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Abstract

This paper presents an approach for human action recognition by finding the
discriminative key frames from a video sequence and representing them with
the distribution of local motion features and their spatiotemporal arrange-
ments. In this approach, the key frames of the video sequence are selected
by their discriminative power and represented by the local motion features
detected in them and integrated from their temporal neighbors. In the key
frame’s representation, the spatial arrangements of the motion features are
captured in a hierarchical spatial pyramid structure. By using frame by frame
voting for the recognition, experiments have demonstrated improved perfor-
mances over most of the other known methods on the popular benchmark
data sets.

1 Introduction

Recognizing human action from image sequences is an appealing yet challenging problem
in computer vision with many applications including motion capture, human-computer
interaction, environment control, and security surveillance. In this paper, we focus on
recognizing the activities of a person in an image sequence from local motion features
and their spatiotemporal arrangements.

Our approach is motivated by the recent success of “bag-of-words” model for general
object recognition in computer vision[21, 14]. This representation, which is adapted from
the text retrieval literature, models the object by the distribution of words from a fixed
visual code book, which is usually obtained by vector quantization of local image visual
features. However, this method discards the spatial and the temporal relations among
these visual features, which could be helpful in object recognition. Addressing this prob-
lem, our approach uses a hierarchical representation for the key frames of a given video
sequence to integrate information from both the spatial and the temporal domains. We
first apply a spatiotemporal feature detector to the video sequence and obtain the local
motion features. Then we generate a visual word code book by quantization of the local
motion features and assign a word label to each of them. Next we select key frames of the
video sequence by their discriminative power. Then, for each key frame, we integrate the
visual words from its nearby frames, divide the key frame spatially into finer subdivisions
and compute in each cell the histograms of the visual words detected in this key frame
and its temporal neighbors. Finally, we concatenate the histograms from all cells and use



Figure 1: The representation for a key frame i is built from the motion features detected in it and
integrated from the nearby frames. The closer a features is to the frame i, the higher weight it is
assigned to, represented by a darker circle. Then a spatial pyramid (e.g. L = 2) is applied to model
the spatial arrangements among the features.

it as the representation for this key frame. The process for representing a key frame i is
illustrated in Figure 1. The contribution of our work lies in integrating the local motion
features temporally into distinctive key frames, which can be used for efficient recog-
nition. Besides the appearance information contained in the local motion features, our
representation for the key frames also captures both the spatial and the temporal relations
among the features, which leads to better performance than the popular “bag-of-words”
approach.

2 Related Work

Extensive research has been done in recognizing human activities. The approaches can be
broadly categorized as model based, spatiotemporal template based and “bag-of-words”
based. Model based approaches for action recognition depend on locating and tracking
body limbs in order to recognize the activity. That requires a model of the body, whether
a 3D model or a 2D view-based model. We refer the reader to excellent surveys covering
this topic, such as [2, 7, 12]. However, for the task of activity recognition, tracking the
limbs is not necessary. That motivates research on obtaining spatiotemporal descriptors
directly from the motion to recognize the action without limb tracking. One of the ear-
liest work on spatiotemporal descriptor was carried out by Polana and Nelson[15]. In
Bobick and Davis’s work[3], Motion-Energy-Image and Motion-History-Image are in-
troduced as templates for different motion recognition. Efros et al. [6] also proposed
a spatiotemporal descriptor based on global optical flow measurements. Spatiotemporal
template approaches are holistic approaches where global descriptors are used with no
local features extracted.

In contrast, “bag-of-words” based approaches detect local salient descriptors as visual
words, which are then used to recognize the activity. “bag-of-words” has been used suc-
cessfully for object categorization[21, 14]. Inspired by text categorization, it represents an
object as a histogram of local features. Recently, “bag-of-words” methods have been used



in action recognition[18, 4, 19]. However, these approaches lack the relations between the
features in the spatial and the temporal domains which are helpful for recognition. There
are many recent research on extending “bag-of-words” to add the spatial relation in the
context of object categorization [17, 1, 11, 8, 10]. In particular, pyramid match kernel
[8, 10] used the weighted multi-resolution histogram intersection as a kernel function for
classification with sets of image features.

