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Abstract

Augmented Kernel Matrix (AKM) has recently been proposed to accommodate for
the fact that a single training example may have different importance in different fea-
ture spaces, in contrast to Multiple Kernel Learning (MKL) that assigns the same weight
to all examples in one feature space. However, the AKM approach is limited to small
datasets due to its memory requirements. An alternative way to fuse information from
different feature channels is classifier fusion (ensemble methods). There is a significant
amount of work on linear programming formulations of classifier fusion (CF) in the case
of binary classification. In this paper we derive primal and dual of AKM to draw its
correspondence with CF. We propose a multiclass extension of binary ν-LPBoost, which
learns the contribution of each class in each feature channel. Existing approaches of CF
promote sparse features combinations, due to regularization based on `1-norm, and lead
to a selection of a subset of feature channels, which is not good in case of informative
channels. We also generalize existing CF formulations to arbitrary `p-norm for binary
and multiclass problems which results in more effective use of complementary informa-
tion. We carry out an extensive comparison and show that the proposed nonlinear CF
schemes outperform its sparse counterpart as well as state-of-the-art MKL approaches.

1 Introduction
Due to the importance of complementary information in feature combination [4, 10, 12, 16,
18, 21], much research has been done in the field of feature design [11, 20] to diversify
kernels. Proper selection and fusion of these kernels is, therefore, crucial. The key idea of
MKL, is to learn a linear combination of base kernels by maximizing soft margin between
classes [10]. Alternatively, AKM [23] is proposed arguing that in MKL a single kernel
corresponding to a particular feature space is attributed a single weight. Therefore, MKL
does not exploit information from individual samples in different feature spaces, e.g., in the
context of object recognition, some samples can carry more shape information while others
may carry more texture information for the same object category. In contrast to MKL, the
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main idea of CF [8] is to construct a set of base classifiers and then classify a new sample
by a weighted combination of their predictors. CF attracted much attention, after the success
of AdaBoost [4] in particular, in many practical applications [4, 7, 16]. This led to linear
programming (LP) formulations of AdaBoost [7, 16]. The fundamental problem with AKM
is its large augmented matrix which makes it inapplicable to large datasets. We derive primal
and dual of AKM and draw a comparison between AKM and CF, by carefully analysing the
dual and the feature space of AKM.

We present a novel multiclass CF scheme (NLP-νMC) based on binary ν−LPBoost [16],
which incorporates arbitrary norms {`p, p ≥ 1} and optimizes the contribution from each
class in each feature channel. We also incorporate nonlinear constraints in previously pro-
posed binary ν−LPBoost and multiclass LPBoost [5] and show empirically that the nonlin-
ear variants perform consistently better than their sparse counterparts, and baseline methods.
The proposed optimization problems are nonlinear separable convex problem which can be
solved using off-the-shelf solvers. It is important to note that both LP-β and LP-B [5] are
different than NLP-νMC. In particular, the number of constraints in the optimization prob-
lems and the concept of margin are significantly different (see Section 3.1). For example,
LP-B is not applicable to large multiclass datasets due to large number of constraints. We
consider our extensive evaluation and comparison to the state-of-the-art fusion approaches as
another important contribution of the paper. We perform experiments on multilabel and mul-
ticlass problems using standard benchmarks including Pascal VOC 2007, Flower 17, Flower
102 and Caltech101. Our multiclass formulation and nonlinear extensions of CF consistently
outperforms the state-of-the-art MKL and sparse CF schemes. Note that we use object recog-
nition datasets for evaluation, however, the proposed fusion schemes can be applied to any
underlying pattern recognition problems provided that we have multiple feature channels.

The rest of paper is organized as follows. In Section 2 we present AKM structure and
drive its primal and dual to draw its correspondence with classifier fusion. We then discuss
LP formulation of CF in Section 3 which also present proposed multiclass CF scheme and
extend LP formulation of binary and multiclass classifier fusion. In Section 4 we present the
evaluation results and conclude in Section 5.

