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Abstract

The problem of visible surface estimation for image-based rendering is tack-
led using a new approach, which combines visual hull and surface estimation
techniques. It is shown that the new method combines the best features of
both approaches, being more robust than direct surface element estimation
and more flexible than the visual hull. The new method uses an estimate of
the visual hull as a prior on the ill-posed problem of surface element esti-
mation. To improve the computational preformance of the algorithm, a mul-
tiresolution approach to surface patch estimation is used. The patches thus
estimated can then be tracked over time, to provide an accurate model of
the surface geometry, which is then used for estimation of the scene from
arbitrary viewpoints. After a brief description of the algorithm, results are
presented to show the improvement in performance which can be obtained
using either technique alone. The paper concludes with a discussion of ex-
tensions to the work currently under investigation.

1 Introduction
The problem of image-based rendering has been much studied and ranges in complex-
ity from simple interpolation techniques [2], [3], [8] to geometry estimation and space
carving [4], [19], [16], [20], [5]. While simple interpolation approaches are adequate if a
sufficiently dense set of images of the scene is available, in many practical situations, the
number of cameras limits the accuracy of interpolations and leads to visible artefacts in
the reconstructions. The alternative is an explicit computation of surface geometry, which
allows more conventional, graphics based rendering to be used. Unfortunately, even with
multiple cameras, estimation of visible surfaces remains an ill-posed problem, especially
if the objects imaged are as complex as the human body. Two common approaches
have been used to estimate scene geometry: surface estimation techniques [4], [19],
[15], [18], and the so-called visual hull [7], [1], [16], [20]. Although the former is
inherently more powerful, it suffers from the ill-posed nature of the problem: it
depends heavily on the surface texture and smoothness of the 3-D shape of the
objects in the scene; it is also highly demanding computationally. Visual hull tech-
niques, on the other hand, require accurate segmentation of the projected images



and make simplifying assumptions about the convexity of the object [10], require
a large amount of memory, and suffer from quantization effects [9], but they lead
to robust estimates; they are also reasonably fast computationally. A method
which combines the features of the two seems like an obvious way to overcome the
limitations of either.

Previous work in this area has used both determinstic [19] and simple stochastic meth-
ods [6] for hull refinement. In this paper, we present such a method, which uses a stochas-
tic Bayesian framework for the computation of planar surface elements but employs a
prior on those elements, derived from the visual hull. Such surface elements are a com-
mon respresentation of surface geometry [15], [18], [17], and provide a more general
representation than similar surface descriptions such as wireframe meshes. The input to
the algorithms are a set of video sequences together with camera calibration information
for those sequences. The calibration information is obtained separately using the methods
described in [22].

After a brief discussion of the surface representation and a description of the estima-
tion algorithms, we present some results to show the performance of the new method,
which significantly outperforms our earlier methods, giving more accurate surface esti-
mates in a reduced computation time. The paper is concluded with a discussion of the
power and limitations of the new approach and suggestions for further work.

2 Surface Estimation Method
First, a multiresolution segmentation algorithm is applied to the images captured from
the scene to separate figure and background. From the silhouettes derived from the seg-
mentation, a view-dependent visual hull is constructed following a similar method to that
described in [11]. From the visual hull the depth and surface orientation along any ray
in the scene may be derived using total least squares, a robust method of fitting planes to
surface data [12]. These estimates are used as a prior in a multiscale particle filter, which
provides the final surface estimates, in terms of a number of disjoint quadrilaterals, cor-
responding to square blocks in each image of the scene. The patches can then be tracked
over time using a second particle filter [14], and used to reconstruct arbitrary views of
the scene using an adaptation of a conventional graphics renderer, giving real-time recon-
structions [13], [17].

2.1 Surface Representation
A view dependent surface model is defined as follows: partition each input image into
pixel blocks and assume each block is the projection of a quadrilateral region of a surface
in world space. For notational convenience it is assumed that every block has a unique
index n. The class of quadrilaterals corresponding to image blocks will subsequently be
refered to as ‘patches’.

The centroid of a patch which corresponds to a block n, must lie along the line which
passes through both the imaging camera, and the focal plane at the point which corre-
sponds to the centre of the block (such lines will be refered to as ‘pixel rays’ for obvious
reasons). A compact representation of the position of a patch is its distance dn from the
camera, along this pixel ray.