The approach we propose here tries to simultaneously model the spatial and the tem-
poral relations of the local motion features for the key frames. The temporal information
are captured by integrating the local motion features from the key frame’s temporal neigh-
bors and the spatial information are captured by using a hierarchical spatial pyramid in
the representation.

Other related directions and extensions for “bag-of-words” in the context of action
recognition include [9, 20, 22]. In [9]’s work, the spatial orientation information were
captured in the local features. In [20, 22], latent semantic model was applied to discover
the action types as topics in the hidden layer between the visual features and the video
sequence. Savarese etc. [16] used correlograms to capture the spatial and temporal re-
lations of local features. Different from them, our approach selects and models the key
video frames and simultaneously integrates the spatiotemporal relation among visual fea-
tures with their appearance information.

Feature selection has been used in object class recognition as a preprocess to build a
better model. Different criteria, such as likelihood ratio and mutual information in [5],
and different methods, such as combinatorial and statistical methods in [23], have been
used for feature selection. Different from them, our approach selects the key frames by
their entropy based discriminative power.

3 Spatiotemporal Representation for the Key Frame

3.1 Feature extraction

We use the feature extractor from Dollar[4], which has been proven successful in [4, 13,
22], for the detection and representation of the local motion features. In this method, the
motion features are detected by applying separable linear filters to the video sequences.
These local features are represented by the intensity gradients of a cuboid of spatiotem-
porally windowed data surrounding the detected interest point. To build the code book,
we perform k-means from a random subset of motion features from the training data.

3.2 Key frames selection by their discriminative power

Intuitively, not all frames from a video sequence are equally important. We only need a
few informative frames that characterize the action for recognition. The reasons are:

1) Some video frames are irrelevant to the underlying activity, e.g. the frames with no
action in them. They could be nuisance for the recognition.

2) We can greatly speed up the recognition process if we only use the informative key
frames without losing important information..

The feature exactor from Dollar[4] can detect the local informative motion features for
each frame. They are encoded by the visual words v 1, . . . ,vK , obtained from the clustering,
where K is the vocabulary size. We can measure the discriminative power of each visual



word. Entropy is a suitable measure for the discriminative power of a given visual word
since it measures the uncertainty or the randomness of such a word. Given the set of
activities A1, . . . ,AN , we can compute P(Ai|v j), the conditional probability of each action
given visual word v j, from the training data. The conditional entropy given the visual
word v j can then be computed as

E(Action|v j) =
N

∑
i=1

−P(Ai|v j)logP(Ai|v j) (1)

The higher the entropy, the more uniformly distributed the activities are given the visual
word, therefore, the less discriminative at the visual word. The lower the entropy is,
the more discriminative the visual word is. We can use the conditional entropy of the
visual words to measure the discriminative power of a given frame F. To do that, we use a
function g(·) which is defined as:

g(F) =
KF

∑
j=1

1
E(Action|v j)

(2)

where KF is the number of the visual words in frame F . The higher the score of g(F), the
more discriminative the frame F is.

We selected the top p% most discriminative frames for recognition. p is set to 25 in
the experiment, which is an empirical chosen number. These top discriminative frames
are called the key frames.

3.3 Temporal integration of the motion features

Since a frame is correlated to its temporal neighbors, we build its representation from the
motion features detected in it and its neighbor frames, weighed by the features’ temporal
distance to this frame. Intuitively, the further the distance is, the less weight it should be
assigned to. Therefore, for a key frame i, the weights assigned to the motion features from
a frame j are:

Weight(i, j) = e
− dist(i, j)

σ2 (3)

where dist(i, j) is the first norm distance between frame i and j and σ is the bandwidth
for a smooth weight. The temporal relations of the features to frame i are captured by the
different weights. The weights are 1 for the motion features detected at frame i and are
close to 0 for those from the distant frames. Therefore, only the motion features from the
nearby frames contribute significantly to the integration.

3.4 Spatial representation for the frame

With all the temporally weighted motion features for a given key frame, we need to find
a representation to model the spatial relations of these features in a way that it is suitable
for measuring the similarity between the key frames.

