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Abstract

The manifold learning algorithms are promising data analysis tools. How-
ever, to fit an unseen point in a learned model, the point must be located in
the training set, which limits its scalability. In this paper, we discuss how to
select landmarks from the data to help locate the test points. Our method is
for data on manifolds: the way the landmarks represent the data in the ambi-
ent space should resemble the way they represent the data on the manifold.
Compared to the previous research, (i) Our test foregoes the requirement of
knowing the intrinsic manifold dimension and thus is more applicable and
robust. (ii) Our selection implies a provable topology preservation property.
(iii) We also provide a way to improve existing landmarks. Experiments on
the synthetic data and the real data have been done. The results support the
proposed properties and algorithms.

1 Introduction
Manifold learning refers to a family of algorithms that analyze the variables non-linearly
underlying the distribution of the points in the high dimensional data space [8]. However,
unlike the classical linear methods, e.g., PCA, these methods learn the embedding, but not
the explicit mapping between the manifold coordinates and the data points. Thus they are
not readily generalized to unseen points [4], and rerun the algorithm for each new sample
is expensive. Based on the established connection between manifold learning and kernel
density estimation [2], we can estimate the low dimensional coordinates for a new point
with the help of the learned embedding [4]. To apply these estimating schemes, the near
neighbours of the input point on the manifold need to be found. In other words, it is to be
“located” on the manifold. This entails a cost proportional to the volume of the training
data.

To answer a nearest neighbour query quickly, it is natural to use part of the samples
as landmarks to lead the search. If they are chosen appropriately, a sample may be safely
located to the proper area on the manifold, by being compared with only those landmarks.
The proper area will contain the position at which the sample should have been located,
were the query conducted in the full set of the data.

When we compare a test point to the landmarks, only the Euclidean distance can be
easily computed. Thus if we find the nearest landmark to the test point in the ambient
space, we want they are near on the manifold as well. Let the geodesic distance from a
point to its nearest landmark on the manifold be d and the geodesic distance to the nearest
landmark in the ambient space be d′. It is straightforward to see that d′ ≥ d. However, it
is worth asking:
Question 1 Is d′ significantly larger than d?

In this paper, we analyze Question 1 and answer it with a test. Compare to the previous
work, our test is more applicable and robust, because it does not require to know the



intrinsic dimension of the manifold. We also prove its validity in terms of preserving the
topology of the neighbourhood graph of the data point cloud. When the landmark set
cannot represent the manifold perfectly, besides the obvious solution of choosing more
points as landmarks, we have also developed an optimization-based algorithm to adjust
the existing landmarks. The optimization procedure is less computationally demanding
than performing the test at each time of adding a new landmark.

In Section 2, we give a brief review of the related background. In Section 3, we
first present our analysis of the problem, and then propose our condition for the test, as
well as the properties justifying our condition. In Section 4, the optimization algorithm
is presented. In Section 5, we report experimental results supporting our test and the
optimization method. Finally, we conclude our paper and discuss the possible future
directions in Section 6.

2 Related Work
In the past few years, many manifold learning approaches emerged [8]. These methods
find the embedding of the data but not the mapping. Methods of generalizing the learned
embedding beyond the training samples have been developed. Some of them approximate
the embedding linearly with a linear map [7; 15]. To generalize the learned embedding
nonlinearly, techniques of kernel density estimation (KDE) have been exploited to extend
the domain of the coordinating function to the whole data space [9; 4].

Properly set up landmarks in the data may help these kernel extension by speeding up
the nearest neighbour searching. In a recent work [11], the authors proposed a criterion
whether a set of landmarks preserves the topology of a manifold, given the intrinsic di-
mension of the manifold. However, the intrinsic dimension may not be easy to estimate
for data manifolds in practical applications. Landmarks are also used for learning the
embedding for the training data [12; 6; 14]. These randomly selected or error minimizing
landmarks improve computational efficiency of the training, but they do not necessarily
respect the topology of the manifold for locating testing points. Keeping the topology of
a manifold with only a subset of the samples has been discussed in terms of surface re-
construction or mesh simplification in computer graphics [1]. These algorithms deal with
the special case of 2D manifold in 3D ambient space.

