
 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 49

Inferring User-Perceived Performance of Network by

Monitoring TCP Interruptions

Junaid Shaikh, Markus Fiedler, Tahir Nawaz Minhas, Patrik Arlos

School of Computing, Blekinge Institute of Technology

Karlskrona 371 79, Sweden

Tel: +46 455 38 50 00

E-mail: {junaid.junaid, markus.fiedler,tahir.nawaz.minhas,patrik.arlos}@bth.se

Denis Collange

R&D Orange Labs

Sophia Antipolis, France

E-mail: denis.collange@orange.com

Received: February 7, 2012 Accepted: May 19, 2012 Published: June 19, 2012

DOI: 10.5296/npa.v4i2.1357 URL: http://dx.doi.org/10.5296/ npa.v4i2.1357

Abstract

The fluctuating performance of wireless and mobile networks has triggered the need for

smart algorithms to assess the user perception, resulting from the quality of network services.

While efforts have been done to model the user experience resulting from the network

performance, there is still the need for practical methods to assess the user-perceived

performance, in the real environment. In this work, we present a set of criteria to observe the

user behavior on the Web, passively from the network-level. The criteria are based on the

monitoring of TCP control flags and HTTP requests. Thus, information about user actions

performed in the web browser can be inferred by monitoring the TCP termination flags and

by keeping track of the HTTP requests. Along the way, we also present some anomalies

observed in the TCP connection termination process, which may result in performance

degradation of Web transfers.

Keywords: TCP, Web, Quality of Experience, User-perceived performance

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 50

1. Introduction

In the recent years, the Internet has witnessed the mushrooming of networks and

applications. Among all the applications, the Web application is the most dominant one. The

popularity of Web is further fueled by the migration of video on the Web. According to study

[1], Web traffic accounts for the major part of the traffic volume on the Internet.

With the increasing usage of the Internet, the expectations of users are also evolving.

While the computational power of the devices, intelligence of applications and speed of

networks are increasing with time, following Moore’s law, expectations of users are

following ”the More’s law” [2]: Users want more in less time. They are becoming

increasingly strict and intolerant about the quality of network and application services. This is

because the users now have to rely on the Internet for their everyday tasks. Due to these

growing expectations, the margin of error is getting smaller and the network protocols and

algorithms need to perform smartly and accurately.

For an Internet Service Provider (ISP), it is extremely important to monitor and keep

track of the service quality as perceived by the user. There are several competitors in the

market and a user may easily switch to another service provider as a result of dissatisfaction,

taking several other users with her. Hence, there is need of a mechanism in order to learn

about the user experience over time, in order to provide better services. However, being

certain about user experience is a complex task for the following reasons.

The quality perceived by the users is mainly affected by the several network-dependent

and application-specific factors. However, there are many other factors that may influence the

quality as perceived by the users such as, the prior experiences, expectations, the context of

use, etc. Users from different geographical backgrounds may have different expectations

regarding the service quality, based on previous experiences. A user surfing at work could

probably be more intolerant about the bad quality of service, as compared to a user using the

service on leisure.

Monitoring of the user-perceived performance has two main requirements. First, a model

is required, that takes into account all the parameters that influence user-perceived

performance of a service; second, a method, which estimates the performance by measuring

the above parameters in a fast and scalable fashion [3]. Unfortunately, it is not so easy to

measure all these parameters online in real-time, from the network-level.

For ISPs, it is easier to measure the network-dependent factors than asking the each user

about her experience subjectively. However, retrieving the application-specific and

user-related factors is not simple. It is because ISPs do not have control on the user-end

devices. Therefore, conducting subjective experiments in a lab environment, with real users,

has been a common practice to model the user-perceived performance. Although, they

provide control at the user-end, subjective lab experiments have proven to be away from

reality [4].

Another method of estimating user-perceived performance is to investigate those

parameters that represent user actions on the application level and provide indications about

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 51

user behavior. Utility of a service could be one of the ways to have indications about the

interest of users in a service [5]. In [6], user session volumes were shown as the indicator of

user behavior and were compared against the service performance. While session volumes

may provide an overall picture of the interest of all the users in a network service, it is not

easy to infer the interest of a single user. Second, it is also difficult to deduce thresholds on

the performance, beyond which a user stops using the service.

