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Abstract

This paper addresses the problem of object tracking by particle filtertadicgtric
images. Whereas a large literature exists for traditional images, only devemethods
have been developed for catadioptric vision. We present two techriigjeesrectly deal
with the strong distortion inherent to catadioptric images. First, we propasergting
and diffusing the patrticles in the equivalent sphere space rather thaa orighinal 2D
catadioptric image. It allows to handle the specific distance associated tistoeet
image in a general framework. Second, we use an adapted neighllott perform
template matching by histogram comparison. It permits to compare tempjlaitsdy
while using an active neighborhood for space-variant windows. Alitiadal important
feature of our system is that no interpolation is performed: we directlk woithe orig-
inal catadioptric image. Experimental results demonstrated the validity girtposed
approach.

1 Introduction

Target tracking is an important task in computer vision afmbtic applications. The general
goal is to detect a specific target and track it along time irquence of images. Most of
existing algorithms for target tracking are composed a¢timportant aspects. The first one
is target representation (its signature) which aims toauttarize the target in terms of color
or shape for example. For fast execution, color representassociated with a rectangular
window centered at the object is usually preferred. Thersgespect is template compari-
son which measures the similarity of the representatiom diygothesized template with the
representation of the target. Popular similarity measergmbetween two rectangular win-
dows are sum of absolute difference (SAD) and normalizedscoorrelation (NCC). The
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third and final aspect is the search procedure whose goadisfime a smart method to find
the template that best matches with the target in the imalge niost basic search procedure
consists in performing a full search in the image (i.e. arypxel location) but it is very
slow. A very popular search procedure is the particle filtbicl is based on theoretical
justifications and is studied in this paper. Particle filteF) for target tracking have been
widely applied and great results can be obtained.

This paper particularly focuses on target tracking in dafattic images. Compared to
traditional vision, catadioptric vision offers a much wideld of view, which permits to
acquire more information from the environment. That is whgrenand more robots are
equipped with catadioptric camera that can see in “almostyedirection”. It has been
shown that these cameras can sensibly improve robustnéseanracy in robotic applica-
tions [3][10]. Whereas there exists a large literature on target tradiynBF on traditional
images, only a very few systems have been developed forioptdad images. Practical is-
sues of object tracking are related to occlusion, illumorathanges and scale, for which
several methods have been proposed. The goal of this papthés dedicated to handle
strong distortions inherent to catadioptric images, batgtoposed approach could also be
combined with some existing methods dealing with thesetjpadssues. The basic and
popular method of PF for catadioptric vision consists irstfiiectifying the catadioptric
image in a panoramic image and then, “blindly” applying itiadal PF on the panoramic
image [LO[9]. The main disadvantage is that rectification requires gelamount of com-
putation because of interpolation and introduces noiséénirhage. Moreover underlying
distortions still exist in the rectified image. Nowadaysisimore and more admitted that
the rectangular window and template matching commonly irsgdditional images are not
adapted for catadioptric vision. Indeed, some recent ggp@posed some new neighbor-
hood definitions and adapted template matching. For exarfifedefines some patches in
the mirror surface using some ranges of elevation and ahiawgles that play the role of
the height and the width of the usual rectangular shape. Tisrsmall patch is projected
in the catadioptric image. Since the size of the matchingdain depend on its location,
the windows have different sizes. Thus for comparison, titeas normalized to a com-
mon shape and size, which enables direct measure of traaitgdmilarity measure (e.qg.
SAD or NCC). This normalization process involves interpiola for each tested template,
which considerably increases the execution tindgpfoposed a similar neighborhood defi-
nition, with the difference that the elevation and azimuathges are applied in the equivalent
sphere surface (cf secti@) rather than the mirror surfacel] extended the NCC method
for catadioptric images where the correlation is computedhe sphere surface. This is a
very interesting approach but requires large computatsmabse of both interpolation in the
sphere and computation of the NCC itself. Moreover NCC siritif measure is not really
adapted for stochastic search because even if a small piiet tdrget is not included in the
template, the NCC will give a bad scor&1] proposed a particle filter-based approach for
3D tracking. This method can, in a sense, predict the distoliecause it tracks the object
directly in 3D. It avoids the resolution problem by using aspl sensor that provides a con-
stant resolution view of the ground plane. It leads to irgtng results but requires to known
apriori the shape of the object because it tries to detackitthe object boundary. Despite
not directly related to catadioptric vision, we can alseréb the method of1[3] developped
for lens distortion. Using a specific warping matrix, thehes aimed to handle changes in
perspective and scale but also the slight variations indéstertion across the image.