In terms of nearest neighbour searching, our work is also related to the spatial access-
ing methods (SAM) [13](and references there in). Compared to these general methods,
we pay special attention to the topology of the data manifold. Thus the found landmarks
may be used for information propagation or exploring active learning in the data.

3 Topological Safety Test
Let us first introduce some denotations: We have observed N data points in RD, X =
{xi}N

i=1. The data are drawn from a d-dimensional manifold M embedded in RD, where
d < D. In our setting, the landmarks are chosen from X. Let their indices be P =
{p1, p2, . . .}. Then we have xpk be the k-th landmark. We write it as pk when there is
no ambiguity, and use P interchangeably for the set of landmarks and their indices in the
data set. X is organized as the nodes in a neighbourhood graph G and there is a (weighted)
edge between each node and its k (number) or ε (Euclidean distance inRD) nearest neigh-
bours. We use “∼” to denote the adjacency relation in the graph. Two subsets of nodes
are adjacent when there are at least one pair of adjacent nodes belonging to each of the



(a) (b)

Figure 1: Which are topology-changing links?

(a) Dotted links: edges in the graph; Solid links: to be judged . (b) The global manifold from
which (red circled area) points in (a) are sampled.

subsets respectively. dE(·, ·) stands for the Euclidean distance in RD. dM(·, ·) measures
the geodesic distance M 1. Given x ∈M , Ln

E(x;P) denotes its nth nearest landmark w.r.t.
dE(·, ·), and Ln

M(x;P) is the one w.r.t. dM(·, ·) on M . In the following, we write L1
E as LE

and L1
M as LM , and without writing the landmark set P explicitly if there is no ambiguity.

The inverse maps of LE,M are CellE,M(p) = {x|LE,M(x) = p}. CellE can be considered as
the intersection of the manifold and the Voronoi cell of a landmark. While CellM can be
considered similarly, however, with the Voronoi tessellation done on the manifold directly
w.r.t. the geodesic distance.

To answer Question 1, we must make clear the criterion for “significantly”, i.e.,
whether a connection between an x and LE(x) is a short-circuit on the manifold. In [11],
the criterion is heuristic and depends on the intrinsic dimension of the manifold, which is
generally unavailable in practice.

We argue that whether a link on a manifold causes a short-circuit depends on the
context: the manifold geometry, the point cloud sampling, the neighbourhood graph and
the distribution of the other landmarks. We will show this by an example. Figure 1(a)
shows some points from a U-shaped manifold, as well as the dotted links between the
neighbouring points on the manifold and several numbered solid links. We are to judge if
they are short-circuits. Link 1 should not be considered as a “short-circuit”, otherwise the
sampling is inappropriate anyway. From link 2 to 9, the pairs of linked points are farther
and farther away on the manifold. Which of them should be taken as a “short-circuit”?
This question should be answered with care. Even for link 9, which collapses the whole
U-shaped structure and seems to be a definite “short-circuit”, if one concerns a larger
scale, the link might become acceptable. E.g., in (b), we show a case where the U-shaped
manifold is actually an unimportant part of a larger structure.

Therefore, we propose
Condition 1 ∀p1,p2 ∈ P, CellE(p1)∩CellM(p2) 6= /0 implies p1 = p2 or CellM(p1) ∼
CellM(p2).
The condition means that there are two cases for a point x to be considered as near enough
to LE(x) on the manifold: (i) LE(x) = LM(x); and (ii) otherwise, p1 = LE(x), p2 = LM(x)
and p1 and p2 are distinct. Then their geodesic Voronoi cells CellM(p1) and CellM(p2)
must be adjacent on the manifold. We call the points at which Condition 1 does not
hold topological error points (TEPs). In the following, we will show how this condition
implements the concept that “the landmarks represent the data properly”.

