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Abstract 

Recent advances in radio and embedded systems have enabled the proliferation of wireless 

sensor networks. Wireless sensor networks are tremendously being used in different 

environments to perform various monitoring tasks such as search, rescue, disaster relief, 

target tracking and a number of tasks in smart environments. In many such tasks, node 

localization is inherently one of the system parameters. Node localization is required to report 

the origin of events, assist group querying of sensors, routing and to answer questions on the 

network coverage. So, one of the fundamental challenges in wireless sensor network is node 

localization. This paper reviews different approaches of node localization discovery in 

wireless sensor networks. The overview of the schemes proposed by different scholars for the 

improvement of localization in wireless sensor networks is also presented. Future research 

directions and challenges for improving node localization in wireless sensor networks are 

also discussed. 
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1. Introduction 

The massive advances of microelectromechanical systems (MEMS), computing and 

communication technology have fomented the emergence of massively distributed, wireless 

sensor networks consisting of hundreds and thousands of nodes. Each node is able to sense 

the environment, perform simple computations and communicate with its other sensors or to 

the central unit. One way of deploying the sensor networks is to scatter the nodes throughout 

some region of interest. This makes the network topology random. Since there is no a priori 

communication protocol, the network is ad hoc. These networks are tremendously being 

implemented to perform a number of tasks, ranging from environmental and natural habitat 

monitoring to home networking, medical applications and smart battlefields. Sensor network 

can signal a machine malfunction to the control centre in a factory or it can warn about 

smoke on a remote forest hill indicating that a forest fire is about to start. On the other hand 

wireless sensor nodes can be designed to detect the ground vibrations generated by silent 

footsteps of a burglar and trigger an alarm. 

Since most applications depend on a successful localization, i.e. to compute their 

positions in some fixed coordinate system, it is of great importance to design efficient 

localization algorithms. In large scale ad hoc networks, node localization can assist in routing 

[1], [2], [3]. In the smart kindergarten [4] node localization can be used to monitor the 

progress of the children by tracking their interaction with toys and also with each other. It can 

also be used in hospital environments to keep track of equipments, patients, doctors and 

nurses [1]. 

For these advantages precise knowledge of node localization in ad hoc sensor networks is 

an active field of research in wireless networking. Unfortunately, for a large number of sensor 

nodes, straightforward solution of adding GPS to all nodes in the network is not feasible 

because: 

 In the presence of dense forests, mountains or other obstacles that block the 

line-of-sight from GPS satellites, GPS cannot be implemented. 

 The power consumption of GPS will reduce the battery life of the sensor nodes and 

also reduce the effective lifetime of the entire network. 

 In a network with large number of nodes, the production cost factor of GPS is an 

important issue. 

 Sensor nodes are required to be small. But the size of GPS and its antenna increases 

the sensor node form factor. 

For these reasons an alternate solution of GPS is required which is cost effective, rapidly 

deployable and can operate in diverse environments. 

The paper is organized as follows. Section 2 presents the formulation of localization 

problem in wireless sensor networks. Related work has been discussed in section 3. In section 

4, presents different location discovery approaches to solve the problem of localization in 

wireless sensor networks (WSN). In section 5 different proposals to improve localization in 

WSN are discussed. Section 6 states the summary of all proposals. Section 7 concludes the 

paper where the future challenges and directions to improve localization in WSN technology 

are described. 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2010, Vol. 2, No. 1 

www.macrothink.org/npa 47 

2. Problem Definition 

Consider the case when we have deployed a sensor network consist of N sensors at 

locations S = {S1, S2,…….,SN}. Let Sx
i
 refer to the x-coordinate of the location of sensor i 

and let Sy
i
 and Sz

i
 refer to the y and z coordinates, respectively. Constraining Sz

i
 to be 0 

suffices the 2D version of this problem. Determining these locations constitutes the 

localization problem. Some sensor nodes are aware of their own positions, these nodes are 

known as anchors or beacons. All the other nodes localize themselves with the help of 

location references received from the anchors. So, mathematically the localization problem 

can be formulated as follows: given a multihop network, represented by a graph G = (V, E), 

and a set of beacon nodes B, their positions {xb, yb} for all b  B, we want to find the position 

{xu, yu} for all unknown nodes u  U. 

 

3. Related Work 

Localization in WSN is an active area of research and so there are some existing literature 

surveys [23], [24] on this topic. In these literatures the authors discuss most important 

localization techniques and critique those techniques. But there are some existing techniques 

which use two localization techniques such as multidimensional scaling (MDS) and 

proximity based map (PDM) [16] or MDS and Ad-hoc Positioning System (APS) [17]. These 

techniques have not been mentioned in any literature but these techniques give new directions 

in WSN localization as these schemes give high accuracy in low communication and 

computation cost. On the other hand interferometric ranging based localization has been 

proposed in [18], [19], [20] which have not been discussed by any existing literature.  

Moreover due to channel fading and noise corruption error propagation comes in picture. To 

suppress this error propagation a localization scheme has been proposed in [21] which was 

not been discussed by any literature. This literature gives comprehensive summary of these 

techniques along with other existing localization schemes. At the same time this paper also 

compares all localization techniques and also provides future research directions in this area. 

 

4. Different Location Discovery Approaches 

Existing location discovery approaches basically consists of two basic phases: (1) 

distance (or angle) estimation and (2) distance (or angle) combining. The most popular 

methods for estimating the distance between two nodes are described below: 

Received Signal Strength Indicator (RSSI): RSSI measures the power of the signal at the 

receiver and based on the known transmit power, the effective propagation loss can be 

calculated. Next by using theoretical and empirical models we can translate this loss into a 

distance estimate. This method has been used mainly for RF signals. RSSI is a relatively 

cheap solution without any extra devices, as all sensor nodes are likely to have radios. The 

performance, however, is not as good as other ranging techniques due to the multipath 

propagation of radio signals. In [26], the authors characterize the limits of a variety of 

approaches to indoor localization using signal strengths from 802.11 routers. They also 

suggest that adding additional hardware or altering the model of the environment is the only 
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alternative to improve the localization performance. 

Time based methods (ToA, TDoA): These methods record the time-of-arrival (ToA) or 

time-difference-of-arrival (TDoA). The propagation time can be directly translated into 

distance, based on the known signal propagation speed. These methods can be applied to 

many different signals, such as RF, acoustic, infrared and ultrasound. TDoA methods are 

impressively accurate under line-of-sight conditions. But this line-of-sight condition is 

difficult to meet in some environments. Furthermore, the speed of sound in air varies with air 

temperature and humidity, which introduce inaccuracy into distance estimation. Acoustic 

signals also show multi-path propagation effects that may impact the accuracy of signal 

detection. 

