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Abstract

This paper presents a new model and an extension to an gxadtjorithm
for camera calibration. The main goal of the proposed amprasto cal-
ibrate miniature, low-cost, wide-angle fisheye lenses. mioglel has been
verified with a calibration implementation and was testedeal data. Ex-
periments show that the proposed model improves the agcaoaepared to
the original algorithm. Results show that the extensionardy performs
well with fisheye lenses but also with omnidirectional capttic lenses as
well as other less distorted dioptric lenses.

1 Motivation and Related Work

Wide-angle, hemispherical or omnidirectional cameragysthave become more popular
in the last few years. Especially in robotic applicationglevangle sensors are favourable
for perception and navigation problems. A precise calibreis needed in order to infer
accurate bearing information for the 2D pixel information.

Three different types of calibration methods can be disfisiyged. The most common
approaches are based on the correspondence of feature\wbivge world 3D coordinates
are known [14, 10, 4, 6]. These methods find the best extenthlrdernal parameters
that correspond to the position of the feature points in thage. A second group of
methods [1, 13] uses geometric invariants instead of waptitdinates of image features
(plumb lines, image of a sphere). The third group, the aatixation methods, does
not need any kind of known feature points nor geometric iavas. Instead they only
use constraints on the internal and external parameteest pitoblem can be stability, as
ambiguous motion sequences can lead to calibration deg@as[3, 11].

Hemispherical or omnidirectional cameras imply additioctaallenges to the cali-
bration procedure that go beyond affine or perspective giojg The single viewpoint
constraint does not necessarily hold anymore and lensrtigstglays a crucial role. To
overcome the multiple viewpoint problem, non-central ceanmaodels were introduced.
They project scenes onto images along a general set of raysithnot meet in a sin-
gle point [7], [12]. An intermediate class of cameras areakial cameras in which the
projection rays intersect on a line [9].
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The problem of image distortion caused by lens abberatiomisalignment of the
lenses has been studied extensively. Not only is the raditdrtion of importance but
also the decentering (aka tangential) distortion. The pllimes were introduced in [2]
which investigates the relation between straight linesina®d their distorted curved
projection on the image sensor caused by lens distortiorst iothese models assume
the centre of distortion to be at the principal point.

The proposed calibration tool presents an extension toltjeeitnm presented in [10]
and is also motivated by the work of Bougtilt relies on the use of a planar calibration
pattern. The only user input required is the selection ofufeapoints with known 3D
coordinates. More recently, an approach based on exacatetit projection functions
has been published in [6]. In this approach, deviations fiteerexact projection functions
are modelled with added error parameters.

This paper is organised as follows. Section 2 introduceptbposed camera model.
The process of estimating the calibration parameters &lprexplained in 3 and can be
found in more detail in [10]. Section 4 shows experimentauhs with real data and
compares the proposed calibration procedure with ther@igipproach as well as with
the algorithm presented in [6]. Finally, conclusions arawdr in Section 5.

2 Camera Model

The proposed model is based on the following assumptionghdilens system has a
single effective viewpoint, (ii) there is a misalignmenttbé image sensor with respect
to the optical axis, (iii) non-radial distortion is ignoradd the lens system is rotationally
symmetrical with respect to its axis.

The first assumption of a single effective viewpoint is usadsimplicity. Especially
for miniature fisheye lenses with very short focal lengtts tisi a reasonable approxi-
mation. The second assumption is particularly motivatedblaycost imaging systems.
Misalignment can be caused by the inaccurate mounting déttseas well as by misplace-
ment of the image sensor relative to the optical axis. Coptathe model presented in
[10], the misalignment is modelled based on a perspectarsformation instead of an
affinity. Four degrees of freedom (DOF) are sufficient, asdhghly explained in Section
2.3. The last assumption can be justified by the accurate faetuing of lenses and the
observation that non-radial distortion is mainly causedhg/misalignment of different
lens components.

The proposed camera model consists of the centre of dmtortiie lens distortion
function and the internal position of the sensor with respedhe lens. It is a good
compromise between fully general camera models and cdowahimodels in terms of
complexity and stability of the calibration process.

2.1 Geometry

The proposed model can be described in two stages congjderindifferent coordinate
systems. The first one being the lens coordinate sy§¥nY, ,Z, ) which relates the ori-
entation and position of the lens with respect to the worlgkdimates of the scene points

1Jean-Yves Bouguet. Camera Calibration Toolbox for Matl&;72
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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Figure 1: (a) Imaging model consisting of a radially symneedistortion lens, an imag-
inary, perfectly aligned (principal point on optical axisceimage plane perpendicular to
the optical axis) lens image plafig and the misaligned physical image plane. (b)
Top view for an example misalignment with rotation abguaind change of focal length.

