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1 Introduction

3D-models of urban scenes are very useful for many applications such as urban planning,

virtual reality, disaster recovery or computer games. The reconstruction of such scenes is

a well known computer vision problem which has been addressed by various approaches

providing integral building representations such as [2, 6, 12, 22], but remains an open issue

[16, 29].

1.1 Building modeling

With the new perspectives offered for the aid to navigation by general public softwares such

as Street View (Google) or GeoSynth (Microsoft), 3D building modeling is a topic of growing

interest. Many works have been recently proposed. Two main families of approaches may

be distinguished.

3D-primitive modeling - The first family represents buildings as 3D-object layouts [6,

11, 13, 17, 18, 26, 28]. These works efficiently detect and insert various urban objects such

as windows or doors in 3D building models. However, these limited parametric descriptions

fail to model fine details.

Mesh representation - The reconstruction of buildings with high order details, such as

ornament, statues and other irregular shapes, is mainly addressed by mesh generation tech-

niques using Laser scanning [3, 8] or multi-view stereo processes [9, 10, 25]. Multi-view

stereo techniques have significantly progressed during recent years as underlined in the com-

parative studies [20, 23]. Figure 1 highlights the quality of a mesh, especially for describ-

ing high order details. However, buildings are man made objects containing many regular

components such as planar or cylindrical shapes. Such a mesh representation gives a large

amount of useless information concerning these regular elements which could be more rele-

vantly described by parametric objects (e.g. wall facets by planes or columns by cylinders).
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The two families have complementary advantages : semantic knowledge and model com-

paction for the former, detail modeling and non-restricted use for the latter. A natural idea,

but still unexplored, would consist in merging both the families in order to propose a hy-

brid modeling. Regular elements would be representing by 3D primitives whereas irregular

structures would be described by meshes. In this paper, we propose a process for substitut-

ing regular mesh patches by 3D-objects. This is of interest for several reasons: (i) the in-

troduction of semantic knowledge in the mesh; (ii) the simplification of the modeling while

preserving details; and (iii) the corrections of some errors generated by the multi-view stereo

processes.

Figure 1: Modeling by mesh representation output by a multi-view stereo process (data from

[23], results from [25]).

1.2 Strategy

Extracting 3D-primitives from meshes without a preliminary segmentation is a difficult prob-

lem [7]. It has been addressed by [5] for simplifying a mesh into a 3D-plane layout, and then

extended by [27] for modeling with quadrics. However, such an approach cannot be effi-

ciently adapted for image-based modeled meshes which contain noise, facet density varia-

tions, multi-scale components and errors/approximations resulting of multi-view stereo pro-

cesses as shown on Figure 1. We adopt a more robust two step strategy consisting in (i)

segmenting the mesh, and (ii) fitting 3D-primitives on the obtained partition where it is rele-

vant. Section 2 presents the segmentation process based on a curvature analysis of the mesh.

A multi-label energy taking topological smoothness constraints into account is formulated.

The optimal labeling is estimated by α-expansion. The 3D-primitive extraction from the ob-

tained partition is then described in Section 3. An error parameter controls the fitting quality

and decides whether a mesh cluster has to be substituted by a plane, sphere, cylinder, cone

or torus. In addition, a refinement process corrects the eventual errors generated during the

segmentation step. Experimental results on real building meshes and also on synthetic data

are given in Section 4. Basic conclusions are outlined in Section 5.

2 Mesh segmentation

Let us consider a three dimensional boundary mesh M defined as a tuple {V,E,F} of vertices

V , edges E and triangular faces F . We aim to segment the vertices of the mesh M into subsets

corresponding to regions of interest.
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2.1 Geometric attributes based on curvature analysis

Many kinds of local geometric attributes have been proposed in the literature for segmenting

synthetic meshes such as multi-scale blowing bubbles, 3D feature descriptors or skeleton

knowledge. The comparative studies proposed in [1, 21] present the most efficient tech-

niques for extracting information from synthetic meshes. Most of these techniques cannot be

adapted to meshes generated by multi-view stereo processes due to the problems mentioned

in Section 1. Local differential geometry estimates are known to be robust for analyzing the

mesh topology. The principal curvatures kmin and kmax and their associated direction vectors

wmin and wmax measure how the surface bends by different amounts in different directions

(see Figure 2). In order to distinguish the various types of shapes, this curvature informa-

tion is used to label the mesh according to four labels of interest: planar (kmax = kmin = 0),

developable convex (kmin = 0 < kmax), developable concave (kmin < kmax = 0) and non de-

velopable surfaces (kminkmax 6= 0).