The orientation of a patch must lie between face-on, and almost perpendicular to, the
imaging camera. In an appropriately chosen Cartesian frame where the z-axis aligns with
the pixel ray for the centre of block n, the orientation of the patch may be represented
using the first two components (in, jn) of its surface normal, with the third component
having unit length. This representation allows all allowable orientations, yet prevents the
patch from becoming oriented perpendicular, or beyond perpendicular, to the imaging
camera. The complete representation of a patch corresponding to block n is then

xn = (dn, in, jn). (1)

For convenience in the later discussion, fn(xn) will denote the plane defined by xn in some
fixed Cartesian frame common to all patches.

2.2 Locally Adaptive Foreground-Background Segmentation
For a camera c in a data set, its image will be denoted Ic, and its Gaussian pyramid
decomposition I[0]

c . . . I[M]
c , where I[0]

c = Ic. For a pixel (u,v) in an image level I[m]
c , its

labelling s(u,v) as either foreground or background is performed using a likelihood model
derived from a segmentation of the previous image pyramid level I[m+1]

c . One global
approach using the above idea would be to evaluate the likelihood of a labelling s(u,v) = l
as

ps(I
[m+1]
c |s(u,v) = l) =

1
K

K

∑
k=0

N(I[m]
c (u,v) ; µ

[k]
l ,σ

[k]
l ), (2)

with the K Gaussian mixture components being derived from the colours of the pixels in
class l at the previous image level. However, unless the number of components is very
large, image details will not feature prominently in the mixture and may be misclassified.

Adopting a more local approach, our algorithm proceeds as follows: firstly each pixel
is labelled using the classification of its ‘parent’ pixel from the previous image level, in
quad-tree fashion. Then the image is partitioned into blocks and the segmentation refined
with a two pass approach:

Pass one: For each block: if every pixel within the block and that of its neighbours is
of the same class, mark the block as classified.

Pass two: The remaining unclassified blocks form a ‘corridor of uncertainty’ [21].
For each unclassified block,

i Search within an increasing radius until one or more blocks are found from each
class which were classified in the first pass.

ii Form a Gaussian mixture colour likelihood model for both classes by clustering the
pixel values within these classified blocks.

iii Classify each pixel within the current block as either foreground or background
based on the local likelihood model.

As part of the third step, it is possible to use a Markov random field using the likeli-
hood models and a smoothness prior as in [23], although this was found to not improve
the results significantly given the extra computation required. The only remaining issue
is how a classification is produced at the lowest resolution. It was found that a simple
foreground-background model based on a background reference image provided a rea-
sonable starting point.



2.3 Surface Prior Construction
Initially, a view dependent hull is constructed. For every pixel u,v in a particular image
level I[m]

c , it is possible to estimate a point which lies on the surface of the visual hull as
follows:

i Generate a foreground-background segmentation for every camera.

ii Intersect the pixel ray for each pixel u,v labelled as foreground in image I[m]
c with

the back-projected foreground regions in all other cameras c′ 6= c to produce zero
or more lines in world space.

iii The closest line end point puv to camera c is the point on the visual hull which
projects into pixel u,v.

The algorithm to construct a surface prior x̂n for block n then proceeds as follows:

i Calculate M =
1
|Pn| ∑

(u,v)∈Pn

(puv− p̄)(puv− p̄)T , where p̄ =
1
|Pn| ∑

(u,v)∈Pn

puv, and where

Pn is the set of pixels in block n.

ii Compute the eigenvectors and eigenvalues of M.

iii The eigenvector corresponding to the smallest eigenvalue is the normal to the best-
fit plane through the data, and together with p̄ defines a plane yn.

The prior can then be chosen for block n and has mean x̂n = f−1
n (yn), and covariance σ̂n

which is chosen empirically.