2 AKM and its Correspondence to Classifier Fusion
In this section, we first present the structure of AKM and give its primal and dual formula-
tions for binary classification. We then draw the correspondence between AKM and classi-
fier fusion by analysing the dual of AKM. Consider we are given m training samples (xi,yi),
where xi is a sample in input space and yi ∈ ±1 is its label. Feature extraction results in n
training kernels Kp and n test kernels K̇p. Each kernel Kp = 〈Φp(xi),Φp(x j)〉 implicitly maps
samples xi from the input space to a feature space with a mapping function Φp(xi). In MKL
the aim is to find a linear combination ∑

n
p=1 βpKp, normal vector w and bias b of separating

hyperplane simultaneously such that the soft margin between classes is maximized [10]. The
primal and its corresponding dual for a linear combination of kernels are derived for various
formulations in [1, 9, 10, 19]. In contrast, in AKM [23], given a set of base training kernels
(Kp) the augmented kernel is defined as follows:

K = K1⊕·· ·⊕Kn =

 K1 · · · 0
...

. . .
...

0 · · · Kn

 (1)

Citation
Citation
{Kittler, Hatef, Duin, and Matas} 1998

Citation
Citation
{Freund and Schapire} 1995

Citation
Citation
{Freund and Schapire} 1995

Citation
Citation
{Grove and Schuurmans} 1998

Citation
Citation
{Rätsch, Schölkopf, Smola, Mika, M{ü}ller, and Onoda} 2000

Citation
Citation
{Grove and Schuurmans} 1998

Citation
Citation
{Rätsch, Schölkopf, Smola, Mika, M{ü}ller, and Onoda} 2000

Citation
Citation
{Rätsch, Schölkopf, Smola, Mika, M{ü}ller, and Onoda} 2000

Citation
Citation
{Gehler and Nowozin} 2009

Citation
Citation
{Gehler and Nowozin} 2009

Citation
Citation
{Lanckriet, Cristianini, Bartlett, Ghaoui, and Jordan} 2004

Citation
Citation
{Bach, Lanckriet, and Jordan} 2004

Citation
Citation
{Kloft, Brefeld, Sonnenburg, Zien, Laskov, and M{ü}ller} 2009

Citation
Citation
{Lanckriet, Cristianini, Bartlett, Ghaoui, and Jordan} 2004

Citation
Citation
{Sonnenburg, Rätsch, Schafer, and Schölkopf} 2006

Citation
Citation
{Yan, Mikolajczyk, Kittler, and Tahir} 2010{}



AWAIS, YAN, MIKOLAJCZYK, KITTLER: AKM VS CF FOR OBJECT RECOGNITION 3

where base kernels are on the diagonal. The zeros on off diagonal reflect that there are no
cross terms between different kernel matrices, hence, the feature spaces of base kernels in
AKM do not interfere with each other 1. This fact is important and can be used to show the
relationship between AKM and classifier fusion. Note that all base kernels are of size m×m
while the AKM is of size (n×m)× (n×m), thus it uses n×m training samples instead of
m. The primal of AKM scheme is then given by:

min
w,ξ ,b

1
2

n

∑
p=1
〈wp,wp〉+C

n×m

∑
i=1

ξi (2)

s.t. yi(
n

∑
p=1
〈wp,Φp(xi)〉+b)≥ 1−ξpi, ξpi ≥ 0, i = 1, . . . ,m, p = 1, . . . ,n

The dual of Eq. (2) can be derived using Lagrange multiplier techniques. Note that the same
samples from different feature channels are added as separate examples of the same class,
therefore, one Lagrange multiplier αpi is learned for each sample from each feature channel.
The dual of AKM is given as follows:

max
α

m

∑
i=1

α1i−
1
2

m

∑
i, j=1

α1iα1 jyiy j〈Φ1(xi),Φ1(x j)〉+ ...+ (3)

m

∑
i=1

αni−
1
2

m

∑
i, j=1

αniαn jyiy j〈Φn(xi),Φn(x j)〉

s.t.
m

∑
i=1

α1iyi + ...+
m

∑
i=1

αniyi = 0, 0� α �C,

By comparing Eq. (3) to standard dual formulation of single kernel SVM it can be seen that
the AKM dual consists of sum of n duals problems corresponding to each base kernel. Also
there are no cross term between different feature spaces in objective which points to the fact
that feature channels are independent. Therefore, solving optimization problem of Eq. (3) is
similar to solving the dual problem of each base kernel and then sum them together. In case
of test pattern the solution will be the unweighted sum of output from each base classifier
which in fact is classifier fusion with unweighted sum.