Angle-of-Arrival (AoA): AoA estimates the angle at which signals are received and use 

simple geometric relationships to calculate node positions. Generally, AoA techniques 

provide more accurate localization result than RSSI based techniques but the cost of 

hardware of very high in AoA. 

 

For the combining phase, the most popular alternatives are: 

Hyperbolic trilateration: The most basic and intuitive method is called hyperbolic 

trilateration. It locates a node by calculating the intersection of 3 circles as shown in Fig. 1(a). 

Triangulation: This method is used when the direction of the node instead of the distance is 

estimated, as in AoA systems. The node positions are calculated in this case by using the 

trigonometry laws of sines and cosines (shown in Fig. 1(b)). 

Maximum Likelihood (ML) estimation: ML estimation estimates the position of a node by 

minimizing the differences between the measured distances and estimated distances (shown 

in Fig. 1(c)).  

5. Different Proposals For Network Management And Control Issues 

This section presents different proposals put forward by the research community in the 

areas of localization in wireless sensor networks and critiques their contributions. 

Research on localization in wireless sensor networks can be classified into two broad 

categories. 

Centralized Localization: Centralized localization is basically migration of inter-node 

ranging and connectivity data to a sufficiently powerful central base station and then the 

migration of resulting locations back to respective nodes. The advantage of centralized 

algorithms are that it eliminates the problem of computation in each node, at the same time 

the limitations lie in the communication cost of moving data back to the base station. As 

 
 

(a) (b) (c) 

 
Fig.1. Localization techniques a) Hyperbolic trilateration b) Triangulation c) Maximum Likelihood Estimation 
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representative proposals in this category [5], [6], [7] are explained in greater detail. 

Distributed Localization: In Distributed localizations all the relevant computations are 

done on the sensor nodes themselves and the nodes communicate with each other to get their 

positions in a network. Distributed localizations can be categorized into three classes.  

 Beacon-based distributed algorithms: Beacon-based distributed algorithms start with 

some group of beacons and nodes in the network to obtain a distance measurement to 

a few beacons, and then use these measurements to determine their own location. 

Some of the proposals [8], [9], [10], [11], in this category are described below. 

 Relaxation-based distributed algorithms: In relaxation-based distributed algorithms 

use a coarse algorithm to roughly localize nodes in the network. This coarse algorithm 

is followed by a refinement step, which typically involves each node adjusting its 

position to approximate the optimal solution. Some of the proposals [12], [13] in this 

category are discussed in greater details.  

 Coordinate system stitching based distributed algorithms: In Coordinate system 

stitching the network is divided into small overlapping subregions, each of which 

creates an optimal local map. Next the scheme merges the local maps into a single 

global map. Some approaches [14], [15] of this category are examined in the next 

section.  

 Hybrid localization algorithms: Hybrid localization schemes use two different 

localization techniques such as : multidimensional scaling (MDS) and proximity 

based map (PDM) or MDS and Ad-hoc Positioning System (APS) to reduce 

communication and computation cost. Such kinds of approaches are depicted in [16], 

[17].  

 Interferometric ranging based localization: Radio interferometric positioning exploits 

interfering radio waves emitted from two locations at slightly different frequencies to 

obtain the necessary ranging information for localization. Such types of localization 

techniques are proposed in [18], [19] and [20]. 

 Error propagation aware localization: When sensors communicate with each other, 

error propagation can be caused due to the undesirable wireless environment, such as 

channel fading and noise corruption. To suppress error propagation [21] has proposed 

a scheme called error propagation aware (EWA) algorithm. 

A classification of various schemes is shown in Fig. 2. 
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4.1. Centralized Localization 

 

4.1.1. MDS-MAP 

In [5] the authors present a centralized algorithm called MDS-MAP (mentioned in 

Appendix A) which basically consists of three steps.  

1. First the scheme computes shortest paths between all pairs of nodes in the region of 

consideration by the use of all pair shortest path algorithm such as Dijkstra’s or Floyd’s 

algorithm. The shortest path distances are used to construct the distance matrix for MDS. 

2. Next the classical MDS is applied to the distance matrix, retaining the first 2 (or 3) 

largest eigenvalues and eigenvectors to construct a 2-D (or 3-D) relative map that gives a 

location for each node. Although these locations may be accurate relative to one another, the 

entire map will be arbitrarily rotated and flipped relative to the true node positions. 

3. Based on the position of sufficient anchor nodes (3 or more for 2-D, 4 or more for 3-D), 

transform the relative map to an absolute map based on the absolute positions of anchors 

which includes scaling, rotation, and reflection. The goal is to minimize the sum of squares of 

the errors between the true positions of the anchors and their transformed positions in the 

MDS map.  

The advantage of this scheme is that it does not need anchor or beacon nodes to start with. 

It builds a relative map of the nodes even without anchor nodes and next with three or more 

anchor nodes, the relative map is transformed into absolute coordinates. This method works 

well in situations with low ratios of anchor nodes. A drawback of MDS-MAP is that it 

requires global information of the network and centralized computation. 

 

4.1.2. Localize node based on Simulated Annealing 

In [6] the authors propose an innovative approach based on Simulated Annealing to 

localize the sensor nodes in a centralized manner. Since the algorithm is centralized, it enjoys 

 
Fig.2. Classification of various proposals for Localization in WSN 
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the access to estimated locations and neighbourhood information of all localizable nodes in 

the system. Let us consider a sensor network of m anchor nodes with known locations and 

n-m sensor nodes with unknown locations. As the proposed algorithm is implemented in a 

centralized architecture, it has access to estimated locations and neighborhood information of 

all localizable nodes in the system. The proposed scheme is based on two stages. In the first 

stage simulated annealing is used to obtain an estimate of location of the localizable sensor 

nodes using distance constraints. Let us define the set Ni as a set containing all one hop 

neighbors of node i. The localization problem can be formulated as: 

 

Min ∑i=m+1 to n∑j€Ni (d
^
ij – dij)

2
             (1) 

 

In equation (1), dij is the measured distance between node i and its neighbor j; dˆij = √{(xˆi 

− xˆj)
2
 + (yˆi − yˆj)

2
} is the estimated distance; (x

^
i, y

^
i) and (x

^
j,y

^
j) are the estimated 

coordinates of node i and its one hop neighbor j respectively and the cost function CF = 

∑i=m+1 to n∑j€Ni (d
^
ij – dij)

2
. Then according to Simulated Annealing coordinate estimate (x

^
i, y

^
i) 

of any chosen node i is given a small displacement in a random direction and the new value 

of the cost function is calculated for the new location estimate. If Δ(CF) ≤ 0, (Δ(CF) = CFnew 

− CFold ) then the perturbation is accepted and the new location estimate is used as the 

starting point of the next step. Otherwise the probability that the displacement is accepted is 

P(Δ(CF)) = exp(−Δ(CF)/T ). Here T is a control parameter and P is a monotonically 

increasing function of T. 

