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Abstract

This paper presents a new model and an extension to an existing algorithm
for camera calibration. The main goal of the proposed approach is to cal-
ibrate miniature, low-cost, wide-angle fisheye lenses. Themodel has been
verified with a calibration implementation and was tested onreal data. Ex-
periments show that the proposed model improves the accuracy compared to
the original algorithm. Results show that the extension notonly performs
well with fisheye lenses but also with omnidirectional catadioptric lenses as
well as other less distorted dioptric lenses.

1 Motivation and Related Work

Wide-angle, hemispherical or omnidirectional camera systems have become more popular
in the last few years. Especially in robotic applications, wide-angle sensors are favourable
for perception and navigation problems. A precise calibration is needed in order to infer
accurate bearing information for the 2D pixel information.

Three different types of calibration methods can be distinguished. The most common
approaches are based on the correspondence of feature points whose world 3D coordinates
are known [14, 10, 4, 6]. These methods find the best external and internal parameters
that correspond to the position of the feature points in the image. A second group of
methods [1, 13] uses geometric invariants instead of world coordinates of image features
(plumb lines, image of a sphere). The third group, the auto-calibration methods, does
not need any kind of known feature points nor geometric invariants. Instead they only
use constraints on the internal and external parameters. Their problem can be stability, as
ambiguous motion sequences can lead to calibration degeneracies [3, 11].

Hemispherical or omnidirectional cameras imply additional challenges to the cali-
bration procedure that go beyond affine or perspective projection. The single viewpoint
constraint does not necessarily hold anymore and lens distortion plays a crucial role. To
overcome the multiple viewpoint problem, non-central camera models were introduced.
They project scenes onto images along a general set of rays that do not meet in a sin-
gle point [7], [12]. An intermediate class of cameras are theaxial cameras in which the
projection rays intersect on a line [9].
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The problem of image distortion caused by lens abberation ormisalignment of the
lenses has been studied extensively. Not only is the radial distortion of importance but
also the decentering (aka tangential) distortion. The plumb lines were introduced in [2]
which investigates the relation between straight lines in 3D and their distorted curved
projection on the image sensor caused by lens distortion. Most of these models assume
the centre of distortion to be at the principal point.

The proposed calibration tool presents an extension to the algorithm presented in [10]
and is also motivated by the work of Bouguet1. It relies on the use of a planar calibration
pattern. The only user input required is the selection of feature points with known 3D
coordinates. More recently, an approach based on exact theoretical projection functions
has been published in [6]. In this approach, deviations fromthe exact projection functions
are modelled with added error parameters.

This paper is organised as follows. Section 2 introduces theproposed camera model.
The process of estimating the calibration parameters is briefly explained in 3 and can be
found in more detail in [10]. Section 4 shows experimental results with real data and
compares the proposed calibration procedure with the original approach as well as with
the algorithm presented in [6]. Finally, conclusions are drawn in Section 5.

2 Camera Model

The proposed model is based on the following assumptions: (i) the lens system has a
single effective viewpoint, (ii) there is a misalignment ofthe image sensor with respect
to the optical axis, (iii) non-radial distortion is ignoredand the lens system is rotationally
symmetrical with respect to its axis.

The first assumption of a single effective viewpoint is used for simplicity. Especially
for miniature fisheye lenses with very short focal length this is a reasonable approxi-
mation. The second assumption is particularly motivated bylow cost imaging systems.
Misalignment can be caused by the inaccurate mounting of thelens as well as by misplace-
ment of the image sensor relative to the optical axis. Contrary to the model presented in
[10], the misalignment is modelled based on a perspective transformation instead of an
affinity. Four degrees of freedom (DOF) are sufficient, as thoroughly explained in Section
2.3. The last assumption can be justified by the accurate manufacturing of lenses and the
observation that non-radial distortion is mainly caused bythe misalignment of different
lens components.