For a neighbourhood graph, Condition 1 ensures that the partition CellE is topologi-
cally similar to CellM . Let us first make clear the meaning of “topologically similar”.

Given a partition of the neighbourhood graph L : X → P, a minor H of G can be
defined by the following contraction:

1In practice, this is approximated by the shortest path in G.
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Figure 2: Graph similarity

1. G(0) ←G.

2. Find an edge x∼ y in G(k), make G(k+1) as following:

• if L(x) = L(y) and x,y /∈ P, contract x and y to x.

• if y /∈ P and L(y) = x, or vice versa, contract them to the landmark.

3. Repeat Step 2 until no more edges are contractable.

The contraction results in a minor H of G consisting of all the landmarks. Let HM =
Contract(G;LM) and HE = Contract(G;LE). Then it can be proved that
Proposition 1 Condition 1 implies that HE is similar to HM , where “similar” means:

1. If there is an edge between two landmarks pi and p j in HE , pi and p j are connected
in HM by a path of the length less than or equal to 3 (Figure 2(a)-(c)).

2. If there is an edge between two landmarks pi and p j in HM , these is a path in HE
between pi and p j, and the path contains only landmarks in the neighbourhood of
pi and p j in HM (Figure 2(d)).

Of the two cases, case 1 is more important. It means that for a point x, compared to
the optimal representation by LM(x), the Euclidean representation LE(x) does not take
significantly more risk of making a “short-circuit” on the manifold. The proof is provided
in Appendix A.

3.1 Implementation of the Test
Testing Condition 1 involves finding the nearest landmarks for each node in G. It takes
O(kKN logN) [11], where k is the neighbourhood size of G and K = |P| .

We construct a landmark set by repeatedly selecting TEPs as landmarks until Condi-
tion 1 holds everywhere. As in [11], we do not re-perform the test after each adding. For
each x, we record LE(x) , ρE(x) = dE(LE(x),x) LM(x) and ρM(x) = dM(LM(x),x). We
also record the adjacency matrix HM to track whether two landmarks’ cells are adjacent
on the manifold. With this information, our test is:

LE(x) = LM(x) OR HM(LE(x),LM(x)) = 1 (1)

After a new landmark pN is added, LE(x) and ρE(x) can be updated easily in O(N).
To adjust LM(x) and ρM(x) in according to pN , we use Dijkstra algorithm to compute the
shortest path length from pN to each x, with stopping condition:

1: dN
M(x)← ∞ for all x; dN

M(pN)← 0; Y← X
2: while min(dN

M(Y)) < ∞ do
3: y← argminy′∈Y dN

M(y′); LM(y)← pN

4: ρM(y)← dN
M(y)

5: Update dN
M according to edges connected to y

6: Remove {y}∪{x|ρM(x) < dN
M(y)} from Y

7: end while



The algorithm can be interpreted as: Start from the new landmark pN . Compute the short-
est paths to the other points using Dijkstra algorithm. Once having computed the shortest
path to one point x, add x to the cell of pN by letting LM(x)← p. As all points that are
nearer to pN than x have already been in the cell, we remove all {y|ρM(y) < dM(x,pN)}
from the searching set. Keep expanding the “region” of pN until the searching set become
empty. When manipulating Y using a Fibonacci heap, the complexity is O(nN logN).
However, in practice, step 6 generally deletes most nodes in the first few steps. And thus
this updating algorithm is faster than that in [11].

4 Landmark Optimization
In the last section, we have discussed how to test the criterion for the landmarks, and
make it satisfied by simply adding new landmarks. One natural question may arise is that
whether the extent to which the proposed criterion is satisfied (or violated) by a set of
landmarks can be estimated quantitatively without performing the test procedure. If we
can explicitly estimate the (dis-)satisfaction of condition in terms of the set of landmarks,
we will be able to adjust or improve the existing landmark set by optimization quickly.
Furthermore, the size of the landmark set can be controlled.