In the next stage of the algorithm the authors eliminate the error caused by flip ambiguity. 

Flip ambiguity occurs when a node’s neighbors are placed in positions such that they are 

approximately on the same line, this node can be reflected across the line of best fit produced 

by its neighbors with essentially no change in the cost function. In Fig. 3, the neighbors of 

node A are nodes B, C, D and E which are almost collinear and the node A could be flipped 

across the line of best fit of nodes B, C, D and E to location A
/
 with almost no change in the 

cost function. But we should note from Fig. 3 that the flipped position A
/   

has gone into the 

wrong neighborhood of nodes H and I. Based on this observation the authors define a 

complement set comp(Ni) of the set Ni as a set containing all nodes which are not neighbors 

of node i. If R is the transmission range of the sensor node and the estimated coordinate of 

node j ∈ comp(Ni) is such that dˆij < R, then the node j has been placed in the wrong 

neighborhood of node i, resulting in both nodes i and j having each other as wrong neighbors. 

So the minimum error due to the flip is dˆij – R and the new localization problem can be 

formulated as in equation (2).  

 

Min ∑i=m+1 to n ( ∑j€Ni (d
^
ij - dij)

2
 + ∑ (d

^
ij – R)

2
)             (2)      

 

The paper presented a novel simulated annealing based localization algorithm which 

mitigates the flip ambiguity problem. By simulations the authors the authors show that the 

proposed algorithm gives better accuracy than the semi-definite programming localization.  
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They show that the proposed algorithm does not propagate error in localization. The 

proposed flip ambiguity mitigation method is based on neighborhood information of nodes 

and it works well in a sensor network with medium to high node density. However when the 

node density is low, it is possible that a node is flipped and still maintains the correct 

neighborhood. In this situation, the proposed algorithm fails to identify the flipped node. 

 

4.1.3. A RSSI-based centralized localization technique 

In [7] the authors propose a scheme which localizes nodes through RF attenuation in 

Electromagnetic waves. The scheme basically consists of three stages: 

1) RF mapping of the network: It is obtained by conveying short packets at different 

power levels through the network and by storing the average RSSI value of the 

received packets in memory tables. 

2) Creation of the ranging model: All the tuples recorded between the two anchors are 

processed at the central unit to compensate the non linearity and calibrate the model. 

Let a generic tuple (i, j, Ptx, Prx) comes from the RF mapping characterizing stage, 

where i is the transmitting node and j is the receiving node. Now first the algorithm 

corrects the received power as Prx
/
 =f(Prx, Ptx), f() is a function which takes into 

account the modularity effects. So, the estimated distance between the nodes will be 

rij
0 
= m

-1
(Prx

/
) 

3) Centralized localization model: An optimization problem is solved and provides the 

position of the nodes. The final result can be obtained by minimizing the function  

E=∑i=1 to n∑j=1 to n (ki,jai,j ( rij-rij 
0
)
2
) , rij = d(i, j) when i and j are anchors. 

 

Where N is the number of nodes, ai,j is 1 when the link is present and 0 otherwise. 

Once the distance between the nodes rij can be expressed in terms of their coordinates 

(x, y)i and (x, y)j the authors solve the minimizing problem by sequential quadratic 

programming (SQP) method. 

The advantage of this scheme is that it is a practical, self-organizing scheme that allows 

addressing any outdoor environments. The limitation of this scheme is that the scheme is 
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Fig.3. Illustration of Flip Ambiguity [6] 
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power consuming because it requires extensive generation and need to forward much 

information to the central unit. 

 

4.2. Distributed Localization 

 

4.2.1. Beacon based distributed localization 

Beacon based approaches can be categorized in Diffusion, Bounding Box and Gradient 

which are described as follows: 

 

4.2.1.1. Diffusion 

In diffusion the most likely position of the node is at the centroid of its neighboring 

known nodes. 

APIT: In [8] the authors describe a novel area-based range free localization scheme, 

called APIT which requires a heterogeneous network of sensing devices where some devices 

are equipped with high-powered transmitters and location information. These devices are 

known as anchors. In this approach the location information is performed by isolating the 

environment into triangular regions between beaconing nodes. An unknown node chooses 

three anchors from all audible anchors and tests whether it is inside the triangle formed by 

connecting these three anchors. APIT repeats this tests with different audible anchor 

combinations until all combinations are exhausted or the required accuracy is achieved. At 

this point, APIT calculates the centre of gravity of the intersection of all triangles in which 

the unknown node resides to determine the estimated position. 

The advantage of APIT lies in its simplicity and ease of implementation. But APIT requires a 

high ratio of beacons to nodes and longer range beacons to get a good position estimate. For 

low beacon density this scheme will not give accurate results. 

 

4.2.1.2. Bounding Box 

Bounding box forms a bounding region for each node and then tries to refine their 

positions. 

 

4.2.1.2.1. Collaborative Multilateration 

In [9] the authors present a collaborative multilateration approach that consists of a set of 

mechanisms that enables nodes found several hops away from location aware beacon nodes 

collaborate with each other to estimate their locations with high accuracy. Collaborative 

multilateration consists of three phases: 

 Forming Collaborative sub trees: A computation sub tree constitutes a configuration 

of unknowns and beacons for which the solution of the position estimates of the 

unknown can be uniquely determined. The requirement of one-hop multilateration for 

an unknown node is that it is within the range of at least three beacons (see Fig 4(a)). 

A two hop multilateration represents the case where the beacons are not always 

directly connected to the nodes but they are within a two hop radius from the 

unknown node (see Fig. 4(b)). 
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 Obtaining initial estimates: This phase is explained by the help of Fig. 5. In Fig. 5 A 

and B are beacons where C is the unknown node. If the distance between C and A is a 

then the x coordinate of C are bounded by a to the left and to the right of the x 

coordinate of A, xA – a and xA + a. Similarly beacon B which is two hops away from 

C, bounds the coordinate of C within xB – (b + c) and xB + (b + c). by knowing the 

information, C can determine that its x coordinate bounds with respect to beacons A 

and B are xB + (b + c) and xA – a. The same operation is applied on the y coordinates. 

C then combines its bounds on x and y coordinates, to obtain a bounding box of the 

region where it lies. 