Our paper is divided into four main parts. First, catadilegirojection and the equivalent
sphere theorem are presented. Then, we remind particledigerithm for self-readability
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of the paper and clearer explanations. In the third part, ieegnt our proposed approach
for target tracking by particle filter in catadioptric imageFinally, some experiments are
performed to evaluate the proposed method.

Figure 1: Compared to a traditional perspective camer§),(efcatadioptric system (right)
can gather much more information from the environment thaokits wide field of view.
These two images have been acquired at the same positiomed lhex (in the right image)
corresponds to the portion of the perspective image incdudé¢he catadioptric image. In
the following, we will refer to the blind spot at the image taras the “inner circle” and the
large circular boundary as the “outer” circle.

2 Catadioptric Projection

Catadioptric cameras are a specific kind of omnidirecti@eaisors. They are composed
of a mirror with a specific shape and a camera (perspectivelecentric). Compared to
traditional cameras, they permit to acquire a much widet plthe environment (cf. Fig.
1). Baker and Nayar classified catadioptric sensors into tategories depending on the
number of viewpoints]]. Geyer and Daniilidis 1] have demonstrated the equivalence for
the single viewpoint category with a two-step projectioa &iunitary sphere centered on the
focus of the mirror (the single viewpoint). In order to apfiye equivalence, it is necessary
to know the intrinsic parameters of the camera and two aufditiparameters that define the
shape of the mirror and can be estimated by calibrationr(tefgL1] for further details on
their signification).

3 Particle Filter for Traditional Images

This section first briefly introduces the particle filter farget tracking in traditional images
and then, presents the histogram matching technique thiaei to represent and compare
the object to track with an hypothesized template.

Patrticle filter
This section briefly presents particle filter algorithm atsdassociated methods such as re-
sampling. Interested readers are invited to refef & &nd [7] for detailed information and
theoretical justifications. Particle filter (also known amdensation algorithm or boostrap
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filtering) is a widely used stochastic algorithm for approating aposteriori density. Leg

be a state vector of the target at time stegndz be the measurement vector at the same
time stept with observation history; = {2, z,...,z}. The goal is to estimate the location
of the target from the image measurements, i.e. the apostdistribution p(x|Z;). Let

s = {x,....x'} be a set oN particles at time. A samplex is selected from the set
with the probabilitys = p(z|x! ), wherep(z|X) is the normalized weight associated to the
jt" particle and corresponds to the likelihood tiais the true location of the target. The
next section will explain how to compute this weight by hggtam technique. In practice,
the samples are selected using a uniform generatd,dhand getting the corresponding
sample from the cumulative distribution pfz|x). Then the selected samples are diffused
by a dynamic modep(x;|%_1) to generate a new set of samples. For object tracking in an
image sequence, a constant velocity model is usually apfdiethe dynamic model.

In practice, a degeneracy phenomenon might occur, i.e.uaibte particle might have
negligible weight after a certain number of recursive st&ghenever a significant degener-
acy is observed, a common technique is to perform a resagngtiép that is also designed to
handle sample impoverishment (the particles that havewm@ghts are statistically selected
many times). To maintain the diversity among the particiegularization and MCMC-move
steps are two methods that are commonly appliégl [These two methods jitter the resam-
pled values using a Gaussian distribution whose varianemjgrically computed from the
weighted particles.