 Monitoring of the Transmission Control Protocol (TCP) connection terminations on the

Web is one of the ways to monitor user-perceived performance degradation of a service [7].

Normally, users press the Stop or Reload button in the web browser to abort an on-going

transfer, when it is much slower than their expectations. These interruptions result in early

termination of the TCP connections with a Reset (RST) flag from the client side. These RST

flags can be monitored passively on the network-level to observe the user behavior.

Before considering the TCP RST flags as being the indication of user behavior, it is

important to make sure that a TCP RST flag is generated only when the user interrupts a TCP

connection. Therefore, it calls for a detailed classification of TCP end flags, which allows

identification of those TCP RST flags that are generated as a result of user interruptions.

In [8], TCP connections are, based on the type of termination, classified as normal

connections, abnormal connections, unfinished connections and interrupted connections.

 In this work, we have performed a systematic study to show in detail the sequence of

termination flags, in order to identify the transfers aborted by the users. The sequence of

these termination flags occurred as a result of different actions as listed in Table 1, performed

in the web browser. Hence, monitoring and classification of the termination type in a real

scenario may provide indications about a user’s behavior. To ensure a fair and representative

comparison, we have conducted a number of controlled experiments with various web

browsers. These experiments are done on both smart phones and laptops. The results of

experiments on smart phones were presented in [9]. A more detailed study along with a set of

termination criteria is presented in this paper.

 Network operators and Web service providers can use this knowledge to passively

monitor the behavior of users over time, and manage their resources accordingly to guarantee

high-quality user experience. The research community working on network Quality of

Experience can use this study to validate it against the subjective experiments with real users.

Finally, Web users can also use results to choose web browsers that are operating according to

the rules defined by the standards.

 Hence, our contribution in this paper is two-fold. First, we present the different

sequences of the TCP termination flags observed with a number of web browsers. With the

help of these results, cooperation between web browsers and Web servers could be improved

to raise the performance of Web transfers. Second, we develop a set of criteria, which could

be used to identify the user action performed in the web browser. It may help service

providers to monitor the user-perceived performance.

The remainder of this paper is organized as follows. Section 2 provides some background

information on the Web transfers and the TCP protocol. Section 3 describes the related work.

Section 4 gives the methodology used. Section 5 shows the results and discussion on the

sequences of the TCP termination flags. Section 6 presents results from passive

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 52

measurements. Section 7 proposes a set of user-interruption criteria. Section 8 concludes the

paper.

Table 1. User actions in the web browser

Type Description

Uninterrupted The user allows the web page to load completely

Kill-browser
The user kills the web browser before the page has been loaded

completely

Stop/Reload
The user presses the stop or reload button before the completion of

transfer

Link-follow
The user clicks another link or follows a bookmark before the

completion of previous transfer

2. TCP and Web transfer

A Web transfer consists of the request of one or more objects from the client to the server

and the transfer of requested objects from the server to the client. Figure 1 depicts a Web

session between a pair of the client and the server machines.

A Web session is a combination of one or more Web transfers. A Web transfer starts when

a user requests for Webpage or a file. A Web page may consist of multiple embedded objects.

Each embedded object is retrieved after the client-side web browser requests for the

respective object, automatically. The transfer of each object is shown as the ON time in the

Figure 1. Two objects in a Web transfer are separated by the active OFF time; the time taken

by the client-side web browser to launch the next request automatically, after the transfer of

the previous object.

Two subsequent Web transfers in a session are separated by the inactive OFF time, which

is also called the user think time. This is the time taken by the user before launching the

request for the next page or a file from the same server.

Figure 1. ON-OFF model for Web transfer

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 53

The Web traffic is carried by the TCP on the transport layer, hence making TCP the most

widely used protocol on the Internet for almost two decades. A TCP connection goes through

several states from the connection establishment to the data transfer to the connection

termination.

TCP is a reliable stream-oriented protocol [10]. Before the transfer of the stream of bytes,

a virtual connection is established. After the connection establishment between two TCPs, a

request is made by the client to the server, followed by data transfer from the server. After the

end of the data transfer, the connection is closed by going through a proper termination

handshake.