Figure 2: Principal curvatures - left: representation of (kmin,kmax), right: map of the label

dominance in function of kmin and kmax (blue sector indicate that the highest probability is

obtained for the ’planar’ label, red for ’developable convex’, green for’developable concave’

and yellow for’non developable’).

Let us consider L = {1,2,3,4}, the label set corresponding to the classes mentioned above

respectively. Let l = (l1, ..., lN) be a label configuration in L N , associated with the N vertices

of the mesh M. By denoting Gσ (k) = exp(−k2/2σ2) the non normalized centered Gaussian

distributions with a standard deviation σ , we can express the probability of each label at the

vertex i as a combination of the curvature distributions:

Pr(li|k
(i)
min,k

(i)
max) =






Gσ (k
(i)
min)Gσ (k

(i)
max) if li = 1

Gσ (k
(i)
min)(1−Gσ (k

(i)
max)) if li = 2

(1−Gσ (k
(i)
min))Gσ (k

(i)
max) if li = 3

(1−Gσ (k
(i)
min))(1−Gσ (k

(i)
max)) if li = 4

(1)

Figure 2 presents the behavior of this probability in function of the couple (kmin,kmax). The

label configuration maximizing ∏
i∈V

Pr(li|k
(i)
min,k

(i)
max), denoted by l̂P, is simple to compute and

provides an interesting estimator in the case of synthetic meshes as we can see with the

Fandisk and Cup models presented on Figure 3. However, the results obtained from non

synthetic meshes are clearly more limited. Additional information has to be taken into ac-

count to improve results.
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2.2 A multi-label energy model

The energy of the configuration l is formulated using both a consistency term and topological

smoothness constraints, balanced by the parameter β > 0:

U(l) = ∑
i∈V

Di(li)+β ∑
{i, j}∈E

Vi j(li, l j) (2)

Consistency The consistency Di(li) which measures the coherence of the label li at the

vertex i is computed using the probability Pr(li|k
(i)
min,k

(i)
max) (see Eq.1) such as:

Di(li) = 1−Pr(li|k
(i)
min,k

(i)
max) (3)

The sensitivity of the consistency term is controlled by the standard deviation σ of the prin-

cipal curvature distributions (See Figure 2). Taking a low σ value makes the consistency

term more selective with planar and developable labels and favors the non developable one.

On the contrary, a high value has to be chosen for dealing with noise corrupted meshes.

Topological smoothness constraints The term Vi j represents a pairwise interaction po-

tential between adjacent vertices i and j. It expresses prior knowledge about the optimal

labeling.

Vi j(li, l j) =

{
1 if li 6= l j

min(1,a||Wi −Wj||2) otherwise
(4)

where a is a scale factor fixed proportionately to the mean edge length ê of M, and Wi and

Wj are 6×1 vectors combining the principal direction vectors and their curvatures:

W =

(
kmin.wmin

kmax.wmax

)
(5)

This term introduces spatial smoothness constraints which take into account the mesh topol-

ogy. Two principles define the behavior of Vi j:

• Smoothness on regular surfaces - In order to favor the label homogeneity in a neigh-

borhood, adjacent vertices are penalized if their labels are different. This principle acts

like the Potts model (See Figure 3-2nd and 4th rows).

• Edge preservation - The boundaries are preserved by taking into account the prin-

cipal direction vector variations of adjacent vertices with similar labels. The mesh

is then partitioned according to changes of local differential geometry. For example,

it allows the separation of two connected planes with different normals (See Figure

3-Corner model).

2.3 Optimization by α-expansions

Finding the label configuration that minimizes the energy U requires advanced optimiza-

tion techniques since U is a non convex function defined in a multi-label space. We use the

α-expansion algorithm [4] based on the Graph-cuts theory. One can easily check that our

energy fits the requirements for this method. This algorithm allows us to quickly reach an

approximate solution close to the global one. To accelerate the convergence, l̂P is chosen as
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initialization. Note that faster algorithms such as Logcut [14] could be used. However, the

time savings would be minor since we have a small number of labels.

Figure 3: Mesh segmentation - from top to down: original mesh, l̂P estimator (blue=’planar’,

red=’developable convex’, green=’developable concave’ and yellow=’non developable’),

edge term of the regularizing part of the energy (||Wi −Wj||2) (red=high values, black=low

values), our labeling result after energy minimization.