Ideally, we need a function E : P→ N: given the landmarks, E returns the number of
TEPs. Obviously, directly minimizing the E over P will lead to a difficult combinatorial
programming problem. We can use ∑d2

M(x,LE(x)) as a heuristics of the number of TEPs.
It is the geodesic distances between the landmarks and the points in the corresponding
Euclidean Voronoi cell. We argue without proof that this heuristic objective function
should favor a landmark distribution that makes the radius of each CellE(p) minimized
and thus reduces the TEPs.

However, pre-computing ∀x,y,dM(x,y) requires O(N2 logN) time and O(N2) stor-
age, both of which are expensive when the training data are rich. Thus we turn to the
estimate of dM in explicit forms, which allow us to evaluate dM(x,p) for ∀x ∈ CellE(p)
when p is changing.

4.1 Objective Function and Optimization
For example, we can use the eigenvector f of the second smallest eigenvalue of the
graph Laplacian of G as a location indicator [3]. For a graph with N nodes, f is of N-
dimensional, with each entry corresponding to a node. We use ( f (x)− f (y))2 to estimate
d2

M(x,y). Therefore, we can write the objective as

E (P;G) = ∑
p

∑
x∈CellE (p)

( f (x)− f (p))2 (2)

However, searching for a P that optimizes Eq(2) still involves complex combinatorial
programming. To make gradient-based optimization possible, we apply a “soft” border
cells of different landmarks, inspired by [10]: a point x is linked to a landmark pk by
wk(x):

wk(x) =
exp(−β‖x−pk‖2

2/2)
∑ j exp(−β‖x−p j‖2

2/2)
(3)



where β is the “hardness” parameter. Therefore we rewrite our objective function as

E (P;G) =
N

∑
i=1

K

∑
k=1

wk(xi)( f (xi)− f (pk))2 (4)

We can optimize Eq(4) w.r.t. pk by taking the gradient

∂E

∂pk
=

N

∑
i=1

K

∑
j=1

[( f (xi)− f (p j))2 ∂w j(xi)
∂pk

−2w j(xi)( f (xi)− f (p j))
∂ f (p j)

∂pk
] (5)

where [10] ∂w j(x)
∂pk

= βwk(x)(δ jk−w j(x))(x−pk) and ∂ f (p j)
∂pk

= δ jk∇ f |pk , δ jk is 1 for j = k
and 0 otherwise, and ∇ f can be pre-computed numerically from the training data. Note
that for calculating Eq(5), the computation only needs to be done for w j(xk) 6= 0. If the
border parameter β is “hard”, for most j, w j(·) only has one non-zero element.

In the t-th step, the potential update for the k-th landmark p(t+1)∗
k is found by searching

the neighbourhood of p(t)
k in G and finding the neighbour to which the vector from p(t)

k
best matches the direction of the gradient in Eq(5).

p(t+1)∗
k = argmax

y∼p(t)
k

cos(< y−p(t)
k ,−∂E (t)

∂p(t)
k

>) (6)

A learning rate can be set to decide whether p(t+1)
k remains the same as p(t)

k or is updated

to p(t+1)∗
k . In our implementation, we always update it.

Link to manifold learning One may notice that the f happens to be the results of
the non-linear dimensionality reduction of the manifold into 1-D coordinate space us-
ing Laplacian eigenmaps [3]. This observation reveals that we are essentially looking
for a landmark set that results similar Euclidean Voronoi tessellations in both the ambi-
ent space and the low-dimensional2 global manifold coordinate space. Therefore, other
manifold coordinate functions (may be vector-valued) may be used for estimating dM as
well. Note that our landmarks are for generalizing learned models, thus requiring the
low-dimensional embedding of the data points to be known does not result overheads in
practice.