X. The second coordinate systéd, Yc,Zc) represents the orientation and position of
the camera image sensor with respect to the lens coordiystEns.

As illustrated in Figure 1, the incident 3D rays from scenmfsoenter the lens system
and, after a radial distortion, they are projected onto tiaginary lens image plari@, .
Mg is the perpendicular plane to the optical aXis and the principal poinb_ is the
intersection point of the optical axi&. and the image planEl_.. The distorted rays
originating from the centre of projectioBc do not physically intersect with the lens
image plandl_ but with the camera image plam&: instead. The physically captured
imagexc can be thought of a 3D perspective projection of the imagitens imagex,
with centre of projectio©O¢ equal toO, . Therefore, the 3D transformatidic from M
to MN¢ can be described with a rotation and scale factor. Thus, fonlyparameters are
sufficient to model the misalignment. In summary, the systambe described as: (1)
Perfectly aligned projection with radially symmetric digton, (2) Perspective projection
of an imaginary planar scerié¢, onto the camera image plank: with fixed centre of
projection.

For fisheye lenses a perspective projection is more apptepigontrary to other ap-
proaches, including the original algorithm presented 0],[tvhere an affine projection is
used to model misalignment. As explained in [5], the erraneen the true perspective
image point and its affine approximation is given by

A
Xaff — Xproj = CTO (Xproj - X0)7 (1)

with A denoting the depth relietly the average depth ang; — Xo the distance of the
point from the principal ray. For a misalignment betweerslend sensor, the error is
therefore inversely proportional to the focal length. Feg shows the error of the affine
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Figure 2: Error of affine projection versus distance frormgipal point. The errors are
plotted for different misalignments due to a rotatmrmabout the lens-axiy .

projection for a variation of misalignments due to a rotati about the lens-axiy| .
The parameters were taken from a typical miniature, widgieaimaging system as the
one presented in Section 4. It can be seen that even for veal} srisalignments, the
projection error is not negligible anymore.

2.2 Perfectly aligned radially symmetric distortion

For the first step of the calibration it is assumed that theodisn caused by the wide-
angle lens is radially symmetric and that the lens image ifeply aligned with the
optical axis of the lens. Rather than representing distoris an image displacement it is
modelled as a varying focal length, depending on the distémthe distortion center.

Let the azimuth angle of an incident ray from an object in tbeng bef and the
polar anglep. Let X denote a 3D ray of a scene point in world coordinatesxanthe
corresponding distorted ray. Without further assumptitims back projection af, to X
holds the relationshig. = AX:

XL X
XL = YL ~ Y| = xa (2)
9(p) z

whereg(p) denotes the radial distortion function apd= |/x? +y? is the Euclidean
distance from the centre of distortiop. The two raysx, andX are generally not equal
but have the same direction. Therefore
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As in [10], the distortion functiomy(p) can be defined as
9(p) =so+520°+... +snp", (4)

which satisfie®)g/dp|p,—o0 = 0. By using (3) and (4)

So—tan(m/2— @)p+ 0% +...+ sy =0, (5)



and therefore is found as the root of the above polynomial.

Without loss of generality, the focal lengthh from the lens image to the centre of
projectionO_ can be fixed to any value without affecting the calibratioar the case of
no distortion, the model has to be coherent with the congaatiperspective projection
with a pinhole camera. Hence, the relatmgp) = f_ can be found and by using (4), the
focal length results irf, = sp. With this particular focal length, the relation betweea th
incident anglep of the 3D ray and the angle of the distorted rglycan be explained by
using (3): 5

/
ang) = (6)
wherep can be found as the root of (5) and therefore only dependseoimtident angle
@ of the 3D ray.

The distorted image points on the lens image plane can belfosimg6’ = 6 — ,

and equates tix_,y | = [pcog8’),psin(6")]".

2.3 Perspective projection onto the camera image sensor

The same physical distorted rays as in Section 2.2 are now being projected onto the
camera image sensor and converted in pixel coordinates CHm be thought of a per-
spective projection from the distorted rays onto the carimeage plane.

Without loss of generality the focal length of the imaginary lens image plane can
be set to 1 and thus the distorted rayscan be written in homogenous coordinates as
XLh = [X,¥,1,1]T. After a perspective projection with the centre of projectbeing
Oc = O, the image pointg¢ are found in homogenous coordinates as

Xch= X Yo WC]T =Kc[Rec | 0]xth = KeRiexe, (7)

whereR_¢ is the 3x 3 rotation matrix from the lens coordinate system to the came
coordinate system. It includes rotatioog, Bc and y= about the axisc, yc and zc
respectively. K¢ is the common camera calibration matrix including the fdealths
fex and fey in pixel coordinatespcyx andocy, which are the coordinates of the principal
point, andsc the skew parameter. In Euclidean coordinates (witlsuiock andacy),
the projection from the lens coordinate system to the cam®pedinate system has four
degrees of freedom. It is fully described by a rotation andadesfactor.