Histogram representation and matching
If the object to track exists in the image with no transforimratompared to its representa-
tion, then pixelwise methods such as SAD or NCC will indicatgingle peak value for the
correct location of the target. However if the target is canegl to a template that is slightly
translated/rotated with respect to the true locationtiarieof the target, then the similarity
will be very low. As a consequence, whereas a particle mayebgalosed to the true loca-
tion of the target, it might receive a low score. That is whgsth pixelwise methods usually
require scanning the whole search space and are not recatechéar stochastic search such
as particle filter. Histogram technique presents an intieiggand popular alternative for both
template representation and comparison. It is slightlgii@nt to translation, rotation, skew
and scale]4][ 18], and thus leads to great results for target tracking byigefilter [22]. A
common way to represent a template by an histogram is bastm @hromaticity space (eq
1) because it reduces the illumination change caused by ifletbess variation.
R G
[r7 g] = |:R ]
+G+BR+G+B
Several distances have been defined to compute the simitetitveen two histograms (cf
[16] for a review). For experiments, we have implemented theutgopMinkowski-form
distance of order 1 20)):

(1)

Nb Nb

diboH) =3 5 i)~ (. D) (2)

whereH, andH; are the histograms associated to the object to track andithent template,
and are composed &fb bins for the componentsandg of the chromaticity space. Other
distances like histogram intersection, KL-distance ortBttharyya coefficient could also
be used.
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4 Proposed Particle Filter for Catadioptric Images

First, this section discusses the limitations of the tiaddl particle filter for catadioptric
images with respect to the 3 aspects listed above (repetgantcomparison and search).
Then our proposed approach for extending particle filteatadioptric vision is presented.

4.1 Limitations of Traditional Particle Filter

The distortions inherent to catadioptric images inducesesanportant consequences for
the target tracking approach presented in the previoussggarticle filter associated with

histogram technique). First of all, the particles shoukpeet the distortion. For example, at
the initialization, the particles are usually uniformlsttibuted, but intuitively, there should

be more points at the center of the catadioptric image thdndrboundaries. It means the
sample distribution must be space-variant in the 2D imagerelver, the variance should be
appropriately updated with respect to the distortion sthealistance is not linear. Concern-
ing the histogram technique, it has been shown that the berbod must be space-variant:
larger in the image boundary than in the center. Moreovecesneighborhoods of different

size are compared, histogram matching must be extendedrpaze histograms of different

size. We will show that working on the equivalent sphere fgtes a nice general framework
to handle most of these aspects.

4.2 Modifications for the Particle Filter

We propose two important modifications for the particle filteepresentation of a particle
state and variance computation.

Particle state

In traditional images, particles usually take place in (the) space (i.e. in the image) and
are manipulated in this space. In order to deal with digiogj we suggest working in the
equivalent sphere space, rather than in the image 2D pladéhas the particles should be-
long to the surface of the sphere. This surface can be regeesasing spherical angles: the
azimuth@ € [, i1 and the elevatiop € [—11/2;71/2]. Therefore uniformly sampling the
(6, @) space permits to uniformly distribute some particles whiteply taking into account
the distortion. Similarly, diffusing the particles is penfned by simply manipulatin§g and

¢@. One may note that, in practice,angle is bounded by the vertical field of view of the

catadioptric systemp € [@iown; Qup)-

Variance computation
As explained in sectiof3, variance plays a key role in the regularization and MCMG#no
steps to maintain the particle diversity. When the state efghrticles are represented by
(x,y) in cartesian space, the variance can be easily compu}ed\[difficulty arises when
calculating the mean and the variance of angles because of/tting definition of angles.
For example, the arithmetic mean of two angle$60° and +160° is 0, which does not
correspond to the intuitive mean angtel80° (or 180). Thus it is clear that mean and
variance of spherical angles cannot be calculated by ivaditarithmetic formulae.

Let{0}={-nm<6<mi=1,...,N}and{g} ={-m/2<@ <m/2,i=1,...,N} be
the sets of the azimuth and elevation angles\dhe {w;,i = 1,...,N} the set of weights
assigned to each sample, computed by histogram matchingr ispecific application. Let



6 BAZIN et al: PARTICLE FILTER FOR CATADIOPTRIC IMAGES

note(8,dg) and(¢, o,) the mean/variance of the s€t8} and{@}. Circular statisticsg][4]
define the mean and variance of circular quantities as fetlow

6 =tan (yg,xg) andog = 1— /X2 +y3 3)

N N
wherexg = $ w;cos6 andyg = § w;sing,
2 2

By applying the same procedure for $et}, we can also compute the mean and variance for
the elevation angle.

4.3 Modifications for the Histogram Technique

This section presents how to define space-variant neigbbdrand how to compare his-
tograms of different sizes.