TCP connection termination handshake employs the control field in the TCP header to

flag the end of a connection. To signal the end of the connection, a segment is sent from

either side, with the finish (FIN) flag set in the control field of the TCP header. The other side

then responds with a FIN segment to confirm the receipt of the FIN segment. This handshake

confirms that the data transfer is completed, and the connection could be closed. Sometimes,

the FIN segments also contains last chunk of data in it.

To signal the error conditions, a segment with reset (RST) flag is sent. The RST segment

can be sent from one of the sides to deny a connection, if a connection was requested to a

nonexistent TCP port. It is also sent when one of the sides aborts an existing TCP to signal an

abnormal situation.

Figure 2 illustrates a TCP flow carrying a Web transfer. It starts with a SYN handshake

between the client and the server. The client then requests for the file with a HTTP GET

request. If the requested file is available on the server, then the server responds with the file

in the form of stream of data bytes on the TCP level. It is shown by the TCP flow carrying

DATA for a Web transfer in Figure 2. The client acknowledges one or more data segments

from the server with an ACK segment. Once the transfer of requested file is completed, the

client may request for another file with another HTTP GET request in the same TCP

connection, if the client and the server are both supporting persistent TCP connections. Once

all the requests from the client are served, the client or server then starts the connection

termination handshake procedure, which is shown by FIN segment. The other end then

responds with a FIN to terminate the connection.

3. Related work

Evaluation of the user-perceived performance of network services is a complicated task.

User perception is very much subjective, which vary heavily from one person to the another.

There have been efforts made in order to evaluate and model the user perception. Many of

these efforts are limited to the user perception of voice and video applications [3][11][12].

Literature on QoE shows that it has either been drawn as qualitative nature subjective

evaluation or quantified as a function of the QoS parameters.

The most common way to understand the user perception of a service performance is to

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 54

conduct large number of expensive experiments in a lab environment. Many works reported

these subjective experiments. The problem with these experiments is that they do not

represent user perception that arises in the real environment. Users are too conscious about

the performance in the lab environment than the real environment. They do not have freedom

to do their tasks in natural way [4]. Secondly, the numerical scales on which the ratings are

taken may not map well with the real emotions of the users.

Figure 2. TCP flow carrying data for a Web transfer

In [13], a framework is proposed to capture users’ perception while they are using

network applications. It requires a subject to click a key whenever she feels dissatisfied with

the service. While their framework could be useful for the test environment, it is not easy to

have their tool installed on user machines in the operational environment. In [14], authors

presented their results on the data, which was collected by an end-host data collection tool. It

was concluded that it is very much challenging to get the user feedback over time,

particularly when the performance of the network degrades. Authors of [15] collected the

user-centric data by a similar tool. The tool allows users to report their irritation with the help

of the tool.

Most of the above work required the use of additional tools for the self-reporting of

opinions given by the users. We do not find many works where existing infrastructure is used

to infer the user perception. Another major point we observe in the literature is that the most

of work on user experience has been directed towards the improvement of a particular

application rather than the network services. In [16], a wavelet-based criterion is presented

for identifying the user-perceived problems passively, based on the link-level measurements.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 55

This work presents a set of criteria to infer the user perception from the client-side TCP

RST flags. In [17][18][19], it is shown that the TCP RSTs are generated due to several causes.

Therefore, it may not be appropriate to consider TCP RST flags as the straightforward

indication of user perception. In [20], authors presented a heuristic to identify the TCP RSTs

generated as a result of the interruption from the client. We will present these criteria and its

shortcomings in the Section 7.

4. Methodology

We conducted a set of active tests to observe the sequence of TCP termination flags

exchanged in both directions. To execute the tests, we established an isolated environment.

These tests were conducted by accessing a Webpage on a smart phone or a laptop. The

Webpage was located on a local Web server.

Two types of tests were performed: Uninterrupted and interrupted. In the uninterrupted

tests, the user issues a Webpage request and then allows the transfer of the Webpage to finish

completely. In the interrupted tests, the user aborts an ongoing transfer of Webpage by

performing some action in the web browser. The user action could be either pressing the Stop

or the Reload button, exiting the web browser or clicking a hyperlink on the Webpage. These

actions are further mentioned in Table 1.

In order to study the impact of the content type, three Web pages were developed. One

Webpage had simple text, the second one had an image and the third one had a flash video,

played in a shockwave player on the Webpage. Since the results of the tests with text and

image Web pages were almost similar to each other, we only present the results related to text

and to video in the remainder of this paper.