 Position refinement: In the third phase, the initial node positions are refined using 

Kalman Filter implementation (mentioned in the Appendix B). Now as most unknown 

nodes are not directly connected to beacons, they use the initial estimates of their 

neighbours as the reference points for estimating their locations. As soon as an 

unknown node computes a new estimate, it broadcasts this estimate to its neighbours, 

and the neighbour use it to update their own position estimates. As shown in Fig. 6 

first node 4 computes its location estimate using beacons 1 and 5 and node 3 as 

 

Unknown Node Beacon Node 

       (a)        (b) 

 
Fig.4. (a) One-hop Multilateration (b) Two-hop Multilaretation 

 

A 

B 

C 

Beacon Node 

b+c 

a a 

c 
a 

b 

From [xA – a] to [xB + (b + c)] 

B Unknown Node 

 
Fig.5. X coordinates bounds for C using initial estimates [9] 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2010, Vol. 2, No. 1 

www.macrothink.org/npa 55 

reference. Once node 4 broadcasts its update, node 3 recomputes its own estimate 

received from node 4. Next node 3 broadcasts the new estimate and node 4 uses this 

to compute a new estimate that is more accurate than its previous estimate. 

The collaborative multilateration enables sensor nodes to accurately estimate their 

locations by using known beacon locations that are several hops away and distance 

measurements to neighboring nodes. At the same time it increases the computational cost 

also. 

4.2.1.2.2. Node localization assuming the region as square box 

In [10] the authors frame the localization problem as follows. They have assumed that in 

a square region Q = [0, s] x [0,s], called region of operations, N nodes S1, ………, SN have 

been scattered and each of which is equipped with an RF transceiver with communication 

range r > 0. In other words a node Si can communicate with every node which lies in its 

communication region, which is the disk with radius r centered at Si. The nodes form an ad 

hoc network Ŋ in which there is an edge between Si and Sj if their distance is less than r. They 

scheme assume that there are certain positive number of beacons nodes in Q and other are 

unknown nodes. Now  for any integer n > 0, partition Q into n
2
 congruent squares called 

cells of area (s/n)
2 

and for every known node S, we know the cell which contains S. To make 

the problem tractable the authors assume that communication range is ρ calls where ρ = 

[nr/s√2], where [x] denotes the integer part of x, which means that each node S can 

communicate with every node lying in the square centered at S and containing (2ρ + 1)
2 

cells. 

Usually n is large and r is much smaller than n. In particular 2ρ + 1 < n. Then for an arbitrary 

unknown S in Ŋ the localization algorithm at S can be written as: 

Step 1: Initialize the estimate: Ls = Q. 

Step 2: Send Hello packets to the neighbours. Each known neighbor sends back (1, a, b), 

where (a, b) is its grid position, while each unknown neighbor sends (0, 0, 0). 

Step 3: For each response (1, a, b), update the estimate as shown in equation (3). 

 

Ls = Ls ∩ [a – ρ, a + ρ] x [b – ρ, b + ρ]             (3) 

 

    4 

    3 

1 

2 
5 

    

 Beacon Node  

Unknown Node  

 
Fig.6. Initial estimates over multiple hops 
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Step 4: Stop when all responses are received. The position estimate is Ls. 

In this approach an unknown node could query some of its neighbours which reduce 

communication cost but increases computations. 

 

4.2.1.3. Gradient 

In [11] the authors describe an algorithm for organizing a global coordinate system from 

local information. In this approach ad-hoc sensor nodes are randomly distributed on a two 

dimensional plane and each sensor communicates with nearby sensors within a fixed distance 

r, where r is much smaller than the dimension of the plane. In their algorithm they assume 

some set of sensors as “seed” sensors which are identical to other sensors in capabilities 

except that they are programmed with their global position. The algorithm consists of two 

parts: 

 Gradient Algorithm: - Each seed sensor produces a locally propagating gradient that 

allows other sensors to estimate the distance from the seed sensors. A seed sensor initiates 

a gradient by sending its neighbors a message with its location and a count set to one. 

Each recipient remembers the value of the count and forwards the message to its 

neighbors with the count incremented by one. Hence a wave of messages propagates 

outwards from the seed. Each sensor maintains the minimum counter value received and 

ignores messages containing larger values, which prevents the wave from traveling 

backwards. If two sensors can communicate with each other directly then they are 

considered to be within one communication hop of each other. The minimum hop count 

value, hi, that a sensor i maintains will eventually be the length of the shortest path to the 

seed in communication hops. In the proposed ad hoc sensor network, a communication 

hop has a maximum physical distance of r associated with it. This implies that a sensor i 

is at most distance hir from the seed. However as the average density of sensors increases, 

sensors with the same hop count tend to form concentric circular rings, of width 

approximately r, around the seed sensor. 

 Multilateration Algorithm: - Each sensor uses a multilateral procedure to combine the 

distance estimates from all the seed sensors to produce their own positions. After 

receiving at least three gradient values, sensors combine the distances from the seeds to 

estimate their position relative to the positions of the seed sensors. In particular, each 

sensor estimates its coordinates by finding coordinates that minimize the total squared 

error between calculated distances and estimated distances. Sensor j's calculated distance 

to seed i is: 

 

dji = √ [ (xi - xj)
2
 + (yi - yj)

2
                   (4) 

 

and sensor j's total error is: 

 

Ej = ∑i=1to n (dji - dˆji)
2
                      (5) 

 

In equation (4) and equation (5), n is the number of seed sensors and dˆji is the estimated 
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distance computed through gradient propagation. The coordinates are then incrementally 

updated in proportion to the gradient of the total error with respect to that coordinate. 

The advantage of this algorithm is that it can be easily adapted to the addition of sensors, 

addition of seeds and also death of sensors and seeds. But it requires substantial node density 

before its accuracy reaches an acceptable level. Besides this hop count is not reliable in 

measurement because environmental obstacles can prevent edges from appearing in the 

connectivity graph that otherwise would be present as shown in Fig 7. In Fig 7 the hop count 

distance between A and E is four hops due to the obstacle, but the real distance is far lesser 

than four values.  

 

4.2.2. Relaxation Based Distributed Algorithm 

 

4.2.2.1. Spring Model 

 In [12] the authors propose an Anchor Free Localization (AFL) algorithm where nodes 

start from a random initial coordinate assignment and converge to a consistent solution using 

only local node interactions. The algorithm proceeds in two phases and it assumes the nodes 

as point masses connected with strings and use force-directed relaxation methods to converge 

to a minimum-energy configuration. 