2.4 Multiresolution Particle Filter
A particle filter is used which works across scale to produce surface estimates. For each
patch at a given image level, the algorithm draws a set of samples X = {x[1] . . .x[S]} from
an importance sampling function,

X ∼ q(xn|xh(n), I
[m] . . . I[M]), (3)

where h(n) is the parent block of block n.
The samples drawn from the importance sampling distribution are weighted according

to

w[s]
n ∝ w[s]

h(n)

p(I[m]|x[s]
n )p(x[s]

n |x[s]
h(n))

q(xn|xh(n), I[m] . . . I[M])
, (4)

where the process model for the parameters of block n is simply

p(xn|xh(n)) = N(xn; f−1
n ( fh(n)(xh(n))),σp) (5)

i.e. the parameters corresponding to the same plane as that defined by its parent, but with
some process noise with covariance σp added.

The measurement likelihood p(I[m]|xn) is defined as follows: for any pixel (u,v) in
block n, intersecting its pixel ray with the plane fn(xn) produces a point in world space.



This point may be projected into any other camera’s images and the colour of the original
pixel compared to that in the projected location. Intuitively, the more similar the colours,
the more likely that xn are the correct parameters for the block. This mapping between a
pixel (u,v) belonging to a block n in camera c, and the pixel (u′,v′) to which it projects
in camera c′ given that the block has parameters xn is defined as (u′,v′) = gc→c′(u,v,xn).

Following this intuition we define a likelihood for a patch, given a set of multiscale
image data from the cameras. The likelihood of xn, given one camera’s image level I[m]

c′ is

p(I[m]
c′ |xn) =

1
|Pn| ∑

(u,v)∈Pn

N(I[m]
c′ (gc→c′(u,v,xn)) ; I[m]

c (u,v),σ), (6)

That is, the colour of the re-projected pixel is assumed to be normally distributed, with
covariance σ about the colour of the pixel from the original block. Given all the images
I[m] = {I[m]

1 . . . I[m]
C } from all cameras in the data set at level m, the likelihood of a patch is

p(I[m]|xn) =
1
|Nc| ∑

c′∈Nc

p(I[m]
c′ |xn), (7)

where Nc are the spatial neighbours of camera c.

3 Results
Our locally adaptive segmentation provides a clear advantage over the Markov random
field approach in dealing with background regions of images onto which a shadow has
been cast. Figure 4 highlights the class boundary for the two methods for an image taken
from one of our data sets. Although the Markov random field has corrected the white
regions on the t-shirt which are classified as background under using a naive approach,
it has also misclassified several areas of shadow close to the body as foreground. The
locally adaptive model as prevented this misclassification.

The results in table 3 indicate the mean squared error in colour across all patches
when they are reprojected into neighbouring cameras, using different patch estimation
algorithms for two data sets. The first contains a static person, whilst the second contains
a person in motion which presents a significant challenge for the likelihood model due to
motion blur. ‘MSMC’ is the multi-scale Monte-carlo algorithm which simply estimates
patches using a particle filter across scale, but a weak prior. The ‘VH’ algorithm produces
surface estimates derived from the visual hull alone. The ‘VH + MC’ algorithm estimates
the patches using Monte-carlo simulation at the finest resolution using the visual hull to
provide a prior. Finally, the ‘VH + MSMC’ algorithm is the full multiscale Monte-carlo
algorithm using the visual hull as a prior, as described in section 2.4. This algorithm
clearly outperforms all other approaches.

The ultimate objective of this work is to render images from a new point of view not
in the original data set. Figure 2 shows three reconstructions produced from the patches
using the ‘MSMC’ algorithm, the ‘VH’ algorithm and the ‘VH + MSMC’ algorithm.



Data set MSMC VH VH + MC VH + MSMC
1 1571.9 2563.4 2318.5 1374.3
2 n/a 9179.8 9268.7 5585.8

Table 1: MSE of estimated patch projections.

4 Conclusions and Further Work
We have shown the power of a combining hull and surface estimation within a Bayesian
framework. It significantly increases the accuracy and speed of object geometry esti-
mation. In addition, we have proposed a novel multiscale method for producing the
foreground-background segmentations which are used to generate the visual hull. As
a part of future work we would like to investigate the possibility of using hull information
for the estimation of frame-to-frame motion.
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(b) Reconstructed from patches estimated
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(c) Reconstructed from patches estimated
with ‘VH + MSMC’.

Figure 2: Reconstructions obtained after using various patch estimation algorithms.
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