Moreover, tests were first performed on three popular mobile platforms: Windows 6.5

(HTC HD2), Android 2.2 (HTC Desire HD) and Symbian 3.0 (Nokia N8). Built-in web

browsers were used on each of these platforms, as external browsers were not supporting the

video content. The web browser used by Windows 6.5 is Microsoft Internet Explorer 6.0. The

user agent string in the HTML header reports Android’s web browser as Mobile Safari and

Symbian’s web browser as Browser NG, which is used on the Nokia mobile phones. On

Android and Symbian platforms, the built-in web browsers use Webkit as the HTML

rendering engine, which is an open-source web browser engine [21]. Each of the tests on

mobile platforms was conducted with 40 repetitions.

Subsequently, other popular web browsers were also tested. Tests were performed on a

laptop equipped with Windows XP operating system. Four Web browsers were tested:

Internet Explorer 8, Firefox 3.6, Google Chrome 4.1 and Opera 10.51. All of these web

browsers support persistent TCP connections.

Finally, passive measurements were performed on an operational network of an ISP with

real users. We identified different browsers from the traffic traces with the help of their user

agent strings. After identifying the Web browsers, we carried out further analysis to extract

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 56

their TCP terminations connection sequences.

5. Active tests

Table 2 summarizes the different termination types seen from all the experiments. The

type of termination here refers to the sequence of terminating flags that were seen at the end

of a TCP connection. Five different types of terminations are observed. Sequences of these

termination flags occurred as a result of different actions as listed in Table 1, performed in the

web browser.

Table 2. TCP connection termination flag sequences

Type of

Termination
Description

FsFcRc A FIN from the server followed by a FIN and then one or more RSTs from the client

RcFcRs
One or more RSTs from the client followed by a FIN from the client and a RST from the

server

Fs Fc A FIN from the server followed by a FIN the client

Fc Rc A FIN from the client followed by one or more RSTs from the client

Rc One or more RSTs from the client

5.1 Uninterrupted transfers

The bar charts in Figures 3–5 highlight the number of each terminating sequence

observed as a consequence of different user actions performed in different web browsers. On

Symbian and Android platforms, all the TCP connections ended with a proper FIN handshake.

After the data transfer, a FIN from the server is sent which is followed by a FIN from the

client-side to end the connection. This type of termination follows the rules as described by

the standards [10].

 Client-side RST flag: On the Windows platform, however, the text-based Webpage

transfer is finished with a FIN from server, followed by a FIN and then a RST flag from the

client. This RST flag appears to be a reaction of the client to the ACK received from the

server, which triggers the client to immediately shutdown the connection by sending a RST

flag. This behavior is found to be consistent in all the transfers.

Multiple TCP connections per transfer: Subsequently, when the video-based Webpage

is downloaded from the Windows platform, there is another interesting pattern seen in the

connection termination process. After receiving the base file, the client makes a GET request

for the video player. It then immediately terminates the connection with a RST flag and

initiates the new connection with a SYN handshake. The GET request for the previous file is

thus repeated once again and then the video is played in the web browser. The second

connection is terminated similarly as was observed in the case of text-based Webpage. Hence,

two connections are opened for playing video in the web browser. The connection

establishment procedure creates extra overhead, which affects badly the overall speed of the

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 57

transfer. The TCP connection also goes into the slow start phase once again. The client-side

software should avoid this kind of behavior as the opening of multiple TCP connections per

transfer may degrade the performance of the transfer.

5.2 Interrupted transfers

 Interrupted transfers are those in which a user aborts an on-going transfer by manually

performing any of the three actions (before the end of the download) in web browser:

Pressing the stop or reload button, exiting the browser or clicking a hyperlink on the

Webpage. The results in Figures 3–5 illustrate that the connection termination pattern is

similar when the interruptions are made from Android and Windows platform, while it is

slightly different in the case of the Symbian platform.

Server-side RST flag: While using the Symbian platform, a large ratio of TCP

connections were terminated with one or more RST flags from the client, followed by a FIN

flag from the client and then a RST flag from server. The reason why the server responded

with a RST flag is that when it received a RST flag from client, it assumed the connection

was already closed and therefore, when it received an additional packet from client

(containing a FIN flag) on the same port, it responded with a RST flag to once again signal

the end of the connection.

