: (1) robust player detection achieved by 
background filtering and a boosted cascade detector; (2) unsupervised player 
appearance modeling, the referee can be identified in addition to two teams players 
without any manual labeling; (3) efficient global data association for player tracking, 
which solves the difficulties like tracker coalescence and correspondence maintaining 
after occlusions. 

 
Figure 1: System framework 

 
The paper is organized as follows: Section 2 describes the dominant color learning 

and view-type classification. Section 3 presents the boosting based player detection 
method. Player labeling and tracking algorithm are described in section 4 and 5. 
Experimental results are shown in section 6, and conclusions are made in section 7. 

2 Dominant Color Learning and View-type    
Classification 

We first learn the dominant color of background (corresponds to grass color of the 
playfield) by accumulating HSV color histograms. Then the playfield is extracted 



through dominant color segmentation, morphological filtering and connect-component 
analysis. According to the size of playfield and non-field regions, we use a decision tree 
to classify each view into one of four pre-defined view types: global view, medium 
view, close-up, and out of view. The detailed algorithm is described in our previous 
work [12]. Only global views are fed into player detection module.  

3 Player Detection 
Player detection is achieved by running a boosted cascade of Haar features [13] on 
global views. We manually labeled about 6000 players as positive samples. These 
samples are carefully selected in order to partially capture the appearance variation of 
players caused by body articulate motion. Negative samples are background patches 
randomly cropped from soccer video images. Some training samples are shown in 
Figure 2. All these samples are properly scaled to a resolution of 32 64×  pixels.  
 

 
Figure 2: Some of positive and negative training samples used in training 

 
A boosted cascade detector is then trained on this sample set. To accelerate the 

training process, we randomly select only a fraction 0.01ε = of Haar features for each 
round training as in [14]. This process brings dramatic speed up with only small impact 
on the final detection performance.  

In detection phase, playfield segmentation is first used to filter out the background 
regions. This process accelerates the detection and reduces false alarms. The detector is 
then scanned across the filtered image regions at multiple scales. Multiple detections 
will usually occur around each player after scanning the image. We merge adjacent 
detected rectangles and get final detections with proper scale and position. 

4 Player Labeling 
The task of player labeling is to distinguish players’ identities (Team A, Team B, 
Referee). Since now, we use word “player” indiscriminately to represent both team 
players and referee when there is no confusion. At present, we do not consider the 
problem of labeling goalkeepers. 

4.1  Player Appearance Modeling 
To learn the player appearance model, we run the player detector on every 50 frames to 
collect training samples from the input video. About 500 frames are processed and 
approximately 1,500 player samples are extracted from a half game video (about 45 
mins, 25 fps).  

We utilize a bag of feature representation of players. This process is illustrated in 



Figure 3. For each player sample, the background is subtracted by using the dominant 
color model firstly, and only the upper body region is used for training. A large pool of 
pixels is then collected from these regions and transformed into CIE-Luv color space. 
We estimate a Gaussian Mixture Model (GMM) with N components in the space by 
Expectation-Maximization (EM) [15] clustering. Centers of these components are 
named prototypes. The adjacent components with small center distance are then merged 
together. The resultant merged components are called meta-prototypes. Each player 
sample is then represented as a histogram by binning all pixels in upper body region 
into the corresponding meta-prototype.  
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Figure 3: Bag of feature representation of players 

 
Then we learn the appearance model for each identity (Team A, Team B, Referee). A 

naive clustering on player samples is not enough here. Actually, we manually labeled 
some samples collected from a real match video, and plotted the first two dimensions of 
PCA in feature space, as shown in Figure 4. It can be seen that referee samples do not 
clearly form a cluster in feature space due to their small quantity. A direct clustering 
may lead them to be absorbed into a nearby cluster. The existing of outliers will also 
incur an imprecise localization of clusters.  