The proposed camera model consists of the centre of distortion, the lens distortion
function and the internal position of the sensor with respect to the lens. It is a good
compromise between fully general camera models and conventional models in terms of
complexity and stability of the calibration process.

2.1 Geometry

The proposed model can be described in two stages considering two different coordinate
systems. The first one being the lens coordinate system(XL,YL,ZL) which relates the ori-
entation and position of the lens with respect to the world coordinates of the scene points

1Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab, 2007
http://www.vision.caltech.edu/bouguetj/calib doc/index.html
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Figure 1: (a) Imaging model consisting of a radially symmetric distortion lens, an imag-
inary, perfectly aligned (principal point on optical axis and image plane perpendicular to
the optical axis) lens image planeΠL and the misaligned physical image planeΠC. (b)
Top view for an example misalignment with rotation aboutYL and change of focal length.

X. The second coordinate system(XC,YC,ZC) represents the orientation and position of
the camera image sensor with respect to the lens coordinate system.

As illustrated in Figure 1, the incident 3D rays from scene points enter the lens system
and, after a radial distortion, they are projected onto the imaginary lens image planeΠL.
ΠL is the perpendicular plane to the optical axisZL, and the principal pointoL is the
intersection point of the optical axisZL and the image planeΠL. The distorted rays
originating from the centre of projectionOC do not physically intersect with the lens
image planeΠL but with the camera image planeΠC instead. The physically captured
imagexC can be thought of a 3D perspective projection of the imaginary lens imagexL
with centre of projectionOC equal toOL . Therefore, the 3D transformationTLC from ΠL

to ΠC can be described with a rotation and scale factor. Thus, onlyfour parameters are
sufficient to model the misalignment. In summary, the systemcan be described as: (1)
Perfectly aligned projection with radially symmetric distortion, (2) Perspective projection
of an imaginary planar sceneΠL onto the camera image planeΠC with fixed centre of
projection.

For fisheye lenses a perspective projection is more appropriate, contrary to other ap-
proaches, including the original algorithm presented in [10], where an affine projection is
used to model misalignment. As explained in [5], the error between the true perspective
image point and its affine approximation is given by

xaff −xproj =
∆
d0

(xproj−x0), (1)

with ∆ denoting the depth relief,d0 the average depth andxproj−x0 the distance of the
point from the principal ray. For a misalignment between lens and sensor, the error is
therefore inversely proportional to the focal length. Figure 2 shows the error of the affine
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Figure 2: Error of affine projection versus distance from principal point. The errors are
plotted for different misalignments due to a rotationα about the lens-axisYL.

projection for a variation of misalignments due to a rotation α about the lens-axisYL.
The parameters were taken from a typical miniature, wide-angle imaging system as the
one presented in Section 4. It can be seen that even for very small misalignments, the
projection error is not negligible anymore.

2.2 Perfectly aligned radially symmetric distortion

For the first step of the calibration it is assumed that the distortion caused by the wide-
angle lens is radially symmetric and that the lens image is perfectly aligned with the
optical axis of the lens. Rather than representing distortion as an image displacement it is
modelled as a varying focal length, depending on the distance to the distortion center.

Let the azimuth angle of an incident ray from an object in the scene beθ and the
polar angleφ . Let X denote a 3D ray of a scene point in world coordinates andxL the
corresponding distorted ray. Without further assumptions, the back projection ofxL to X
holds the relationshipxL = λX:

xL =





xL

yL

g(ρ)



 ≃





X
Y
Z



 = X, (2)

whereg(ρ) denotes the radial distortion function andρ =
√

x2
L + y2

L is the Euclidean
distance from the centre of distortionoL . The two raysxL andX are generally not equal
but have the same direction. Therefore

tan(φ) =

√
X2 +Y 2

Z
=

√

x2
L + y2

L

g(ρ)
=

ρ
g(ρ)

. (3)