The first phase is a heuristic that produces a graph embedding which looks similar to the 

original embedding. The authors assume that each node has a unique identifier and the 

identifier of node i is denoted by IDi and the hop-count between nodes i ad j is the number of 

nodes hi,j along the shortest path between i and j. The algorithm first elects the five reference 

nodes in which four nodes n1, n2, n3 and n4 are selected such that they are on the periphery of 

the graph and the pair (n1, n2) is roughly perpendicular to the pair (n3, n4). The node n5 is 

elected such that it is in the middle of the graph. At first the node with smallest ID is selected. 

Next the reference node n1 is selected to maximize h1,2. After that n3 is selected to minimize | 

h1,3 – h2,3 | and the tie-breaking rule is to pick the node that minimizes h1,3 + h2,3. In the next 

stage n4 is selected to minimize | h1,4 – h2,4 | and the ties are broken by picking the node that 

maximizes h3,4. Next n5 is selected which minimizes | h1,5 – h2,5 | and from contender nodes 
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D 
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Fig.7. Error in hop count distance matrices in the presence of an obstacle 
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pick the node that minimizes | h3,5 – h4,5 |. So node n5 is the center of the graph and node n1, 

n2, n3, n4 becomes the periphery of the graph. Now for all nodes ni the heuristics uses the 

hop-counts h1,i, h2i, h3,i, h4,i, and h5,i from the chosen reference nodes to approximate the polar 

coordinates (ρi, θi) where 

 

ρi = h5,i * R                             (7) 

θi = tan
-1

[(h1,i – h2,i) / (h3,i – h4,i)]             (8) 

 

and R is the maximum radio range. In the first stage when calculating ρk the use of range 

R to represent one hop-count results in a graph which is physically larger than the original 

graph and this error can be eliminated in the next stage. 

In the second phase, each node ni calculates the estimated distance dˆi,j to each neighbours 

nj and it also knows the measured distance ri,j to neighbour nj. Now if vˆi,j represent the unit 

vector in the direction from pˆi to pˆj ( pˆi and pˆj ate the current estimates of i and j 

respectively) then the force Fi,j in the direction vˆi,j is given by 

 

Fi,j = vˆi,j ( dˆi,j – ri,j)                   (9) 

 

And the resultant force on node i is given by 

 

Fi = ∑i,j Fi,j                         (10) 

 

The energy Ei,j of nodes ni and nj due to the difference in measured and estimated 

distances is the sequence of the magnitude of Fi,j and the total energy of node i is equal to 

 

Ei = ∑j Ei,j = ∑j ( dˆi,j – ri,j)
2
             (11) 

 

And the total energy of the system E is given by 

 

E = ∑i Ei                            (12) 

 

Now the energy Ei of each node ni reduces when it moves by an infinitesimal amount in 

the direction of force Fi. In the optimization, the magnitude of Fi for each node ni is zero and 

the global energy of the system E is also zero and the algorithm converges. 

Extensive simulations show that the proposed algorithm outperforms incremental 

algorithm by both being able to converge to correct positions and by being significantly more 

robust to errors in local distance estimate [13]. The limitation of this approach is that the 

algorithm is susceptible to local minima. 

 

4.2.2.2. Cooperative Ranging Approach 

In [13] the authors describe a Cooperative ranging approach which uses Assumption 

Based Coordinate (ABC) as its primitive to solve the localization problem. ABC algorithm 

determines the location of the unknown nodes by making assumptions when necessary and 
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compensating the errors through corrections and redundant calculations as more information 

becomes available. The algorithm starts with the assumption that node n0 is located at (0, 0, 

0). n1 is the first node to establish communication with n0 and is assumed to be located at (r01, 

0, 0), where r01 is the RSSI distance between n0 and n1. The location of the next node n2 (x2, 

y2, z2) can be obtained on the basis of two assumptions: y2 is positive and z2 = 0, so 

 

x2 = (r01
2
 + r02

2 
+ r12

2
)/ 2r01              (13) 

y2 = √ ( r02
2
 - x2

2
)                 (14) 

 

Next location of n3 (x3, y3, z3) can be determined by assuming z3 = 0, so 

 

x3 = (r01
2
 + r03

2 
+ r13

2
)/ 2r01             (15) 

y3 = (r03
2
 - r23

2 
+ x2

2
 + y2

2
 – 2x2x3)/ 2y2   (16) 

z3 = √ ( r03
2
 – x3

2
 – y3

2
)                (17) 

 

From this point onwards the system of equations used to solve for further is no longer 

underdetermined and so the standard algorithm can be applied for each node and its 

neighbours. 

Next the authors propose a cooperative ranging approach that exploits the high 

connectivity of the network to translate the global positioning challenge into a number of 

distributed local positioning problems that iteratively converge to a global solution by 

interacting with each other. In the proposed approach, every single node plays the same role 

repetitively and concurrently executes the following functions: 

 

 Receive ranging and location information from neighbouring nodes. 

 Solve the local localization problem by ABC algorithm. 

 Transmit the obtained results to the neighbouring nodes. 

After some repetitive iteration the system will converge to a global solution.  

The advantage of this approach is that no global resources or communications are needed. 

The disadvantage is that convergence may take some time and that nodes with high mobility 

may be hard to cover. 

 

4.2.3. Coordinate System Stitching 

 

4.2.3.1. Cluster based Approach 

In [14] the authors propose a distributed algorithm for locating nodes in a sensor network 

in which the nodes have the ability to estimate the distance to nearby nodes. Before 

describing the algorithm we need to know the distinction between non-rigid and rigid graphs. 

Non-rigid graphs can be continuously deformed to produce on infinite number of different 

realization, while rigid graphs cannot. However, in rigid graphs there are two types of 

discontinuous deformations that can prevent a realization from being unique. 

 Flip ambiguities occur for a graph in a d-dimensional space when the positions of all 

neighbours of some vertex span a (d-1) dimensional subspace. In this case, the 
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neighbours create a mirror through which the vertex can be reflected. As shown in Fig. 

8(a) vertex A can be reflected across the line connecting B and C with no change in 

distance constraints. 

 Discontinuous flex ambiguities occur when the removal of one edge allows part of the 

graph to be flexed to a different configuration and the removal edge reinserted with 

the same length. As in Fig. 8(b) first AD is removed and then reinserted, the graph can 

flex in the direction of arrow, taking on a different configuration but preserved all 

distance constraints. 