3 Calibration Procedure

The calibration procedure presents an extension to thbdggresented in [10]. It relies
on a planar calibration grid which is captured from diffaneoses. The algorithm is based
on the popular method introduced by [14].

In order to fully calibrate the camera with the previouslyraduced model, estima-
tions of all the 8+ N 4+ 6M parameters have to be performéd.denotes the number of
used calibration images amdlis the degree of the highest order term in (4). As found
in [10] for the original algorithm and verified for the propakcalibration procedure,
best approximations are expected wih= 4. For one imagé, the parameters are the
conventional intrinsic ones, oc, Ogy, the lens distortion parametess, s,..., sy, the



misalignment parameterg, Bc, ¥, fox, fcy and the conventional extrinsic parameters
a', p', v, G, G, C,. Note that a conventional perspective model hast parameters.
The calibration procedure can be outlined as follows:

Calibration Procedure:
GivenM calibration images, determine the-8\ + 6M intrinsic parameters.

1. Estimation of the centre of distorti@hfor the aligned lens model as the least-squgres
solution of all images; fori=1...M.

2. Linear estimation of the extrinsic parameters for all the images fresl...M by
assuming the aligned model and using the previously estimated centreoofidisd.

3. Linear estimation of the intrinsic parameters with the aligned lens modedihg the
previously estimated parameters for all images.

4. Optimised refinement and estimation of the remaining parameters withulthais-
aligned model. Use the linear estimations from 2 and 3 as initialisation valudisefor
optimisation process.

Step 2 and 3 of the calibration procedure are similar to the pmesented in [10] and
thoroughly explained therein.

3.1 Find the centre of distortion

Step 1, the choice of the distortion centre is crucial foradk&t and accurate estimation.
As introduced in [4], the problem of radial distortion is dan to the motion of points
seen by a camera moving forward towards a scene. The sameaidé® used, even if an
additional misalignment between the lens and the camesosenconsidered. The ideal,
undistorted image,, is introduced as the projection &f with a perfect pinhole camera
Xy = PX. It is related to its radially distorted versioq on the imaginary image plane
by xL =dL +A (@) (xy —dL), with d_ being the distortion centre, ardd ¢) = p/r the
radially symmetric distortion factor from the distortedie undistorted Euclidean radius.
By writing the relation between the distorted imageand its misaligned versioxg in
(7) as a homographyc = H c X, the following relation can be found:

Hidxe =di+A (@) (xy—dp). ®)

Multiplying this expression on the left by the skew-symrieinatrix [d ]x, and substi-
tuting X, by PX equates in

[dulxH X = A (@)[dL]xPX. ©)
Another multiplication on the left byH [CGC)T results in
0=A(@)xc" (H 2 [dL]xP) X. (10)

This can be compared to the usual fundamental matrix relati®Fxc = 0 with F being

the substitution oH [CT [dL]xP. It can be computed from several point correspondences
between the calibration pattekhand the distorted pointe: in the camera image plane
[5]. A final multiplication on the left b)H[CdLT yields

(Hicdu)TF=0, (11)

and the centre of distortion in the misaligned camera imégeepcan be found as the left
null space generator &f. This can be done with the singular value decompositiof.of
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Figure 3: (a) Sample calibration image with extracted anquajected grid points over-
laid. (b) Image after rectification. (c) Radial distributiof the reprojection errors for all
images contained in the set.

3.2 Full misaligned model and non-linear refinement

The final step of the calibration process refines the prelyoestimated intrinsic and
extrinsic parameters that were found by assuming a peyfaligined system. Simultane-
ously the remaining intrinsic parameteis;, fcx, dc, Bc and e for the full misaligned
camera model are now estimated. This can be done eitherdanttinsic and extrin-
sic parameters independently, or simultaneously with luadjustment. The latter is
expected to provide more accurate results at higher cortiquoi cost. For the experi-
mental results in Section 4 thevenberg-Marquardt [8] method was used to refine all
parameters simultaneously.

4 Experimental Results

The proposed camera model and the calibration algorithne wested on real images
from a planar calibration checkerboard. A simple corneecter was used to extract the
‘ground truth’ grid corners. These values were then compuaiith the calculated repro-
jections from the known world coordinates to the cameralgigerdinates. As a perfor-
mance measurement the mean square reprojection erroreihcpiardinates was used. In
the following figures the ‘ground truth’ and reprojecteddgciorners are represented as
(‘+) and (‘0’) respectively.