3 Classifier Fusion with Non-Linear Constraints
In this section we review the LP formulation of CF (ensemble methods) based on boosting.
We also extend the ν-LP-AdaBoost [16] formulation for binary classification with nonlinear
constraints to avoid discarding of channels with complementary information while keeping
it robust to noisy feature channels. We focus on the LP formulations of AdaBoost [4] and its
soft margin formulations [16]. It has been argued that AdaBoost tries to maximizes smallest
margin ρ on the training set [7, 16]. Based on this and the idea of soft margin SVM, ν-
LP-AdaBoost has been proposed in [16]. Roughly speaking the minimum margin of an
ensemble on a training set is the smallest confidence it gives to a training example. We define
margin (classification confidence) for an example xi as, ρi := yi f (xi) = yi ∑

n
r=1 βrgr(xi) and

the normalized (smallest) margin as, ρ := min1≤i≤m yi ∑
n
r=1 βrgr(xi).

1It can also be seen by analysing the Empirical feature space X for training kernel K of size m×m which can be
derived by eigen value decomposition as shown in [23].
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The ν-LP-AdaBoost performs a sparse selection of feature channels due to `1 regulariza-
tion, which is suboptimal if all feature channels carry complementary information. Similarly,
in the case of `∞ norm, noisy features channels may have significant impact on results. To
address these problems we generalize binary classifier fusion for arbitrary norms {`p, p≥ 1}.
In contrast to AdaBoost, we consider n fixed number of base classifiers {gr,∀r = 1, . . . ,n}
which are independently trained. A feature channel gives rise to a kernel Kr, which is used
to train a base classifier, gr(x). As number of base hypothesis is fixed, the aim of ensemble
learning in this case is to find the optimal weight vector β for a linear combination of the
base classifiers, f (x) = ∑

n
r=1 βrgr(x). Given base classifiers, we learn the optimal weights βr

by maximizing the smallest margin ρ in the following optimization problem:

max
β ,ξ ,ρ

ρ− 1
νm

m

∑
i=1

ξi (4)

s.t. yi

n

∑
r=1

βr fr(xi)≥ ρ−ξi , ‖β‖p
p ≤ 1, β � 0,ξ � 0,ρ ≥ 0 ∀ i = 1, ...,m

where ξi are slack variables which accommodate negative margins. The regularization con-
stant is given by 1

νm , which corresponds to the C constant in SVM. Problem (4) is a nonlinear
separable convex optimization problem and can be solved efficiently for global optimal so-
lution by standard optimization toolboxes2.

3.1 Multiclass Classifier Fusion with Non-Linear Constraints
In this section we propose a novel multiclass extension of ν-LP-AdaBoost and compare it
with other existing multiclass variants. We also incorporate nonlinear constraints in two
existing multiclass classifier fusion schemes: LP-β [5] and LP-B [5]. The empirical results
show that the nonlinear constraints improve the performance of these methods.
Nonlinear Programming ν-Multiclass (NLP-νMC): We consider one-vs-all formulation
for multiclass case with NC classes, i.e., for each feature channel we solve NC binary prob-
lems, one corresponding to each class. Therefore, each base classifiers now maps into an
NC dimensional space, gr(x) 7→ RNC , and the output corresponding to c’th class is denoted
by gr,c(x). We train all base classifiers individually as in the case of binary classifier fusion.
Note that in practice the predictions for all base classifiers can be computed in parallel as they
are independent of each other, which makes this approach appealing. We learn the weights
for every class in each feature channel and, therefore, instead of n dimensional weight vector
β ∈ Rn as in case of binary classifier fusion, we have an n×NC dimensional weight vec-
tor β ∈ Rn×NC . After finding the optimal weights, the decision function for a test sample
x is given by selecting maximum response class among weighted sum of classes across all
channels. We extend the definition of margin for binary CF to multiclass CF as follows:

ρ(xi,β ) :=
n

∑
r=1

β(NC(r−1)+yi)gr,yi(xi)−
n

∑
r=1

NC

∑
j=1, j 6=i

β(NC(r−1)+y j)gr,y j(xi) (5)

The classification confidence for examples xi depends upon β and scores from base clas-
sifiers. The main difference between the two margins is that here, we are taking the class

2We have used MATLAB and MOSEK (http://www.mosek.com) and found that interior-point based separable
convex solver in MOSEK is faster by an order of magnitude of time.