To deal with these problems, we first use EM clustering to estimate K clusters over 
the meta-prototype histogram of all player samples. K should be large enough to make 
sure that the referee samples form at least one cluster. Centers of these K clusters are 
named sub-models, which are denoted as { , 1, 2,..., }iSM sm i K= = . Then we merge 
adjacent clusters into four clusters by hierarchical clustering. Their centers are named 
real-models, and formally denoted as { , 1,2,3,4}iRM rm i= = . A labeling function L  
assigns each real-model and sub-model exactly one label in a label set 

{Team A, Team B, Referee, Outlier}LS = . The two real-models with the largest size 
are labeled as Team A and Team B, as well as their corresponding sub-models. Then we 
compute a minimum average distance (MAD) from other two real-models to the team 
sub-models. Denote samples in a real-model as , 1,2,...,is i rm= . All the sub-models 
labeled as Team A or Team B are denoted as { :   ( )j j jTM tm tm SM and L tm= ∈ ∈  
{Team A,Team B}, 1,2...}j = . The MAD is defined as: 

1
( ) min( ( , ))rm

i ji j
MAD rm Bd s tm rm

=
= ∑                                 (1) 

Where Bd  is the Bhattacharyya distance defined as in [2]: 
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The real-model with a larger MAD is labeled as Referee, and the other one is labeled 
as Outlier. All the sub-models labeled as Outlier are discarded and never used for future 
testing, i.e., We only maintain a set of sub-models take label from label set 

{Team A, Team B, Referee}LS = . 
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Figure 4: Scatter plot of first two dimensions of PCA in feature space 

4.2  Player Labeling 
In player labeling phase, each player sample is represented by its meta-prototype 
histogram, which is denoted as s . We calculate the Bhattacharyya distance between s  
and each sub-model sm as in formula (2). The sample is assigned the sub-model’s label 
with the nearest distance (nearest neighbor).  

5 Tracking 
5.1  Problem Formulation 
We formulate the tracking of multiple players as a data association problem. The whole 
detection and labeling result over a time period [1,  ]T  is taken as the observation set, 
which is denote as 1:TZ . Let tZ be the observations at time t , and i

tZ  be the  thi  
observation at time t . To reduce the computational complexity, we define a 
neighborhood graph ( , )G V E=  on the observation set, with each node in the graph 
represents a single observation, and edges defined between neighboring nodes. The 
neighboring of nodes is defined as: 

{ }1 2 1 2 max max( , ) : 1 2  and 1 2i j i j
t t t tN Z Z Z Z t t v t t T= − ≤ − × − ≤                   (3) 

where maxv  is the maximum speed of targets and maxT  is the maximum time interval of 
consecutive observations in a track. A partition of such neighborhood graph can be 
represented as 0 1 2{ , , ,..., }Kω τ τ τ τ= , where 0τ  denotes false alarms and kτ  denotes the 

 thk  track. kτ  takes the form 1 2{ ( ), ( ),..., ( )}
kk k k kt t tττ τ τ τ= , where ( )k ntτ  is an 

observation at time nt . The global optimal association can be represented by a partition 
*ω  which maximizes a posterior of ω  given observations: 

( )* arg max ( | )P Zω ω=                                                      (4) 
The posterior is formulated in a Gibbs distribution form as follows: 
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where C  is normalizing constant, T  is temperature, U  is a potential based on temporal 
compatibility within a single track, and V  is a potential based on spatial compatibility 
between different tracks.  

The potential U  of a track kτ  is formulated as: 
  ( ) ( ) ( ) ( )k length k label k motion kU U U Uτ τ τ τ= + +                                    (6) 

with lengthU  penalizes short track, labelU  favors consistent labeling, and motionU  penalizes 
inconsistent motion and long range association. Let ( )d kT τ  be the duration of kτ , thL  be 
the expected length of tracks, lengthU  is defined as: 

( )21 2 ( )
( )

,   if ( )

 ,                               if ( )
d k th

length k
d k th

d k th

T L
U

T L

T L

α τ
τ

α

τ

τ

− ⋅
=
⎧ ⎡ ⎤ <⎪ ⎣ ⎦⎨
− ≥⎪⎩

                         (7) 

We define the label of a track to be the most frequently appeared observation label in 
the track. The label potential 

label
U  is defined as: 

| |

1
( ) ( ( ( )) | ( ))k

label k l k i ki
U U L t Lτ

τ β τ τ
=

= ∑                                           (8) 
where L  is the label of an observation or a track. lU  is defined as: 

,  if ( ( )) ( )

,  if ( ( )) ( )
s k i k

l
d k i k

L t L
U

L t L

ϖ τ τ

ϖ τ τ

− =
=

≠
⎧
⎨
⎩

                                                 (9) 

where sϖ  and dϖ  are positive potential. The motion potential motionU  is defined as: 
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The potential term V  penalizes spatial overlapping between tracks with same label: 
| | | |
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where ρ  is the spatial overlap between two observation nodes. 