The algorithm is basically consists of two phases. Phase 1 is cluster localization where 

each node becomes the centre of the cluster and estimates the relative location of its 

neighbours which can be unambiguously localized. For each cluster, all the robust 

quadrilaterals as well as the largest sub graph composed solely of overlapping robust quads 

are identified. The authors define robust triangles to be a triangle which satisfies 

 

Bsin
2
θ > dmin                                    (18) 

 

In equation (18), b is the length of the shortest side and θ is the smallest angle and dmin is 

the threshold based on the measurement noise. If a quadrilateral has four robust sub-triangles 

then the quadrilateral is a robust quadrilateral. The algorithm starts with a robust quadrilateral 

and when two quads have three nodes in common and the first quad is fully localized, the 

second quad can be localized by trilaterating from the three known positions. 

In the second phase i.e. cluster transformation, the position of each node in each local 

coordinate system are shared. As long as there are at least three non-collinear nodes in 

common between the two localizations, the transformation can be computed by rotation, 

translation, reflection. 

The advantage of this scheme is that cluster based localization supports dynamic node 

insertion and mobility. The limitation is that under condition of low node connectivity or high 

measurement noise, the algorithm may be unable to localize a useful number of nodes. 

 

4.2.3.2. Construction of Global Coordinate System in a network of Static Computational 

Nodes from Inter Node Distance 
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Fig.8. (a) Flip ambiguity (b) Discontinuous Flex ambiguity [14] 
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In [15] the authors propose an algorithm which is based on coordinate system stitching 

which constructs a spatial map and a distance matrix and then tries to minimize the 

discrepancies between them by translation, rotation and reflection. The distance matrix is 

explained with the help of Fig. 9. and Fig. 10. In Fig. 9 a collection of nodes and estimates of 

distances between some pairs of these nodes has been shown. A distance matrix of an 

individual node may acquire some subset of the distance estimates. So the distance matrix for 

node 2 is shown in Fig. 10(a). The distance matrix of two different nodes may overlap as 

shown in Fig. 10(b). Now to construct the spatial map from a distance matrix we need to 

construct an initial map containing a triangle of three non-collinear pair-wise neighbouring 

nodes. Then more nodes are inserted into the map, one at a time, based on distances to nodes 

already in the map, in an iterative process so that the node must have at least three 

non-collinear neighbour nodes. The process terminates when all nodes are inserted into the 

map or when no uninserted node can be inserted. 

 

Now to compute the initial map we need to find the longest side and denote it’s end node 

as p and r and then allign this side with x axis by setting p’s position to (0,0) and r’s position 

to (Dpr, 0). Then choose any third node q whose position is (x, y) where x=( Dpq
2 

+ Dpr
2
+ 
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Fig.9. Network Topology with inter node distances between nodes [15] 
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Dqr
2
)/2 Dpr and y=√( Dpr

2
-x

2
) (as shown in Fig. 11). Next at each iteration, a node with highest 

number of neighbours already in the maps is chosen for insertion and the process will stop 

when no remaining unmapped node can be found with at least three mapped neighbours that 

are non-collinear. 

 

Next the authors discusses the process of reconciling two maps that have at least some 

nodes in common but that differ on the position of those common nodes by rotation, 

translation and reflection. When a node has sufficient distance estimates, it locally broadcasts 

a map of its neighbourhood. When a node receives a map from a neighbour, it reconciles its 

own map with its neighbour’s and broadcasts its own map. In this way, each node should 

quickly acquire a map of its neighbourhood. Eventually, this agreement should spread 

throughout the network so that a common coordinate system is formed. 

The advantage of this scheme is that it does not need anchor or beacon nodes for 

localization. But in traditional communication model, where nodes can communicate only 

with neighbors, this algorithm may converge quite slowly since a single coordinate system 

must propagate from its source across the entire network. 

 

4.2.4. Hybrid Localization 

 

4.2.4.1. Localization scheme composed MDS and PDS 

In [16] the authors present a localization scheme composed of two localization techniques: 

multidimensional scaling (MDS) and proximity based map (PDM). At first some anchors are 

deployed denoted by primary anchors. In the first phase, some sensors are selected as 

secondary anchors which are localized through multidimensional scaling. Nodes which are 

neither primary anchors nor secondary one are called normal sensors. In the second phase, the 

normal sensors are localized through proximity distance mapping.  

In the first stage each primary anchor sends an invitation packet containing its unique ID, 

a counter initialized to zero and a value ks controlling the number of secondary anchors, to 

one of its neighbors. Normal sensor receiving this packet will perform a Bernoulli trial with a 

success rate of p. If the outcome is true, the normal sensor increments the counter by one and 

becomes a secondary anchor. The packet will be forwarded to another neighbor until the 

counter equals to ks. After sending the invitation packet, each primary anchor sends packets 

containing its unique ID and coordinates to all of its neighbors. The packet also bears a field 

marking the proximity, i.e. the distance or hop count the packet has travelled. The value is 
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Fig.11. Initial map [15] 
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initialized to be zero. Secondary anchors will also do what primary anchors do, sending out 

packets with its unique ID but leaving the coordinate field blank. Every node (including 

anchors) receiving a proximity packet from an anchor (either primary or secondary) will store 

its ID and the proximity value. If a packet from a particular anchor has been received before, 

the node examines the proximity and check whether it is larger than the stored proximity. If it 

is larger than the stored value, the packet will be discarded. Otherwise, the stored value and 

the proximity field of the packet will be updated and the packet will be forwarded to other 

neighbors. Thus the stored proximity always reflects the shortest path distance or hop count 

from a particular anchor. After an anchor has discovered its proximities to all anchors, it will 

send the proximities it has collected to other anchors and wait for other anchors to do the 

same thing. When all anchors distribute the proximities to their counterparts, each anchor 

knows the proximity information between every pair of anchors. Each secondary anchor can 

now determine its location through classical MDS. 

After the first phase, each secondary anchor also knows the position estimates of other 

secondary anchors as MDS provides a configuration about the primary and secondary 

anchors and calculates the proximity distance mapping. The mapping and the position 

estimates of secondary anchors obtained from the first phase are distributed to the normal 

nodes nearby. Normal sensor node uses the mapping to process the proximity vector it has 

stored when it aided anchors exchanging proximity information. Finally, the node position is 

calculated by multilateration with the processed proximity vector and the position 

information of primary and secondary anchors. 

The main advantage of this scheme is to minimize the computation cost. For classical 

MDS, the complexity is О(n
3
) where n is number of nodes. The complexity for PDM is О(m

3
)  

where m is the number of anchors. But the scheme composed of MDS and PDM has a 

complexity of О(mx
3
) where mx is the total number of primary and secondary anchors. So by 

keeping mx as a reasonable number, the complexity can be made similar to the complexity of 

PDM. The limitation of this scheme is that it does not perform well when there are only a few 

anchors. 