Citation
Citation
{Gehler and Nowozin} 2009

Citation
Citation
{Gehler and Nowozin} 2009



AWAIS, YAN, MIKOLAJCZYK, KITTLER: AKM VS CF FOR OBJECT RECOGNITION 5

confidence of true target class and subtracts the combined effect of all the non-target classes
from it, this difference is then summed over all feature channels. This is done for all n feature
channels. The normalized (smallest) margin can then be defined as ρ := min1≤i≤m ρ(xi,β ).
Inspired by the soft margin LP formulations of AdaBoost we propose to maximize the nor-
malized margin ρ to learn linear combination of base classifiers. This formulation does not
force all the margins to be greater than zero. To avoid penalization of informative channels
and to gain robustness against noisy feature channels, we change the regularization norm to
handle any arbitrary norm `p,∀p≥ 1. The optimization problem is given by:

max
β ,ξ ,ρ

ρ− 1
νm

m

∑
i=1

ξi (6)

s.t.
n

∑
r=1

β(NC(r−1)+yi)gr,yi(xi)−
n

∑
r=1

NC

∑
j=1, j 6=i

β(NC(r−1)+y j)gr,y j(xi)

≥ ρ−ξi i = 1, ...,m, (7)
‖β‖p

p ≤ 1,ρ ≥ 0,β � 0 ξ � 0 ∀i = 1, ...,m

where 1
νm is the regularization constant and gives a trade-off between minimum classification

confidence ρ and the margin errors. The main difference between this formulation and the
formulation in Eq. (4) is the definition of margin used in the constraints in Eq. (7), in which
the difference between the classification confidence of the true class and the joint confidence
of all other classes is lower bounded. Note that the total number of constraints is equivalent to
the number of training examples m plus one regularization constraint for lp-norm (ignoring
variables positivity constraints). Therefore, the difference in complexity, compared to the
binary classifier fusion, is the increased number of variables in weight vector β , while having
the same number of constraints. In the rest of this section, we extend two multiclass CF
schemes: LP-β and LP-B, proposed in [5] by introducing arbitrary regularization norms
`p,∀p≥ 1, which avoids rejection of informative feature channels while being robust against
noisy features channels. The optimization problems of NLP-νMC, NLP-β and NLP-B, are
nonlinear separable convex and can be solved using MOSEK.
Nonlinear Programming-β (NLP-β ): We generalize LP-β [5] by incorporating `p,∀p≥ 1
norm constraints. The optimization problem is given by:

min
β ,ξ ,ρ

−ρ +
1

νm

m

∑
i=1

ξi (8)

s.t.
n

∑
r=1

βrgr,yi(xi)−max
n

∑
y j 6=yi,r=1

βrgr,y j(xi)≥ ρ−ξi, ∀ i = 1, ...,m (9)

‖β‖p
p ≤ 1, βr ≥ 0, ξi ≥ 0,ρ ≥ 0, ∀r = 1, . . . ,n,∀ i = 1, . . . ,m.

Note that weight vector β lies in an n dimensional space β ∈ Rn as in classifier fusion.
After finding the weight vector β , the decision function of generalized LP-β is simply the
maximum response of the weighted sum of all classes in all feature channels.
Nonlinear Programming-B (NLP-B): We also propose an extension of multiclass LP-B [5]
with arbitrary regularization norms `p,∀p ≥ 1. Instead of having a weight vector β , LP-B
has a weight matrix B ∈ Rn×NC . For learning weights in matrix B, we propose the following
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convex optimization problem:

min
B,ξ ,ρ

−ρ +
1

νm

m

∑
i=1

ξi (10)

s.t.
n

∑
r=1

Byi
r gr,yi(xi)−

n

∑
y j 6=yi,r=1

B
y j
r gm,y j(xi)≥ ρ−ξi i = 1, ...,m, (11)