Figure 3 shows results of the segmentation stage. The proposed multi-label energy signifi-

cantly improves the results compared to the l̂P estimator for the non synthetic meshes. The

various parts are correctly identified: walls, roofs or stairs are associated with the planar

label - columns, corners or vaultings with developable convex or developable concave labels

- and ornaments or statues with the non developable one. The edges are accurately localized

due to the detection of principal direction vector variations (See 3-3rdrow). It allows us to

extract these components easily by a region growing process (see Figure 4). The next stage

consists in fitting 3D-primitives to the obtained partition.

3 Geometric shape extraction

In the sequel, we call cluster a connected region of same label extracted by the previous

process. Each cluster of the segmented mesh is then compared to a set of 3D-primitives

composed of planes, spheres, cylinders, cones and tori. They represent the most common

regular shapes which can be found on buildings.

Extraction strategy- In order to avoid an exhaustive comparison between a cluster and all
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the types of 3D-primitives, the labeling information obtained in the previous stage is used to

drive the shape extraction. A cluster labeled as a planar component is then compared to a

plane, developable convex and developable concave clusters to cylinders and cones, and non

developable clusters to spheres and tori. An error parameter ξ controls the fitting quality. If

the quadratic error between the optimal primitive and the cluster is lower than ξ , the cluster

is substituted by the detected primitive. Otherwise, the rejected cluster is compared to the

other types of 3D-primitives. This second fitting test prevents wrong labelings generated

by scale ambiguities. For example, the large vaultings on Figure 3 are mistakenly labeled

as ’planar’ clusters due to the low values of their principal curvatures. This additional test

correctly fits these vaultings to cylinders (See Figure 5). Finally, if the cluster is still rejected

during this second test, it keeps its triangular mesh representation.

Object fitting - Severals works such as [19, 24] have been proposed to detect shapes in

point clouds containing outliers. Contrary to point clouds, meshes have generally less out-

liers and exhibit useful topological information. Outlier rejection based techniques such

as the RANSAC algorithm are not required for our problem due to our preliminary seg-

mentation. Plane fitting can be easily performed using a Principal Component Analysis

(PCA). However, fitting spheres, cylinders, cones or tori has no closed-form solution when

the dataset only represents an unknown portion of the whole shape. Thus, it requires an

iterative non-linear minimization, typically using a Levenberg-Marquardt optimization. We

base our fitting on [15], that proposes a parametrization and a first order Euclidean distance

approximation to spheres, cylinders, cones and tori, that behaves well as curvatures vanish.

This allows numerically stable fittings of more complex shapes on a dataset close to a sim-

pler shape (sphere, cone, cylinder or torus fitting of an almost planar patch, cone fitting of an

almost cylindrical patch, torus fitting of a spherical or a conical patch...).

Figure 4: 3D-primitive extraction - left: multi-initialization using local differential geometry

estimates (highlighted here as small purple patches), right: examples of fitted primitives with

segmented meshes (top) and hybrid representations (down).

A multi-initialization strategy using local differential geometry estimates - Relying on

a non-linear optimization, the quality of the fitting process depends on its initialization. [15]

estimates an initialization from a global criterion. Here, for more robustness, we propose

to let multiple initializations based on various local estimates compete, and keep the overall

best fit (see Figure 4-left). Differential geometry estimates have already been computed for

each vertex to drive the segmentation. Considering a small set of seed vertices covering the
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whole patch, we initialize a non-linear optimization for each seed vertex position using its

differential geometry estimates. The parameterizations in [15] use an arbitrary point on the

shape to parametrize the whole shape using its local differential geometry (normal vector,

principal curvatures and directions). Spheres and cylinders are completely parameterized

using the local estimates of a seed vertex. Cones, which are generalized cylinders with a

center at infinity, are initialized using the locally estimated cylinder. Turning to tori, they

contain an inner and an outer circle, where the normals are orthogonal to the axis of revolu-

tion. Supposing a seed vertex is on such a circle then yields two possible torus initializations

which are optimized independently.

4 Experiments

Our approach is tested on real meshes generated by the multi-view stereo technique pro-

posed in [25]. Figure 4 shows the potential of the method on some details whereas Figure

5 presents results on various larger scenes. There is, to our knowledge, no other method

proposing hybrid representations. However, we evaluate our results qualitatively and quan-

titatively with a visual evaluation, a compression rate study and an accuracy improvement

experiment.