Neighborhood definition
The neighborhood of a given point for perspective imagesiglly simply defined as the
square region centered at this point. Due to distortionsh sudefinition is not appropriate
for catadioptric images. Among the neighborhood defingiadapted to catadioptric vision,
we selectedd] for his generality (definition on the sphere rather thantenrhirror surface).
Originally, the neighborhood of a point does not containoiten point, but for template
definition, the center point is usually included. So we dliginodify [6] to include the center
point. LetR a point in the image plari& projected on the sphef2 atA(R) = Ps= (6, ¢,1)
whereA() is the projection function from the image plaifeto the sphere surfac®. The
spherical neighborhood &%, notedNs(Ps), is defined as:

P, =(0',¢,1) € S? such that
Ns(Ps) = ¢ min(|¢—¢/|, 1~ |@— ¢/|) < @resn and @)
min(|0 — 6.2~ [0~ ') < Bwest

In plain English, the neighborhodds(Fs) is the set of spherical points contained in a
patch centered & and whose “lengths” alon§ and ¢ directions are respectivelnesh
and@nresn. Then the neighborhoad (R) of a pointP in the image plané is defined as the
pixels that lie in the projection of the spherical neighlmwti of its spherical point onto the
image plane:

Ni(R) = {R € I?/A(R)) € Ns(A(R))} (5)

For notation, the subscripts d&f andNs are used to emphasize tHdtand Ns respec-
tively corresponds to the neighborhoods in the image plamketie sphere space. These
equations permit to nicely define an adapted patch for eattitlpeon the sphere and build
their associated histogram. FEigshows some examples of patches obtained by this adaptec
neighborhood. An important remark is that no interpolat®mequired for this proposed
neighborhood since only the pixels of the original catattiopmage are used.

Histogram matching
As the neighborhood size depends on the location of thectgnive must be able to compare
histograms containing a different number of pixels. ObslgLthis problem can be solved by
normalizing the counts in the histogram, which can be donedaways (cf ecs). The basic
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Figure 2: Example of adapted neighborhood véith= @ = 4°. Notice the size and the shape
of the patches with respect to its location.

and intuitive solution is to divide the number of observatid each bin by the total number of
observations. Thus each bin corresponds to the proportideta and their sumis 1. Another
solution consists in dividing each bin by the total numbepiekls and multiplying by the
bin width. Whereas this normalization is less intuitive, érmits to model the distribution
by a probability density function (the area under the histagis equal to 1)4].

H(n) = NI:(n) andH(n) = w
;H(i) ;H(i)

whereH (i) represents the number of observations inithein of the histogrant andw(i)
the width of the'" bin.

(6)

5 Experimental Results

The experiments are conducted to compare two approachebject tracking: (1) tradi-
tional particle filter in the rectified panoramic image anggbposed particle filter in sphere
space. Our catadioptric system used in the experimentsipased of a Canon PowerShot
G10 camera and a mirror from the 0-360 company, and was atgithby P]. We acquired

6 sequences of catadioptric images with a resolution 06480 at 10 frames per second.
Each sequence is composed of about 1000 frames. At the dinséfof the sequence, the user
is invited to, first, select the object to track by clickingtbie image and then, set the template
size. This template is referred as “panoramic templateh@following. Then we compute
the neighborhood adapted for catadioptric images (cf@edtid). Since the template size
might influence the tracking results, the neighborhood mpatars6 and @ are calculated
such that the number of pixels in the rectangular and adapitedows are similar for fair
comparison of tracking algorithms. The template definedhgyadapted neighborhood is
referred as “catadioptric template” in the following. Thire histograms representing the
panoramic and catadioptric templates are built (cf se@)on

For traditional PF, we rectified each catadioptric image apanoramic imagelP][9].
Rectification is composed of two steps: coordinate warpimdyiaterpolation. The coordi-
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nate transformation can be performed once in pre-proagssid stored in a look-up table.
As previously explained, an important disadvantage ofiffeation is its computation re-
quirements due to interpolation. Moreover another prattidficulty is that the object to
track might be "split" during the rectification. For exampdesimilar problem occurs when
the world map sphere is projected into a Europe-centeredrpamic map: the Pacific Ocean
in split into 2 parts. In such case, the object obviously cafe tracked properly. For fair
comparison, we stored 2 look-up tables for warping andradttexd between them, depending
on whether or not the tracked object location in the prevfoarse is near the "splitting axis".
For proposed PF, we simply projected the catadioptric inmage the equivalent sphere. This
projection does not require any interpolation and can be diastantaneously by a look-up
table computed only once in pre-processing. Due to spadtion, examples of panoramic
images and spherical projections are not included.

tracking success rate (in %)

tested videos

Figure 3: Comparison of tracking accuracy between trauttigoarticle filter on rectified
panoramic images (blue bars) and our proposed particleditteriginal catadioptric images
(red bars). Refer to the text for the definition of tracking@aacy.