5 Experiments
TEP detection In Figure 3, we show the results of testing Cond. 1 on two synthetic
data sets. We randomly select 40 landmarks out of 2000 points as initialization, and
the neighbourhood size is 8 for constructing G. In the figure, we link (x,LE(x)) when
LE(x) 6= LM(x). Out of those x-s, we mark TEPs with red dots. We can see that Condition
1 is in consistence with the intuition whether the link between x and LE(x) is a “short-
circuit” on the manifold.

We then apply the test on 12,000 handwritten digit images 3. Those 28× 28 images
are preprocessed with PCA and the first 100 principal components are used. The neigh-
borhood size is set to 3 for constructing G. In this experiment, 100 randomly selected

2In this case, it is 1-D.
3http://www.cs.toronto.edu/ roweis/data.html



(a) (b) (c)
0 1 2 3 4 5 6 7 8 9 Total

Bad Points 25 1 82 33 27 35 30 15 53 13 314
πErr

E 25 1 81 29 24 29 27 13 45 10 284
πErr

E πCorr
M 18 1 57 14 18 21 21 10 22 1 183

πCorr
E πErr

M 0 0 1 4 3 6 1 0 5 2 22
(d)

Figure 3: Topological Error Points

(a) and (b): Big blue dots: landmarks; Red dots: TEPs; Green dots: πE 6= πM , but NOT TEPs.
Links are made between a point and its πE . (c): TEPs found for “4”. Table (d): See text

Swiss roll S-shaped Digits

Figure 4: Added Landmarks and TEPs

images are taken as landmarks. In Figure 3(c), we show the TEPs found for the digit
“4”. In each triplet of the images, the middle one is the sample x, the left is ŁE(x), and
the right is ŁM(x). We can see that in most cases, ŁM(x) is the proper landmark for x to
be represented. The exceptions are highlighted. In table (b), for each digit , we list the
statistics of: (i) number of TEPs detected, (ii) ŁE(x) with incorrect label, (iii) erroneous
ŁE(x) but correct ŁM(x) (potential gains) and (iv) correct ŁE(x) but erroneous ŁM(x)
(potential loss). Most of the TEPs indicate mis-classified samples, and can be corrected
by representing the TEP with the corresponding ŁM(x).

Eliminate TEPs by adding In Figure 4, we show the number of TEPs versus the num-
ber of the added landmarks for two synthetic data sets and the hand-written data, re-
spectively. The error bar is computed in 10 runs. Note that for the hand-written data,
the number of TEPs increases during the first few iterations. A possible explanation is
that as the landmarks increase, the partition of the manifold becomes finer. Therefore,
some structural details on the manifold may come out (considering the case of the small
U-shaped structure we discussed in Section 3).

In Figure 5 we draw the initial and the resulting landmarks on Swiss roll data. In the
figure, two landmarks are linked by an edge if their Euclidean Voronoi cells are adjacent.
It shows that the minor graph generated by the initial landmarks contains many edges
which connect remote parts of the manifold, while the minor graph generated by the
resulting landmarks preserves the topology of the manifold.



Initial Result

Figure 5: Adjacency of Voronoi Cells of Landmarks

Figure 6: Handwritten Digits Recognition with Landmarks

Landmarks for classification In Figure 6, we use different numbers of landmarks for
nearest neighbour classifier on 10000 test digits. The landmarks are selected randomly,
by K-Means and by eliminating the TEPs, respectively. The error bar is computed from
10 runs. Our proposed topology safe landmarks perform constantly better.

Optimizing the landmarks We randomly choose 30 landmarks in the data points, and
then apply both our optimization and the K-Means. After each iteration, we find TEPs
in the data points. The results are shown in Figure 7. The landmarks found by our
optimization represent the topology of the data manifold more reliably than those selected
by K-Means.