Visual evaluation - The obtained hybrid representations are promising and provide inter-

esting simplified modelings of the original meshes while preserving details. The overall

rough components of buildings are reconstructed by 3D-primitive layouts with an accuracy

controlled by ξ . Such object layouts are very useful since they allow the introduction of

semantic information in the modeling. Structural components such as walls, roofs, windows

or dormer windows can be easily identified from the obtained primitives by a subsequent

basic analysis1 as one can see on Figure 5-4th row. The results reveal the reconstruction

of interesting fine details such as thin pipes located at the vaultings on Figure 5-2nd row or

small statue heads on Figure 5-last row.

Compression rate- The compression rate, defined as the ratio between the original mesh

and the hybrid representation, is function of the error parameter ξ . Table 1 shows that it in-

deed also depends on the scene: a scene containing many regular components (e.g. Church)

has a better factor than one composed of many irregular shapes (e.g. Fountain-P11). The

experiments presented Figure 5 are conducted with ξ = ê and give both a good compression

ratio and visually acceptable results. Figure 6 compares our method with a state-of-the-art

decimation method (the one in CGAL library2). For a given compression rate, our represen-

tation gives a better description than the decimated mesh which is uniformly degraded with

no semantic awareness. Indeed, taking the geometric regularity of the scene into account is

relevant for buildings: on this detail, planes and cylinders are clearly identified.

Accuracy improvement- In order to quantify in what extent our representation is better than

the decimated one, we evaluate the error with respect to the (range scanned) ground truth.

In fact, our method even allows the corrections of some errors already contained in the non-

decimated model! For instance, the noisy balls and waveform ornament are regularized by

half a sphere and a set of toroidal patches respectively on Figure 4. The error occupancy

1For example, one can detect walls by just selecting tall surface planar primitives which are vertical.
2http://www.cgal.org/
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Figure 5: Large scenes- from left to right: original mesh, segmented mesh, 3D-primitives

(purple=plane, pink=cylinder, blue=cone, yellow=sphere, green=torus), hybrid representa-

tion. From top to bottom: Church, Herz-Jesu-P25, Fountain-P11, Castle-P30, Calvary.
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Table 1: Compression rates in function of the error ξ .

ξ = 0.1ê ξ = 0.5ê ξ = ê ξ = 5ê ξ = 10ê

Church 1.27 3.55 4.59 10.43 10.43

Herz-Jesu-P25 1.12 3.57 5.93 10.78 11.34

Fountain-P11 1.09 2.33 3.6 6.34 11.51

Castle-P30 1.1 2.19 3.96 8.87 11.21

histogram, measured with respect to the standard deviation Σ of the ground truth accuracy

(see [23]), quantifies this improvement. The number of low-error vertices if higher for the

hybrid representation than for the original stereo mesh, mainly transferring from the 2Σ bin

to the Σ one (Figure 6 bottom). This is indeed a first step toward a more extensive evalua-

tion, since this improvement seems to concern subset of the mesh the has to be identified and

closely analyzed. Yet, the benchmark website of [23] only outputs global statistics and does

not easily allow this investigation.

Limitations- Our approach cannot extract piecewise 3D-primitives merged in a single clus-

ter. For example, the Ω shape ornaments above the doors of the Herz-Jesu mesh (see Figure

5-2nd row) are not reconstructed because they are composed of cylinders and tori. The com-

pression rate could be improved by proposing a process for fitting several objects per cluster.

Moreover, the process is not well adapted to smoothness variations over the mesh. To solve

this problem, β could be locally adjusted according to some estimated local quality.

Figure 6: From left to right, top : details of ground truth [23], original mesh [25], state-of-

the-art decimated mesh (compression rate=3.6), and our representation (same compression

rate). Bottom row : error of the original mesh with respect to ground truth (white=low,

black=high), error of our representation, histogram of the errors [23].

5 Conclusion

We propose an hybrid representation of noisy 3D models such as buildings obtained by

multi-view stereo. This representation merges meshes and 3D-primitives. It provides high

compression rates while keeping details, introduces semantic knowledge despites noise cor-
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ruption, and even improves accuracy of the original reconstruction. Both the proposed multi-

label energy formulation for mesh segmentation and the contributions for 3D-primitive fitting

could be used for others meshing applications. In the future, we will study the simultaneous

generation of meshes and 3D-primitives during the multi-view stereo process. This would

allow us to take interactions between meshes and primitives into account, but would require

more complex models and advanced 3D-primitive samplers.
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