The goal is to track the template in the image sequence. A imdefined as a suc-
cess when the distance between the estimated locatioriretitay the best particle) and the
ground truth position (obtained manually) is less than aghold (10 pixels in our experi-
ments). Figure3 compares the tracking accuracy obtained by traditionalnRRe rectified
panoramic image and the proposed PF in the original catadidmage in the tested se-
guences. For the sequences 1 and 2, the traditional andga@poethods obtain similar
results. By analyzing the results, we have found two expiana. First, the targets (red
cup with white background and red car in parking lot) haverg gpecific signature for the
environment of these two sequences and thus the particdég eanverged to the true target
location. Second, when the user selected the targets atrshérdime, they were lying at
about the middle distance between the inner and outer siofléhe catadioptric image and
thus the distortion amplitude of the target was not very Ifigdif of the maximum distortion
amplitude). In the 4 other sequences, the objects to treank face, magazine, phone) did
not have a very specific signature. Moreover they were salawtar the outer circle in the
first frame and approached the image center several timésgdilne sequence in order to
demonstrate the consequences of distortion. For thesesees; the proposed method pro-
vides an higher tracking success rate. It clearly dematesti@ur approach can efficiently
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handles strong distortions while performing no interpgolaifor neither image rectification
nor template matching) and not having to consider the ‘tsmdjt difficulty.

Figure 4: Examples of occlusion-reappearance (O-R) ca3alsimn (a): O-R by the blind
spot of the inner circle and the camera holder after a yawiootacolumn (b): O-R by the
field of view (outer circle) after a yaw rotation; column (€):R by the field of view (outer
circle) after a pitch rotation.

The probability that the target is observable (i.e. liesdaghe field of view) is much
higher for catadioptric systems than for traditional caesethanks to their wider field of
view. Fig4 shows some practical cases where the target gets occludectappears. In
traditional vision, if the target leaves the field of viewcduld reappear anywhere near the
image boundaries. In catadioptric vision, if the objecvésathe field of view by the outer
(respectively inner) circle, it will likely reappear ne&etouter (respectively inner) circle. A
simple method to consider the target “occluded” is a thriesbo the histogram matching,
and more advanced method could be used. If the occlusiomear the outer (respectively
inner) circle, then we generate a new set of particles neawtter (respectively inner) circle.
Examples of re-detection by the proposed approach are simoliig 4. A similar approach
could be applied in the rectified panoramic image, but siheddrget location is not known,
then the rectification might split the target, as discusdexve. A solution would be to test
the 2 versions of the panoramic views (using the 2 look-ufegtbut would execute twice
slower. On the contrary, our approach works directly on thgirmal catadioptric image and
thus implicitly solves this difficulty.

6 Conclusion

This paper addresses the problem of object tracking bygbadiiter in catadioptric im-
ages. The difficulty of catadioptric vision is the distortimduced by the mirror, which
complicates the image processing. The proposed approacmigosed of two techniques
to correctly handle this important distortion. First, weposed manipulating the particles
in the equivalent sphere space rather than in the originat&Bdioptric image. It provides
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a general framework to easily handle the specific distansecésted to the distorted image.
Second, we combined an adapted neighborhood with histoggemique. It allows to com-

pare templates quickly while using an active neighborhasdgpace-variant windows. The
proposed approach provides 3 main advantages. First,mtifgeto correctly handle distor-

tion and track object more robustly, as demonstrated by xperéamental results. Second,
no interpolation is performed (for neither image rectificatnor template matching): we
directly work on the original catadioptric image which lsdd a faster execution. Finally, it
implicitly solves the problem where the target is split dgrthe rectification.
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