Let X and Y be two sets of motion features from two key frames respectively. Inspired
by [10], we represent the key frame in a spatial pyramid. For each level l, l = 0, . . . ,L,
we divide the key frame along x and y dimensions into 2 2×l subdivisions. Intuitively, we



measure the distance between X and Y as the sum of the distances between the corre-
sponding cells of all levels from X and Y . Each cell can be described as the histogram
of the weighted motion features in it and the distances between them are measured by
Chi-square distance. So the distance between X and Y is formulated as:

dist(X ,Y ) =
L

∑
l=0

22×l

∑
i=1

χ2(Hl
X(i),Hl

Y (i)) (4)

where Hl
X(i) is the histogram of the weighted motion features from the ith cell in level

l from X and χ 2(·, ·) is the Chi-square distance. This is similar to representing X and
Y by concatenating their histogram representations from all cells in all levels into a long
histogram respectively and measuring their distance. Therefore, we can use these con-
catenated histograms as the representations for the key frames.

Since different information are captured at various levels of the pyramid, different
weights should be assigned to each of them. At finer resolution, the correspondence
between two sets are captured more accurately. Therefore, we penalize the similarity
information gained at a coarser level and give more weights to the similarity measured by
the histogram distance at a finer resolution. The weight we assign at level l is: weight(l)=
1/2L−l for l = 0, . . . ,L. The weighted distance between X and Y is:

dist(X ,Y ) =
L

∑
l=0

1
2L−l

×
22×l

∑
i=1

χ2(Hl
X (i),Hl

Y (i)) (5)

Because Chi-square distance satisfies

cχ2(a,b) = χ2(ca,cb) (6)

where c is a scalar, we can directly embed the weight to the histogram representation.
Putting everything together, our representation for a key frame is the concatenated weighted
histogram from all cells in all levels of the pyramid. In our representation, the temporal
relations are modeled as the different weights assigned to the motion features and the
spatial relations are captured in the spatial pyramid structure. With the motion features
as the visual words, our representation simultaneously integrate appearance, spatial and
temporal information.

Our representation for a given key frame is a straightforward extension of the popular
“bag-of-word”. In each subdivision, all the local motion features are modeled as “bag-of-
words”. When L = 0 and σ = 0, it reduces to the standard “bag-of-word” representation
for the key frame. For better computation efficiency, we normalize the vector by the total
weight of all its elements.

The complexity of the key frame representation is linear with the size of motion words
vocabulary. For L level and K motion words, the dimensionality of the resulting represen-
tation is K ∑L

l=0 4l = K 1
3(4L+1 −1).

3.5 Recognition algorithm

In the training phrase, for each training video sequence, we select the key frames, rep-
resent them using our spatiotemporal representation and label them with the underlying
action. In the testing phrase, for each testing video sequence, we also select the key frames



Dataset Facial Hand KTH
Expression Gesture

No. of classes 6 9 6
No. of subjects 2 2 25
No. of trials per subject 8 10 1
No. of conditions 2 5 4
Total No. of Samples 192 900 593

Table 1: Details of the data sets used in our experiments.

and represent them with our spatiotemporal representation. Then these key frames from
the testing video sequence can serve as weak classifiers. We use the nearest neighbor
algorithm to label them with the closest key frames from the training data sets. Finally we
combine these weak classifiers for the action recognition by employing a majority votes
from them throughout the sequence.

4 Experiments

4.1 Data sets and experimental setting

We carried out our experiments in three data sets, namely facial expressions data set from
Dollar et al.[4], hand gestures data set from Wong et al.[22] and KTH human action data
set from Schuldt et al.[18]. In all data sets, each video sequence contains one action. The
video sequences were converted into gray level to avoid the bias in color. The details of
the data sets are summarized in Table 1 and some sample images from the video sequences
are shown in Figure 2. In the experiments, we implemented a baseline approach using the
“bag-of-words” representation for comparison.