‖B‖p
p ≤ 1, Bc

r ≥ 0, ξ � 0,ρ ≥ 0, ∀ r = 1, ...,n,c = 1, ...,NC

The constraints in Eq. (11) gives a lower bound on the pairwise difference between clas-
sification confidences of the true class and non-target class. Note that in this formulation
NC−1 constraints are added for every training example and the total number of constraints
is m× (NC−1)+1.
Discussion: The main difference between the three multiclass approaches presented in this
section is in the definition of the feasible region which is defined by Eq. (7), Eq. (9) and
Eq. (11) for NLP-νMC, NLP-β and NLP-B respectively. In NLP-β the feasible region
depends on the difference between the classification confidence of the true class and the
closest non-target class only. The total number of constraints in this case is m+ 1. The
feasible region of NLP-B is defined by the pairwise difference between class confidence
of the true class and non-target class added as one constraint at a time. In other words
each difference pair is added as an independent constraint without having any interaction
among each other. There are NC constraints for each example and the total numbers of
constraints are m× (NC−1)+1. The large number of constraints makes this approach less
attractive for datasets with a large number of classes. For example, for Caltech101 [3] with
only 15 images per class for training, the number of constraints for LP-B is more than 150
thousand (15×101×100+1∼= 1.5×105). The feasible region of NLP-νMC, depends upon
the joint classification confidence of all the non-target classes subtracted from classification
confidence of the true class. Thus, the feasible region of NLP-νMC is much smaller than the
feasible region of NLP-B. Due to these joint constraints the total number of constraints for
NLP-νMC is m+ 1, e.g., for Caltech101 with 15 images per class for training, the number
of constraints for NLP-νMC is only 1516 (15*101+1) which is only 1% of the constraints
in NLP-B. We, therefore, can apply NLP-νMC to large multiclass datasets, as opposed to
NLP-B, especially for norms greater than 1. Note that the difference in complexity between
NLP-νMC and NLP-β or binary CF is the extended weight vector β .

4 Experiments and Discussion
This section presents the experimental evaluation of the methods investigated in this paper
on a multi-label dataset, namely, Pascal VOC 2007 and three multiclass datasets, namely,
Flower17, Flower102 and Caltech101. For multi-label dataset we use binary relevance [17]
as it is recommended by the organizers of Pascal VOC challenge [2]. The MKL results on
Pascal VOC 2007 are reported using binary MKL from SHOGUN toolbox3, and for CF we
use ν-LP-AdaBoost given in Eq. (4). For multiclass dataset we have used multiclass MKL
from the SHOGUN. For CF we use three CF schemes proposed in this paper namely, NLP-
νMC, NLP-β and NLP-B given in Section 3.1. We do not have results for higher values of
norms in case of NLP-B, and for some norms in case of MKL because their optimization

3http://www.shogun-toolbox.org/
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hhhhhhhhhhFusion Methods

norms 1 1+2−3 1+2−2 1+2−1 2 3 4 8 `∞

MKL 55.4 56.4 58.5 61.1 621.0 62.5 62.6 62.8 62.9
CF 63.7 63.9 64.0 64.0 64.0 64.0 63.8 63.7 63.1

Table 1: Mean Average Precision of PASCAL VOC 2007.

Figure 1: Pascal VOC 2007. Feature channels weights learned with various `p for CF(`p)

problems take several days. On the other hand NLP-β and NLP-νMC are very fast as com-
pared to multiclass MKL and NLP-B and take few seconds and few minutes, respectively.
We have verified equivalence of AKM and CF (`∞) empirically and got the same results (up
to 4th significant figure), therefore, we are only presenting results in term of CF.

4.1 Pascal VOC 2007
Pascal VOC 2007 [2] is one of the most challenging object recognition dataset consisting
of 20 object classes with 9963 image examples. Classification of 20 object categories is
handled as 20 independent binary classification problems. We present results using average
precision (AP) [2] and mean average precision (MAP).

We combined 5 base kernels to produce state-of-the-art results on this dataset by using
descriptors introduced in [11, 20]. We use RBF kernel [19] based on χ2 distance matrix. We
apply SVM as base classifiers, for CF schemes proposed in this paper, with the regulariza-
tion parameter C in the set {2(−2,0,3,7,10,15)}. The regularization parameter ν for different CF
methods is in the range ν ∈ [.05, .95] with the step size of 0.05. Both SVM and CF regulariza-
tion parameters are selected on the validation set. The values for norms for MKL and CF are
in the range p ∈ {1,1+2−5,−3,−1,2,3,4,8,104}. We consider each value of p as a separate
fusion scheme. Figure 1 shows learned weights on the training set of aeroplane category of
Pascal VOC 2007 for several values of p using CF. The plotted weights are corresponding to
the optimal value of C. The sparsity of learned weights can be observed easily for low values
of p. The sparsity decreases with increased p, up to uniform weights (corresponding to `∞)
achieved at p = 10000. Weights can also be learned corresponding to best performing p on
validation set. The results for several fusion methods are given in Table 1. Low performance
of MKL-`1-norm, which leads to sparse selection, indicates that base kernels carry comple-
mentary information. Therefore, the non-sparse MKL or CF methods, give better results as
reported in Table 1. Unweighted sum in the case of MKL is performing better than any other
MKL methods which reflects that in case of all informative channels, learning the weights
for MKL does not improve much on this dataset. The proposed non-sparse CF schemes
outperform the state-of-the-art MKL (`2-norm, `∞-norm) by 2 % and 1.1% respectively.