As in [10], the distortion functiong(ρ) can be defined as

g(ρ) = s0 + s2ρ2 + . . .+ sNρN , (4)

which satisfies∂g/∂ρ |ρ=0 = 0. By using (3) and (4)

s0− tan(π/2−φ)ρ + s2ρ2 + . . .+ sNρN = 0, (5)



and thereforeρ is found as the root of the above polynomial.
Without loss of generality, the focal lengthfL from the lens image to the centre of

projectionOL can be fixed to any value without affecting the calibration. For the case of
no distortion, the model has to be coherent with the conventional perspective projection
with a pinhole camera. Hence, the relationg(ρ) = fL can be found and by using (4), the
focal length results infL = s0. With this particular focal length, the relation between the
incident angleφ of the 3D ray and the angle of the distorted rayφ ′ can be explained by
using (3):

tan(φ ′) =
ρ
s0

, (6)

whereρ can be found as the root of (5) and therefore only depends on the incident angle
φ of the 3D ray.

The distorted image points on the lens image plane can be found usingθ ′ = θ −π,
and equates to[xL,yL]T = [ρ cos(θ ′),ρ sin(θ ′)]T .

2.3 Perspective projection onto the camera image sensor

The same physical distorted raysxL as in Section 2.2 are now being projected onto the
camera image sensor and converted in pixel coordinates. This can be thought of a per-
spective projection from the distorted rays onto the cameraimage plane.

Without loss of generality the focal lengthfL of the imaginary lens image plane can
be set to 1 and thus the distorted raysxL can be written in homogenous coordinates as
xL h = [xL,yL,1,1]T . After a perspective projection with the centre of projection being
OC = OL, the image pointsxC are found in homogenous coordinates as

xCh =
[

xC yC wC
]T

= KC
[

RLC | 0
]

xLh = KCRLCxL , (7)

whereRLC is the 3× 3 rotation matrix from the lens coordinate system to the camera
coordinate system. It includes rotationsαC, βC and γC about the axisxC, yC and zC

respectively. KC is the common camera calibration matrix including the focallengths
fCx and fCy in pixel coordinates,oCx andoCy, which are the coordinates of the principal
point, andsC the skew parameter. In Euclidean coordinates (withoutsC, oCx andoCy),
the projection from the lens coordinate system to the cameracoordinate system has four
degrees of freedom. It is fully described by a rotation and a scale factor.

3 Calibration Procedure

The calibration procedure presents an extension to the toolbox presented in [10]. It relies
on a planar calibration grid which is captured from different poses. The algorithm is based
on the popular method introduced by [14].

In order to fully calibrate the camera with the previously introduced model, estima-
tions of all the 8+ N + 6M parameters have to be performed.M denotes the number of
used calibration images andN is the degree of the highest order term in (4). As found
in [10] for the original algorithm and verified for the proposed calibration procedure,
best approximations are expected withN = 4. For one imagei, the parameters are the
conventional intrinsic oness, ocx, ocy, the lens distortion parameterss0,s2, . . . ,sN , the



misalignment parametersαC, βC, γC, fCx, fCy and the conventional extrinsic parameters
α i, β i, γ i, Ci

x, Ci
y, Ci

z. Note that a conventional perspective model has 5+6M parameters.
The calibration procedure can be outlined as follows:

Calibration Procedure:
GivenM calibration images, determine the 8+N +6M intrinsic parameters.

1. Estimation of the centre of distortiond for the aligned lens model as the least-squares
solution of all imagesIi for i = 1. . .M.

2. Linear estimation of the extrinsic parameters for all the images fromi = 1. . .M by
assuming the aligned model and using the previously estimated centre of distortiond.

3. Linear estimation of the intrinsic parameters with the aligned lens model by using the
previously estimated parameters for all images.

4. Optimised refinement and estimation of the remaining parameters with the full mis-
aligned model. Use the linear estimations from 2 and 3 as initialisation values forthe
optimisation process.