 

4.2.4.2. Simple Hybrid Absolute-Relative Positioning (SHARP) 

In [17] the authors present a localization scheme refers to as: Simple Hybrid 

Absolute-Relative Positioning (SHARP) which uses multidimensional scaling (MDS) and 

Ad-hoc Positioning System (APS) for localization. The localization scheme consists of three 

phases. In the first phase a set of reference nodes are selected randomly or along the outer 

perimeter of the network. In the second phase a relative localization method MDS is used to 

relatively localize the reference nodes selected in first phase. At first shortest-path distance 

between each pair of reference nodes are computed and then MDS is applied to construct the 

relative map. The result of first and second phases is a set of nodes with known coordinates 

according to some coordinate system. In third phase, an absolute localization method APS is 

used to localize the rest of the nodes in the network using the reference nodes as anchors. 

Each node uses the shortest-path distance information to estimate its distances to anchors. 

Then, it performs multilateration to estimate its position.  

SHARP outperforms MDS if both the localization error and the cost are considered. The 
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limitation of this scheme is that for anisotropic networks SHARP gives poor performance. 

 

4.2.4.3. Localization scheme composed inductive and deductive approach 

In [27] the authors present a localization scheme for indoor environment. There are two 

main methods to estimate the position in indoor environments. On the one hand, there are the 

so-called deductive methods. These take into account the physical properties of signal 

propagation. They require a propagation model, topological information about the 

environment, and the exact position of the base stations. On the other hand, there are the 

so-called inductive methods. These require a previous training phase, where the system learns 

the signal strength in each location. The main shortcoming of this approach is that the 

training phase can be very expensive. The complex indoor environment makes the 

propagation model task very hard. It is difficult to improve deductive methods when there are 

many walls and obstacles because deductive methods work estimating the position 

mathematically with the real measures taken directly from environment in the training phase. 

In [27] the authors present a hybrid location system using a new stochastic approach which is 

based on a combination of deductive and inductive methods. 

The advantage of this method covers a hard indoor environment without many base 

stations. Besides that, this technique reduces the training phase without losing precision. 

 

4.2.5. Interferometric Ranging Based Localization 

The idea behind the Radio Interferometric Positioning System (RIPS) proposed in [18], 

[19], [20] is to utilize two transmitters to create the interference signal directly. If the 

frequencies of the two emitters are almost the same then the composite signal will have a low 

frequency envelope that can be measured by cheap and simple hardware readily available on 

a WSN node. But due to the lack of synchronization of the nodes there will be a relative 

phase offset of the signal at two receivers which is a function of the relative positions of the 

four nodes involved and the carrier frequency. By making multiple measurements it is 

possible to reconstruct the relative location of the nodes in 3D. But localization using 

interferometric ranging is an NP-Complete problem [20]. To optimize the solution globally 

[18] uses genetic algorithm approach whereas [19] reduces the search space with additional 

RSSI readings.  

Compared to the more common techniques such as received signal strength, time of 

arrival, and angle of arrival ranging, interferometric ranging has the advantage that the 

measurement could be highly precise. But localization using interferometric ranging requires 

a considerably larger set of measurements which limits their solutions to smaller networks 

(16 nodes in [18] and 25 nodes in [19]). To solve this problem an iterative algorithm has been 

proposed in [20] which calculates node locations from a set of seeding anchors and gradually 

builds a global localization solution. Compared to [18] and [19], which treat localization as a 

global optimization problem, the iterative algorithm is a distributed algorithm that is simple 

to implement in larger networks. 

 

4.2.6. Error Propagation Aware Localization 

An error propagation aware (EPA) algorithm has been proposed in [21] which integrates 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2010, Vol. 2, No. 1 

www.macrothink.org/npa 65 

the path loss and distance measurement error model. In the start of the algorithm, anchor 

nodes broadcast their information which includes their unique ID, global coordinates, and the 

position error variance σp
2
. Each node senses the channel and records the TOA information to 

each anchor. The power of the detected direct path is translated to a ranging variance σr
2
. 

After getting σr
2
 and σp

2
 the sensor node formulates weighting matrix given by equation (19).  

 

W = Wr + Wp                                     (19) 

Wr = diag(σr1
2
,………., σrn

2
) and  Wp = diag(σp1

2
,………., σpn

2
) 

 

for n range measurement to anchors. In the next stage the node computes its position by 

incorporating its weighting matrix into Weighted Least Square (WLS) algorithm. After 

getting its own position the sensor node becomes an anchor and starts broadcasting its ID, 

global coordinate and σp
2
. This process is repeated until all the nodes obtain their position and 

transformed into anchors. 

The algorithm takes advantage of the ranging and position information obtained from 

each involved anchor and so it produces precise estimation than other localization schemes. 

5. Summary Of Proposals 

The performance of any localization algorithm depends on a number of factors, such as 

anchor density, node density, computation and communication costs, accuracy of the scheme 

and so on. All approaches have their own merits and drawbacks, making them suitable for 

different applications.  

Some algorithms require beacons (Diffusion, Bounding Box, Gradient, APIT) and some 

do not (MDS-MAP, Relaxation based localization scheme, Coordinate system stitching).  

Beaconless algorithms produce relative coordinate system which can optionally be registered 

to a global coordinate system. Sometimes sensor networks do not require a global coordinate 

system. In these situations beaconless algorithms suffice.  

Certain algorithms are centralized while some are distributed. Centralized algorithms 

generally compute more accurate positions and can be applicable to situations where 

accuracy is important. Distributed algorithms on the other hand do not depend on large 

centralized system and potentially have better scalability.  

Beside these factors battery life and communication costs are also important for sensor 

networks. Generally centralized algorithms the communication costs are high to move data 

back to the base station. But the accuracy is also high in centralized schemes than the 

distributed approaches. Moreover some schemes perform well in high anchor density while 

some need only few anchors. As shown in [25], multilateration has low computation and 

communication cost and performs well when there are many anchors. On the other hand 

MDS-MAP has higher computation and communication cost and performs well when there 

are few anchor nodes.  

The different schemes reviewed in this article are summarized in Table 1. 
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Table 1. Summary of proposals for Localization in WSN 
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6. Open Problems 

There are considerable amount research activities to improve localization in wireless 

sensor networks. But there are also some interesting open problems that need further 

attention.  

Interferomatric ranging based localization that takes error propagation into account: 

Interferometric ranging technique has been recently proposed as a possible way to localize 

sensor networks as it gives precise measurements than other common techniques. But 
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simulation results from [20] indicate that error propagation can be a potentially significant 

problem in interferometric ranging. In order to localize large networks using interferometric 

ranging from a small set of anchors, future localization algorithms need to find a way to 

effectively limit the error propagation. 