4.2 Oxford Flower 17
Oxford Flower 17 [14] consists of 17 categories with 80 images in each category. The dataset
is split into training, validation and test using 3 predefined random splits by the authors of
the dataset. For experiments we have used the 7 χ2 distance matrices provided online4.
RBF kernels are computed using these distance matrices. We have used SVM as a base

4http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/index.html
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ML-Methods 1 1+2−3 1+2−1 2 3 4 8
MKL 87.2±2.7 74.9±1.7 72.2±3.6 71.2±2.7 70.6±3.8 73.1±3.9 81.0±4.0
NLP-β 86.5±3.3 86.6±3.4 86.6±1.1 86.7±1.2 87.4±1.5 87.9±1.8 87.8±2.1
NLP-νMC 85.5±1.3 86.6±2.0 87.6±2.2 87.7±2.6 87.8±2.1 87.7±2.0 87.8±1.9
NLP-B 84.6±2.5 84.6±2.4 84.8±2.6 84.8±2.5 85.5±3.7 86.9±2.7 87.3±2.7

Comparison with State-of-the-Art
MKL-prod [5] 85.5 ± 1.2
MKL-avg (`∞) [5] 84.9 ± 1.9
CF (`∞) / AKM 86.7 ± 2.7
CG-Boost [5] 84.8 ± 2.2
MKL (SILP or Simple) [5] or OBSCURE [15] 85.2 ± 1.5
LP-β [5] 85.5 ± 3.0
LP-B [5] 85.4 ± 2.4
MKL-FDA (`p) [22] 86.7 ± 1.2

Table 2: Classification Rate on Flower17.

ML-Methods 1 1+2−3 1+2−1 2 3 4 8 `∞

MKL 69.9 64.7 65.3 65.9 65.7 - - 73.4
NLP-β 61.2 75.7 73.5 74.7 73.0 73.9 74.6 73.0
NLP-νMC 72.6 73.1 73.2 73.3 73.4 73.4 73.4 73.0
NLP-B 73.6 - - - - - - 73.0

Comparison with State-of-the-Art
MKL-prod 73.8
MKL-avg 73.4
MKL [13] 72.8

Table 3: Mean accuracy on Oxford Flower 102 dataset.

classifier and its regularization parameter is in the range {10(−2,−1,...,3)}. The Regularization
parameter for different CF is in the range ν ∈ {0.05,0.1, . . . ,0.95}. Both SVM and CF
regularization parameters are selected on the validation set. To carry out a fair comparison,
the regularization parameters and other setting are the same as in [5].

The results are given in Table 2 and compared with the state-of-the-art. The baselines for
MKL and CF are MKL-avg(`∞) and CF(`∞). Nonlinear versions of classifier fusion perform
better than their sparse counterparts as well as state-of-the-art MKL. The best result in CF
is obtained by the proposed NLP-νMC (`2) and NLP-β (`4). They outperform the MKL
baseline by more than 2.5% and multiclass MKL by 0.6%. The second half of Table 2
shows comparison with published state-of-the-art results. According to our knowledge the
best performing method published, using the 7 distance matrices provided online, is giving
86.7% which is similar to the CF baseline. Our best CF method outperforms it by 1.2%.

4.3 Oxford Flower 102
Oxford Flower 102 [13] is an extended multiclass dataset containing 102 flower categories.
The dataset is split into training, validation and test using a split predefined by the authors of
the dataset. For the experiments we use RBF kernels using 4 χ2 distance matrices provided
online5. The experimental setup is the same as for Oxford Flower 17.