The first and second data sefssheyel and Fisheye2, were taken with alEye Ul-
2250 from Imaging Devel opment Systems together with a miniature fisheye leB$215
from Sunex. The field of view for the miniature fisheye lens is specifiedlzut 1858 and
the focal length is 1.55mm. The entire data set contains B8&®. Figure 3(a) shows a
sample image taken from the imaging system with the extiamtener points (+) and its
reprojection (0). Figure 3(b) illustrates the calculatedtified image as if viewed with
a perfect pinhole camera system. The radial distributiothefreprojection error for all
calibration images in this set is depicted in Figure 3(c).e Bolid line represents the
median value. The undistorted incident angleersus the distorted angig is plotted in
Figure 5 (a). It can be seen that the field of view is about 1'8&#pared to the specified
185.

The data seBubsetl is a subset oFisheyel with only four images. This data set was
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Figure 4: (a) Sample calibration image with extracted anquajected grid points over-
laid. (b) Image after rectification. (c) Radial distributiof the reprojection errors for all
images contained in the set.

Scaramuzza [10] Mei [6] Proposed
Fisheyel| 0.434+0.290 n/a 0.352+0.310
Subsetl | 0.3544+0.288 | 0.334+0.293 | 0.272+0.310
Fisheye2| 0.412+0.298 n/a 0.301+0.324
Parabolic| 0.343+0.201 | 0.291+0.227 | 0.3194+0.300
Digiclops | 0.153+0.101 n/a 0.148+0.102

Table 1: Comparison of the mean squared reprojection encbita standard deviation in
pixels for all data sets.

produced in order to allow a comparison with the algorithrasented in [6] as further
explained below.

The second data seffjsheye?, was taken with a second imaging system similar to
the first one. In this setup, partial occlusion was an addti@hallenge as not all grid
points are visible in the centre area of the image. Figureotvstone example image
from the data set containing 18 images. The sample image théthreprojected grid
points overlaid is shown in Figure 4(a). Figure 4(b) repn¢s¢he rectified image and (c)
depicts the radial distribution of the reprojection errar the whole set.

The third data sét Parabolic, was captured with a parabolic mirror with a diameter
of 80mm and a focal distance of 16.7mm. The set contains 1§éma

The fourth data sét Digiclops, contains images taken withigiclops camera from
Point Grey Research. This imaging system presents only very small distortideat$.
The radial distribution of the mean squared reprojectioaras illustrated in Figure 5 (b)
for the third and in (c) for the fourth data set.

The proposed calibration procedure was compared to theithligoin [10] and in [6].
Both implementations are online available as a Matlab malbThe toolbox from [6]
does not provide an estimation for the centre of distortioth the initialisation was done
manually with the results from the proposed calibrationcpdure. Further, the toolbox
does not allow to extract grid points manually. Only the gridnts of four of the images

2Dataset kindly provided by C. Mehttp: //www.robots.ox.ac.uk/~cmei/Toolbox.html
3Dataset kindly provided from ACFR, The University of Sydrayd LCR, Universidad Nacional del Sur.
PAATV/UTE Projects, 2006.
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Figure 5: (a) Incident angle versus distorted angle’ for the first data set. Radial
distribution of the reprojection error for the Parabolicmor data set in (b) and for the
Digiclops data set in (c).

in Fisheyel could be extracted successfully. To allow a comparisonniestess Subsetl
was created. Because of missing extrinsic parameters éoretmaining images, their
grid points could not be extracted. The dataResheye2 could not be applied because
of partial occluded grid points. The iterative proceduréind the centre of distortion in
the toolbox from [10] failed for the data se®arabolic as well asFisheye2. They were
initialised with the results from the other algorithms. Fosheye2, the results from the
proposed calibration procedure were used andPépabolic the results from the toolbox
from [6] were used.

Table 1 summarises the mean-squared reprojection errdrgsastandard deviation
for all data sets. It can be seen that the proposed calibratiocedure performs well
with the miniature, low-cost, wide-angle imaging systerasradata seFisheyel and
Fisheye2. Please note that the results frd@ubsetl might not be representative as the
number of calibration images is not sufficient. The dataRatabolic andDigiclopswere
used to show that the new model also provides good resulssfecomplex systems (less
misalignment, less distortion, and increased focal Iengtiere the additional parameters
might be redundant.

5 Summary and Conclusion

An extension to an existing calibration algorithm has bempgpsed in order to deal with
miniature, low-cost, and wide-angle imaging systems. Erpental results with different

data sets and a comparison with other algorithms showedhbabroposed procedure
improves the accuracy for the targeted imaging systems. pftygosed camera model
also performs well for less complex systems as omnidireationirror systems or less
distorted cameras.
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