We set the parameters for the experiments empirically. The bandwidth for a smooth
temporal weight, σ , is set to 5. The vocabulary size K, which is the cluster number
in the k-means clustering algorithm, is set to 250. In our experiments, we observe that
the performance does not improve much when the level of the spatial pyramid L > 1.
Therefore, we use the setting of K = 250 and L = 1 or L = 2, which leads to a 1250-
dimension or 5250-dimension vector for the key frame representation.

4.2 Experimental results

With the same experimental setting on facial expression data set as in [4], we trained on
one subject under one of the two lighting conditions and tested on: (1) the same sub-
ject under the same illumination, (2) the same subject under different illumination, (3) a
different subject under the same illumination, and (4) a different subject under different
illumination. The recognition rates in each scenario from Dollar’s implementations[4],
which is the baseline “bag-of-words” approach, and from our approaches are shown in
Table 2. We can see that in the first scenario, the recognition task is easy. The base-
line algorithm already achieved very high recognition rate, therefore our approaches only
slightly improved the results. For the rest of the cases, our approaches with both configu-
rations have demonstrated significant improvements.



Figure 2: Sample images from the experiment data sets.

Methods same sub. same sub. diff sub. diff sub.
same illu. diff. illu. same illu. diff illu.

Baseline 98.83 90.46 58.67 47.71
Our method
(L=1) 100.00 96.25 74.38 71.71
Our method
(L=2) 98.37 93.13 74.83 73.25

Table 2: The facial expression recognition rates(%) in different scenarios from the baseline “bag-
of-words” algorithm and from our spatiotemporal representations with different spatial levels.

As an example, the confusion matrices of the six facial expressions in the second sce-
nario from the baseline implementation and our spatiotemporal representation with L=1
are reported in Figure 3. It shows improvements on recognition rates in every category of
the facial expressions.

From the experiment on facial expression data set, we do not observe any significant
increase in performance beyond 1-level spatial pyramid configuration. This is because
when l = 1, the 4 subdivisions of the key frame already roughly capture the sets of feature
points’ locations in the spatial domain while maintain tolerance for the locations vari-
ance in each cell. With more levels, the number of features points falling into each cell
will be decreased, so the histograms might not be a good approximation for the feature’s
distribution. So we will use l = 1 for the rest of the experiments.

With leave-one-out cross-validation experimental setting, we tested the baseline and
our proposed methods on all data sets. The confusion matrices from our method with L=1
are shown in Figure 4.The average recognition rates for all data sets, compared with other
published results, are reported in Table 3. This demonstrates that our approach improves
the “bag-of-words” baseline model and outperforms most of the other known methods
while approaching the best known result.
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Figure 3: Comparison of the confusion matrices in the second scenario on the facial expression
data set. The left confusion matrix is from Dollar’s implementation[4] and the right confusion
matrix is from our spatiotemporal representation with L=1.

Methods: Base- Our method Wong Niebles Wang
line [22] [13] [20]

Facial Expressions 91.33 94.83 83.33 none none
Hand Gestures 85.81 96.22 91.47 none none
KTH Actions 81.51 91.17 83.92 81.50 92.43

Table 3: The average recognition rates (%) for facial expression, hand gesture and KTH human
action data sets obtained from different algorithms.

5 Discussion

We have presented a spatiotemporal key frame representation for human action recog-
nition. First, our approach selects the key frames of the video sequences based on their
discriminative power. Next, our approach simultaneously integrates the spatiotemporal re-
lations among local motion features with their appearance information and embeds these
rich information in the representation for the selected key frames.

Our work differs from the pyramid match kernels[8, 10] in that: 1) Our goal is to find
a suitable representation to integrate the spatiotemporal relations among motion features.
The work in [8, 10] is seeking a suitable kernel function for two sets of image features. 2)
Because our representation is a concatenated histogram, we measure the distance by Chi-
square distance. The pyramid match kernels use histogram intersection as the distance
function to satisfy the Mercer’s condition.

In the future, we intend to further develop and disseminate this framework as a gen-
eral method by automatically determining various hyper-parameters, which are currently
empirically calculated.
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Figure 4: With leave-one-out cross-validation experimental setting, the confusion matrices on all
three data sets from our spatiotemporal representation with L=1.
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