Semi-supervised clustering We use the data shown in Figure 8. In each data set, there
are 5,000 training samples and another 5,000 for testing. The neighborhood size is 8.
The experiment scheme is as follows:

1. Select a few points as the initial landmarks PInit and label them.

Swiss roll S-shaped

Figure 7: Optimizing Landmarks: TEPs v.s. Iteration Number



Error: 5 Error: 3 Error: 116
(a) Add (b) Optimization (c) K-Means

Error: 10 Error: 36 Error: 150
(d) Add (e) Optimization (f) K-Means

Figure 8: Semi-Supervised Classification

(a) and (d): initial landmarks (the big dots, color for initial and black for added), samples are
colourized with LM in the initial landmarks. (b) and (e): colourized with f . (c) and (f): colourized
with LE in the resulting landmarks. In each pane, “+”/“o” indicate the true classes.

2. Detect and eliminate the TEPs, when selecting a TEP as a new landmark, label it
with LM . Recorded the number of added landmarks NAdd .

3. Run the optimization algorithm with NAdd random selected landmarks and PInit
labeled.

4. Initialized with the same landmarks, run K-Means.

Then we use each of these resulting landmark sets to classify 5000 test points. The errors
are shown in the figure.

6 Conclusion
In this paper, a criterion of landmarks for reliably representing the data manifold is pro-
posed, as well as an optimization scheme to improve the existing landmark sets. Our
condition ensures that the individual Voronoi cells generated by the landmarks in the am-
bient space do NOT intersect the manifold at faraway locations and thus preserves the
manifold structure. They can help reliably locate novel samples to the correct regions on
the manifold. Our method is more robust and applicable than the previous work, because
it does not require to know the manifold dimensionality.

In the future work, we will study the expected risk by taking a statistical point of view
of the data. We will also consider the possibility that generalizing this to multiple metric
spaces as well.
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A Proof of Proposition 1
Proposition 1 (1) If pi ∼ p j in HE , according to the contraction procedure, we have CellE(pi)∼
CellE(p j) in G (see below). Therefore, there exists equidistant points on M to pi and p j. Take one
of these points, x, and let LM(x) = pk. By Condition 1, {x} ⊂ CellE(pi)∩CellM(pk) 6= /0 implies
CellM(pi) and CellM(pk) are adjacent, and thus pi ∼ pk in HM . Using the same deduction, we have
p j ∼ pk in HM as well. If k = i or k = j, then pi ∼ p j in HM (Figure 2(a)). Otherwise, pi and p j
are connected in HM by a path (pi,pk,p j) (Figure 2(b)).

In practice, however, there are generally no such equidistant points in the discrete point set
sampled from M . Nevertheless, because CellE(pi) ∼ CellE(p j) in G, ∃x1 ∼ x2 in G, where
LE(x1) = pi and LE(x2) = p j. Consider LM(x1) = pk1 and LM(x2) = pk2 , because x1 ∼ x2, we
have CellM(pk1)∼CellM(pk2) in G and equivalently pk1 ∼ pk2 in HM . And as discussed in the con-
tinuous case above, we have pi ∼ pk1 and p j ∼ pk2 in HM . Depending on whether (a) k1 = i,k2 = j,
(b-i) k1 = i,k2 6= j, (b-ii) k1 6= i,k2 = j or (d) k1 6= i,k2 6= j, the path between pi and p j in HM
corresponds to one of the cases (a)-(c) in Figure 2.

(2) If pi ∼ p j in HM , consider the shortest path (pi = x0,x1, . . . ,xn = p j) in G. It is not difficult
to see, all points on the path is within either CellM(pi) or CellM(p j). Thus by Condition 1, if
CellE(p) contains these points, either (i) p is pi,p j or (ii) CellM(p) is adjacent to CellM(pi) or
CellM(p j). Let UM

i, j = {p|p ∼ pi or p ∼ p j} in HM . There exists a path between pi and p j in HE

consisting only nodes in UM
i, j (Figure 2(d)).
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