Step 2 and 3 of the calibration procedure are similar to the one presented in [10] and
thoroughly explained therein.

3.1 Find the centre of distortion

Step 1, the choice of the distortion centre is crucial for a stable and accurate estimation.
As introduced in [4], the problem of radial distortion is similar to the motion of points
seen by a camera moving forward towards a scene. The same ideacan be used, even if an
additional misalignment between the lens and the camera sensor is considered. The ideal,
undistorted imagexu is introduced as the projection ofX with a perfect pinhole camera
xu = PX. It is related to its radially distorted versionxL on the imaginary image plane
by xL = dL + λ (φ) · (xu −dL ), with dL being the distortion centre, andλ (φ) = ρ/r the
radially symmetric distortion factor from the distorted tothe undistorted Euclidean radius.
By writing the relation between the distorted imagexL and its misaligned versionxC in
(7) as a homographyxC = HLC xL , the following relation can be found:

H−1
LC xC = dL +λ (φ) · (xu −dL ). (8)

Multiplying this expression on the left by the skew-symmetric matrix [dL ]x, and substi-
tutingxu by PX equates in

[dL ]xH−1
LC xC = λ (φ)[dL ]xPX. (9)

Another multiplication on the left by(H−1
LC xC)T results in

0 = λ (φ)xC
T (

H−T
LC [dL ]xP

)

X. (10)

This can be compared to the usual fundamental matrix relation xL
T FxC = 0 with F being

the substitution ofH−T
LC [dL ]xP. It can be computed from several point correspondences

between the calibration patternX and the distorted pointsxC in the camera image plane
[5]. A final multiplication on the left byHT

LC dL
T yields

(HLC dL )T F = 0, (11)

and the centre of distortion in the misaligned camera image plane can be found as the left
null space generator ofF . This can be done with the singular value decomposition ofF .
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Figure 3: (a) Sample calibration image with extracted and reprojected grid points over-
laid. (b) Image after rectification. (c) Radial distribution of the reprojection errors for all
images contained in the set.

3.2 Full misaligned model and non-linear refinement

The final step of the calibration process refines the previously estimated intrinsic and
extrinsic parameters that were found by assuming a perfectly aligned system. Simultane-
ously the remaining intrinsic parametersfCx, fCx, αC, βC andγC for the full misaligned
camera model are now estimated. This can be done either for the intrinsic and extrin-
sic parameters independently, or simultaneously with bundle adjustment. The latter is
expected to provide more accurate results at higher computational cost. For the experi-
mental results in Section 4 theLevenberg-Marquardt [8] method was used to refine all
parameters simultaneously.

4 Experimental Results

The proposed camera model and the calibration algorithm were tested on real images
from a planar calibration checkerboard. A simple corner detector was used to extract the
‘ground truth’ grid corners. These values were then compared with the calculated repro-
jections from the known world coordinates to the camera pixel coordinates. As a perfor-
mance measurement the mean square reprojection error in pixel coordinates was used. In
the following figures the ‘ground truth’ and reprojected grid corners are represented as
(‘+’) and (‘o’) respectively.

The first and second data sets,Fisheye1 andFisheye2, were taken with auEye UI-
2250 from Imaging Development Systems together with a miniature fisheye lensDSL215
from Sunex. The field of view for the miniature fisheye lens is specified atabout 185◦ and
the focal length is 1.55mm. The entire data set contains 18 images. Figure 3(a) shows a
sample image taken from the imaging system with the extracted corner points (+) and its
reprojection (o). Figure 3(b) illustrates the calculated rectified image as if viewed with
a perfect pinhole camera system. The radial distribution ofthe reprojection error for all
calibration images in this set is depicted in Figure 3(c). The solid line represents the
median value. The undistorted incident angleφ versus the distorted angleφ ′ is plotted in
Figure 5 (a). It can be seen that the field of view is about 186.8◦ compared to the specified
185◦.