Robust algorithm for mobile sensor networks: Recently there has been a great deal of 

research on using mobility in sensor networks to assist in the initial deployment of nodes. 

Mobile sensors are useful in this environment because they can move to locations that meet 

sensing coverage requirements. New localization algorithms will need to be developed to 

accommodate these moving nodes. So, devising a robust localization algorithm for next 

generation mobile sensor networks is an open problem in future. 

Attack the challenges of Information Asymmetry: WSNs are often used for military 

applications like landmine detection, battlefield surveillance, or target tracking. In such 

unique operational environments, an adversary can capture and compromise one or more 

sensors physically. The adversary can now tamper with the sensor node by injecting 

malicious code, forcing the node to malfunction, extracting the cryptographic information 

held by the node to bypass security hurdles like authentication and verification, so on and so 

forth. In a beacon-based localization model, since sensor nodes are not capable of 

determining their own location, they have no way of determining which beacon nodes are 

being truthful in providing accurate location information. There could be malicious beacon 

nodes that give false location information to sensor nodes compelling them to compute 

incorrect location. This situation, in which one entity has more information than the other, is 

referred to as information asymmetry. To solve this problem, in [22] the authors propose a 

Distributed Reputation-based Beacon Trust System (DRBTS), which aimed to provide a 

method by which beacon nodes can monitor each other and provide information so that 

unknown nodes can choose who to trust, but future research work is needed in this field. 

Finding the minimum number of Beacon locations: Beacon based approaches requires of 

a set of beacon nodes, with known locations. So, an optimal as well as robust scheme will be 

to have a minimum number of beacons in a region.  Further work is needed to find the 

minimum number of locations where beacons must be placed so the whole network can be 

localized with a certain level of accuracy. 

Finding localization algorithms in three dimensional space: WSNs are physical 

impossible to be deployed into the area of absolute plane in the context of real-world 

applications. For all kinds of applications in WSNs accurate location information is crucial. 

So, a good localization schemes for accurate localization of sensors in three dimensional 

space can be a good area of future work. 

So these are the few problems for future research work to improve localization in wireless 

sensor technology. 
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Appendix: A. Multidimensional Scaling 

 

In Multidimensional Scaling (MDS) a set of points whose position is unknown and 

measured distances between each pair of points are given. It can be used to localize sensor 

nodes in a network. Without anchors or GPS, MDS can solve for the relative coordinates of a 

group of sensor nodes with resilience to measurement error and rather high accuracy. 

Let there be n sensors in a network, with positions Xi, i = 1 . . . n, and let X = 

[X1,X2, . . . ,Xn]
T
 . X is nxm, where m is the dimensionality of X. 

Let D = [dij ] be the nxn matrix of pairwise distance measurements, where dij is the 

measured distance between Xi and Xj for i ≠ j, and dii = 0 for all i. The distance measurements 

dij must obey the triangular inequality: dij + dik ≥ djk for all (i, j, k).  

Classical metric multidimensional scaling is derived from the Law of Cosines, which 

states that given two  sides of a triangle dij, dik and the angle between them θjik, the third side 

can be computed using the formula: 

 

d
2

jk = d
2
ij + d

2
ik − 2dijdik cos θjik                       (A.1) 

→ dijdik cos θjik = 1/2(d
2

ij + d
2

ik − d
2

jk)                  (A.2) 

→ (Xj − Xi) · (Xk − Xi) = 1/2(d
2

ij + d
2

ik − d
2
jk)             (A.3) 

 

Next choose some X0 from X to be the origin of a coordinate system, and construct a 

matrix B(n−1)x(n−1) as follows: 

 

bij = 1/2(d
2
0i + d

2
0j − d

2
ij)                             (A.4) 

 

Let X
/
(n−1)xm the matrix X where each of the Xi’s is shifted to have its origin at X0: X

/
i = 

Xi − X0. Then, using equations (A.3) and (A.4): 

 

X
/
X

/T
 = B                                        (A.5) 

 

We can solve for X
/
 by taking an eigen decomposition of B into an orthonormal matrix of 

eigenvectors and a diagonal matrix of matching eigenvalues: 

 

B = X
/
X

/T
 = UVU

T
                                 (A.6) 

X
/
 = UV 

½
                                        (A.7) 

 

The problem is that X
/
 has too many columns and we need to find X in 2-space or 
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3-space. To do this, we throw away all but the two or three largest eigenvalues from V , 

leaving a 2x2 or 3x3 diagonal matrix, and throw away the matching eigenvectors (columns) 

of U, leaving U(n−1)x2 or U(n−1)x3. Then X
/
 has the proper dimensionality. 

 

Appendix: B. Kalman Filter 

 

The Kalman filter is a recursive estimator. This means that only the estimated state from 

the previous time step and the current measurement are needed to compute the estimate for 

the current state. In what follows, the notation x
^
n׀m represents the estimate of x at time n 

given observations up to and including time m. 

The state of the filter is represented by two variables: 

 x
^
k׀k, the estimate of the state at time k given observations up to and including time k; 

 Pk׀k, the error covarience matrix (a measure of the estimated accuracy of the state 

estimate). 

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses 

the state estimate from the previous timestep to produce an estimate of the state at the current 

timestep. In the update phase, measurement information at the current timestep is used to 

refine this prediction to arrive at a new more accurate state estimate, again for the current 

timestep. 

Predict: 

Predicted state is given by x
^
k׀k = Fk x

^
k-1׀k-1 + Bkuk and Predicted estimate 

covarience is given by Pk׀k-1 =  Fk Pk-1׀k-1F
T

k + Qk-1 where 

 Fk is the state transition model which is applied to the previous state xk-1; 

 Bk is the control-input model which is applied to the control vector uk; 

 Wk is the process noise which is assumed to be drawn from a zero mean 

multivariate normal distribution with covariance Qk i.e. wk ~ N(0, Qk). 

 

Update: 
 

  
Innovation or measurement residual y˜k = zk - Hk x

^
k׀k-1 where at time k an 

observation (or measurement) zk of the true state xk is made according to  

 

zk = Hkxk + vk 

 

where Hk is the observation model which maps the true state space into the 

observed space and vk is the observation noise which is assumed to be zero mean 

Gaussian white noise with covariance Rk i.e. vk ~ N( 0, Rk). 

 

Innovation (or residual) covariance Sk = Hk Pk׀k-1H
T

k +Rk 
 

Kalman Filter gain Kk =  Pk׀k-1H
T

kSk
-1

 
 

Updated state estimate x
^
k׀k = x

^
k׀k-1 + Kk y˜k 

 
Updated estimate covariance Pk׀k = (I –KkHk) Pk׀k-1 

 
 