5.2  MCMC Data Association 
It is usually impossible to compute the global optimal solution for (5) analytically. We 
adopt MCMC strategy to explore the solution space, and estimate the optimal solution 
by a simulated annealing scheme. Here we use Metropolis—Hastings (MH) sampler [16] 
as the MCMC sampler. The design of moves in MH algorithm is crucial to the 
efficiency of Markov chain. Our move set M  consists of seven types of moves (shown 
in Figure 5): { , , , , , }M birth death extension reduction split merge= . They are similar to 
those used in [6]. These moves are grouped into reversible pairs: /birth death  pair, 

/extension reduction  pair and /split merge  pair. Now we describe these move pairs 
and deduce the proposal ratio for them. We denote current state as 0 1 2( , , , ..., )Kω τ τ τ τ=  
and proposed state as 'ω  in each move. Proposal ratio for each move is denoted as 

,  mR m M∈ . 
(1) Birth/Death Move Pairs 
The birth/death move consists of adding/removing a track from current state. For birth 
move, denote proposed state as 0 1 2 1' ( ' , , , ..., , ' )K Kω τ τ τ τ τ

+
= . First, we select u.a.r 



(uniform at random) a node 0cz τ∈  in ω , associate it to a new track 1'Kτ +
. An extension 

direction flag d  is selected u.a.r from direction set D={forward, backward}. Then we 
start an association procedure: For each ( )d

i cz N z∈ , assign an association probability 
( )d ip z . Choose iz  with probability ( )d ip z , associate it to track '

1Kτ +
 , and set c iz z= . 

Continue the association with probability γ  ( 0 1γ< < ). Repeat this procedure n  times 
until an association is rejected or no observation can be added. For death move, denote 
proposed state as 0 1 2 1' ( ' , , , ..., )Kω τ τ τ τ

−
= . We select u.a.r a track kτ  in ω  and remove 

it. The proposal ratios are given by: 
   1
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where endp  is the probability of ending association, end forwardp −  and end backwardp −  are the 
probability of ending association at tail and head. The values of these probabilities are 1 
if no observation can be added or1 γ− otherwise. 

 
Figure 5: MCMC moves used in proposal 

(2) Extension/Reduction Move Pairs 
The extension/reduction move consists of extending/reducing a track in one direction. 
For extension move, denote proposed state as 0 1 2' ( ' , , , ..., ' )Kω τ τ τ τ= . First, a track kτ  
is selected u.a.r in ω  and extension direction flag d  is selected u.a.r from D. Then we 
repeat the same association procedure n  times as in birth move on d . For reduction 
move, denote proposed state as 0 1 2' ( ' , , , ..., ' )Kω τ τ τ τ= . First, a track kτ  is selected 
u.a.r in ω . Then a cutting index is selected u.a.r from {2, 3, …, 1kτ − }. A reduction 
direction flag d  is selected u.a.r from D, and all the observations on this direction are 
removed from the track. The proposal ratios are given by: 

1
1

( ') 1 (| | 2) ( )nn s
extension K end d is

R n p p zω ω τ γ −
=

⎡ ⎤→ = + −⎣ ⎦∏                     (14) 
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(3) Split/Merge Move Pairs 
The split/merge move consists of splitting a single track or merging two neighboring 
tracks. For a split move, denote proposed state as 0 1 2 1' ( , , , ..., ' , ' )K Kω τ τ τ τ τ

+
= . First, we 

select u.a.r a track kτ  in ω . Then select a split point splitt  with probability ( ( ))k splitp tτ  
and split the track into two new tracks. For a merge move, denote proposed state as 

0 1 2 1' ( , , , ..., ' )Kω τ τ τ τ
−

= . The move select two tracks iτ and jτ with probability 
( , )merge i jp τ τ  from all the pair candidates in ω , and merge them into a single track 1'Kτ −

. 
The proposal ratios are given by: 

( ') ( ( ))split merge k splitR p K p tω ω τ→ = ⋅                                     (16) 

 1( ') ( ' ( )) ( 1)merge K split mergeR p t K pω ω τ − ⎡ ⎤→ = − ⋅⎣ ⎦                             (17) 