The data setSubset1 is a subset ofFisheye1 with only four images. This data set was
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Figure 4: (a) Sample calibration image with extracted and reprojected grid points over-
laid. (b) Image after rectification. (c) Radial distribution of the reprojection errors for all
images contained in the set.

Scaramuzza [10] Mei [6] Proposed
Fisheye1 0.434±0.290 n/a 0.352±0.310
Subset1 0.354±0.288 0.334±0.293 0.272±0.310
Fisheye2 0.412±0.298 n/a 0.301±0.324
Parabolic 0.343±0.201 0.291±0.227 0.319±0.300
Digiclops 0.153±0.101 n/a 0.148±0.102

Table 1: Comparison of the mean squared reprojection error and its standard deviation in
pixels for all data sets.

produced in order to allow a comparison with the algorithm presented in [6] as further
explained below.

The second data set,Fisheye2, was taken with a second imaging system similar to
the first one. In this setup, partial occlusion was an additional challenge as not all grid
points are visible in the centre area of the image. Figure 4 shows one example image
from the data set containing 18 images. The sample image withthe reprojected grid
points overlaid is shown in Figure 4(a). Figure 4(b) represents the rectified image and (c)
depicts the radial distribution of the reprojection error for the whole set.

The third data set2, Parabolic, was captured with a parabolic mirror with a diameter
of 80mm and a focal distance of 16.7mm. The set contains 10 images.

The fourth data set3, Digiclops, contains images taken with aDigiclops camera from
Point Grey Research. This imaging system presents only very small distortion effects.
The radial distribution of the mean squared reprojection error is illustrated in Figure 5 (b)
for the third and in (c) for the fourth data set.

The proposed calibration procedure was compared to the algorithm in [10] and in [6].
Both implementations are online available as a Matlab toolbox. The toolbox from [6]
does not provide an estimation for the centre of distortion and the initialisation was done
manually with the results from the proposed calibration procedure. Further, the toolbox
does not allow to extract grid points manually. Only the gridpoints of four of the images

2Dataset kindly provided by C. Mei,http://www.robots.ox.ac.uk/∼cmei/Toolbox.html
3Dataset kindly provided from ACFR, The University of Sydneyand LCR, Universidad Nacional del Sur.

PAATV/UTE Projects, 2006.
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Figure 5: (a) Incident angleφ versus distorted angleφ ′ for the first data set. Radial
distribution of the reprojection error for the Parabolic mirror data set in (b) and for the
Digiclops data set in (c).

in Fisheye1 could be extracted successfully. To allow a comparison nevertheless,Subset1
was created. Because of missing extrinsic parameters for the remaining images, their
grid points could not be extracted. The data setFisheye2 could not be applied because
of partial occluded grid points. The iterative procedure tofind the centre of distortion in
the toolbox from [10] failed for the data setsParabolic as well asFisheye2. They were
initialised with the results from the other algorithms. ForFisheye2, the results from the
proposed calibration procedure were used and forParabolic the results from the toolbox
from [6] were used.

Table 1 summarises the mean-squared reprojection errors and its standard deviation
for all data sets. It can be seen that the proposed calibration procedure performs well
with the miniature, low-cost, wide-angle imaging systems as in data setFisheye1 and
Fisheye2. Please note that the results fromSubset1 might not be representative as the
number of calibration images is not sufficient. The data setsParabolic andDigiclops were
used to show that the new model also provides good results forless complex systems (less
misalignment, less distortion, and increased focal length) where the additional parameters
might be redundant.

5 Summary and Conclusion

An extension to an existing calibration algorithm has been proposed in order to deal with
miniature, low-cost, and wide-angle imaging systems. Experimental results with different
data sets and a comparison with other algorithms showed thatthe proposed procedure
improves the accuracy for the targeted imaging systems. Theproposed camera model
also performs well for less complex systems as omnidirectional mirror systems or less
distorted cameras.
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