The results are given in Table 3. We have not reported the variance of the results as the
authors have given only 1 split online and for a fair comparison with previously published
results we use the same split as used by other authors. Multiclass MKL doesn’t perform well
on this dataset and performs significantly lower that its baseline (MKL `∞). The best among
classifier fusion is the NLP-β (`1+2−3 ) scheme. It performs 5.8% better than multiclass
MKL and 2.3%, 2.7% better than MKL and CF baselines, respectively. Note that NLP-νMC
performs slightly worse than NLP-β as it has to estimate NC times more parameter than NLP-

5http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/index.html
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ML-Methods 1 1+2−3 1+2−1 2 3 4 8
MKL 68.6±2.2 61.2±1.1 58.1±0.8 57.4±0.7 57.0±0.6 - 63.9±0.9
NLP-β 69.0±1.8 68.6±2.2 69.1±1.2 69.0±1.4 69.2±1.5 69.0±1.3 69.0±1.3
NLP-νMC 67.4±2.4 68.7±1.8 68.4±1.0 68.5±0.8 68.4±0.7 68.4±0.7 68.4±0.7
NLP-B 64.1±0.7 - - - - - -
MKL-prod 62.2 ± 0.6
MKL-avg (`∞) 67.4 ± 1.1
CF (`∞) 68.4 ± 0.7

Table 4: Mean accuracy on Caltech101 dataset.

β in the presence of few training example per category. For example, compared to Flower17
it has 2 times less training data per class while numbers of classes are 6 times more. We
expect NLP-νMC to perform better in the presence of more training data. The results for
MKL are reported from [13] for comparison. In comparison to the published results, our
best method has an improvement of 3.4% which is a significant gain.

4.4 Caltech101

Caltech101 [3] is a multiclass dataset consisting of 101 object categories and a background
category. There are 31 to 800 images per category of medium resolution (200 × 300).
We follow the common practice used on this dataset, i.e., use 15 randomly selected images
per category for training and validation, while up to 50 images per category are randomly
selected for testing. The average accuracy is computed over all 101 object classes. This
process is repeated 3 times and the mean accuracy over 3 splits is reported for each method.
In this experiment, we combine 10 features channels based on the features introduced in [11,
20] with dense sampling strategies. We use RBF kernel function to compute kernel matrices
from the χ2 distance matrices. The experimental setup is the same as for Oxford Flower 17.

The results of the proposed methods are presented in Table 4. Classifier fusion achieves
best results on this dataset (NLP-β`3)). It performs 1.8% and 0.7% better than MKL and
CF baselines and performs 0.6% better than multiclass MKL. NLP-νMC performs slightly
worse than NLP-β as it has to estimate NC times more parameter than NLP-β in the presence
of few training example per category. For example, compared to Flower17 it has 3 times less
training data per class while numbers of classes are 6 times more. It is well known that the
type and number of kernels have a large impact on the overall performance. Therefore, a
direct comparison of scores with the published methods is not entirely fair. Nonetheless, it
can be noted that the best performing methods on Caltech101 in [6] and [5] using a single
kernel are giving 60% and 61% respectively. The performance in [5] using 8 feature channels
is close to 63% while the performance using 39 kernels is 70.4%. Similarly, performance
in [15] using 39 kernels is approximately 69%, while picking the best 5 kernels out of 39 is
giving approximately 70%. Note that our best method is giving 69.2% using 10 kernels only.

5 Conclusions
In this paper we draw a correspondence between AKM and CF with unweighted sum of en-
sembles. We also proposed a nonlinear separable convex optimization formulation for mul-
ticlass classifier fusion (NLP-νMC) which learn the weight for each class in every feature
channel. We have also extended linear programming for binary and multiclass classifier fu-
sion to nonlinear separable convex classifier fusion by incorporating arbitrary norms. Unlike
the existing methods, these formulations do not reject informative feature channels and make
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the classifier fusion robust to both noisy and redundant feature channels which results in an
improved performance. We have performed comparative experiments on challenging object
recognition benchmarks for both multi-label and multiclass cases. The proposed methods
perform better than the state-of-the-art MKL methods. In addition to this, the non-sparse
version of the CF is performing better than sparse selection of feature channels.

The two step training of CF may seem as an overhead. However, the first step is in-
dependent for each feature channel as well as each class and can be performed in parallel.
Independent training also makes the systems applicable to large datasets. Moreover, in MKL
one has to train an SVM classifier several times in α-step before getting the optimal weights.
As MKL is optimizing parameters jointly, one may argue that the independent optimization
of weights in case of classifier fusion is less effective. However, as our consistently better
results show, these schemes seem to be more suitable for visual recognition problems. The
proposed classifier fusion schemes seem to be attractive alternatives to the state-of-the-art
MKL approaches and address the complexity issues of the MKL.
Acknowledgements. This research was supported by UK EPSRC EP/F0034 20/1, EP/F0694
21/1 and the BBC R&D grants.
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