5.3  Data Driven Proposal 
In order to increase the efficiency of moves, proposals are all driven by the observation 
data. Let 1 2( , )i j

asso t tp z z  be an association likelihood between two neighboring 
observation node 1

i

tz  and 2

j

tz , we define 1 2( , )i j

asso t tp z z  as: 
{ }1 2 1 1 2 2 1 2( , ) exp ( ( ) ( )) ( | )i j i j i j

asso t t t t m t tp z z L z L z U z zη δ η= − ≠ −                   (18) 

where δ  is the Dirac function, and mU  is defined as in (10). Denote neighboring 
relation between tracks as nm ττ ~ , Then ( )d ip z , ( ( ))splitp tτ and ( , )merge i jp τ τ  in 
proposals take the formulation as follows: 
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6 Results 
We test our algorithm on World Cup 2006 MPEG2 videos (image size: 720x576, 25 
fps). First, our detection algorithm (without tracking) is tested on the France vs. Spain 
and Brazil vs. Japan videos. We randomly select hundreds of frames from each video 
(50-100 frames interval between adjacent selected frames) and manually labeled the 
ground truth. The performance of detection is shown in Table 1. 
 

Video Correct False Missing Precision(%) Recall(%) F-score(%) 
FRA vs. SPA 1133 145 96 88.65 92.19 90.39 
BRA vs. JAP 5927 489 746 92.38 88.82 90.57 

Table 1: Detection performance 
 

We also test our labeling performance on the ground truth. Only those correctly 
detected players are used for evaluation. The confusion matrix of labeling is shown in 
Table 2, with GT stands for ground truth, INF stands for inferred. R denotes Referee, 
TA denotes Team A and TB denotes Team B. All the percentages are row-normalized.  

 
      INF 
GT R (%) TA(%) TB(%)

R 82.93 17.07 0.00
TA 0.38 98.30 1.32
TB 0.00 2.31 97.69

    INF
GT R (%) TA(%) TB(%) 

R 97.12 2.88 0.00 
TA 1.23 97.75 1.02 
TB 3.18 1.23 95.59 

(a) FRA vs. SPA                                                   (b) BRA vs. JAP
Table 2: Confusion matrix of labeling with percentages row-normalized 

 
We manually labeled a global view clip consisting of 100 consecutive frames from 

France vs. Spain video and test our tracking algorithm. The input observation set of 
these frames is shown in Figure 6(b). Some tracking results are shown in Figure 6(a). 
Automatic tracked players are enclosed by rectangles. The red rectangles denote “Team 
A”, blue denote “Team B” and yellow denote “Referee”. The ID of player is shown on 



the top of each rectangle. It can be noticed that occlusion occurs between ID12, ID14 
and ID18 from frame 40 to frame 70. Our algorithm correctly tracks and classifies them 
even if ID18 is totally occluded by ID12 in frame 51. Occlusion also occurs between 
ID8 and ID11 in frame 40, and between ID6 and ID7 in frame 70, which are all 
correctly handled by the algorithm.  

Figure 6(c) shows trajectories generated by tracking algorithm, with totally 24 
players entering/leaving the scene. Our tracking algorithm can reach a precision of 
99.32% and recall of 94.43% on the ground truth. Most miss detection is due to failure 
of boosting detection in several consecutive frames caused by video blur. It also can be 
noticed that the performance of labeling is significantly improved after tracking.  

 
Frame 28              Frame 40                          Frame 51 

 
Frame 57          Frame 70                           Frame 76 

(a) Tracking results 
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(b) Observations                                  (c) Associated tracks 

Figure 6: Tracking results and generated trajectories 

7 Conclusion 
In this paper, we proposed an automatic player detection, unsupervised labeling and 
efficient player tracking method applied for broadcast soccer videos. The detection 
module combines background modeling and boosting detection. Labeling is achieved 
through unsupervised player appearance learning. MCMC data association is applied for 
tracking players. The result can be utilized for team tactics and player activity analysis, 
high-light detection, etc. The method can also be applied to other applications such as 
surveillance and vision-based human-computer interaction. While most of players can 



be detected and tracked by our method, some cases such as long occlusions, serious 
video blur, abrupt camera motion and player tangle may still lead to failure. We plan to 
design more efficient MCMC proposals, and improve the labeling and tracking 
performance by playfield registration and trajectories inference in future works.  
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