Retransmissions: In a few interrupted transfers on Symbian and Windows, and in the

majority of transfers on Android, connections were terminated with a FIN flag followed by

one or more RST flags from the client. By looking at the interrupted traffic traces, we found

out that, when the client starts the termination process with a FIN flag, then the server

responds with the retransmission of previous unacknowledged segments. Upon receiving the

retransmitted segments the client tears down the connection by sending one or more RST

flags. This kind of anomaly may result in the wrong estimation of loss rates on the network.

On the Windows platform, the majority of the connections were terminated with one or more

RST flags from the client without any FIN flag.

Indication of user-interrupted transfers: Generally, from all the above observations of

interrupted connections, one thing is common that at least one RST flag from the client-side

is seen regardless of the platform. The other important evidence about the user-generated

interruption is that more than one consecutive RST flags were seen in most of the cases as

soon as the user performs an interruption in the web browser.

Indication of transfers not interrupted by the user: On the other hand, a single RST

flag is seen if the transfer is not interrupted by user, on which the RST flag is sent

automatically by the client-side software.

5.3 Active tests with other popular web browsers

To test other popular web browsers, we further continued our tests on a laptop equipped

with the Windows XP operating system. Tests were performed with four web browsers:

Internet Explorer, Firefox, Opera and Google Chrome. Figure 6 presents the total number of

RST flags observed from all our tests. This figure gives an overall picture of the web browser

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 58

generating the highest number of RST flags.

Figure 3. Termination flags on Android. Left: Video page, Right: Text page

Figure 4. Termination flags on Symbian. Left: Video page, Right: Text page

Figure 5. Termination flags on Windows. Left: Video page, Right: Text page

Figure 6 confirms the results we retrieved from mobile web browsers. The Internet

Explorer web browser generates more TCP RST flags than any other web browser. The RST

flags on Internet Explorer are not only generated when the user aborts a transfer, but also in

the cases when a transfer is not aborted by the user. Another observation we got from the

experiments is that, the generation of TCP flags is not dependent on the operating system, but

on the web browser. We performed these tests on the same operating system and we observed

different behavior in terms of TCP termination flags.

Proper FIN handshake: For uninterrupted tests, the connections were terminated with

proper FIN handshake in the case of Firefox and Opera web browsers. The server initiates the

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 59

FIN handshake by sending a segment with FIN flag after the completion of data transfer. The

client then responds with a FIN/ACK segment. It tears down the connection along with the

acknowledgement of the last segment of data from the server.

Termination initiation from the client side: In the case of Google Chrome web browser,

connections termination starts with a FIN from the client instead of a FIN from the server for

uninterrupted tests. After the data transfer, the client initiates termination handshake, by

sending a FIN segment. The server then responds with a FIN flag. Hence, the client does not

wait for the server time-out but starts tearing down the connection proactively.

RST flag from the client side: The Internet Explorer replies with a RST flag instead of a

FIN flag, after receiving a FIN flag from the server. After the data transfer, the server sends a

FIN flag, and the client then responds with a RST flag. This behavior indicates the abnormal

condition according to the TCP standards. These results indicate that the Internet Explorer

does not seem to follow the standards. These tests with the Internet Explorer also confirm our

observations we discussed in the case of mobile web browsers. The Internet Explorer in the

case of video transfer opens two TCP connections. The first connection is terminated as soon

as the video player is requested. The request for the video player is then repeated in the

second connection. Due to such behavior of Internet Explorer, we observe a larger number of

RST flags in the case of Internet Explorer as compared to other web browsers as displayed in

Figure 6.

Interrupted tests: In the case of interrupted tests, we observe a similar behavior in the

case of all web browsers. The client terminates a connection with a RST flag as soon as the

user aborts a connection in the middle of the transfer. If the client still receives a data segment

from the server, after sending a RST flag, then it repeatedly sends RST flags to enforce the

termination of the connection.

Figure 6. Total number of RST flags

6. Passive measurements on operational network

In this section we describe the connection terminations that we observed on the

operational network of an ISP. We only present the web browsers that we considered in our

active tests, i.e. Internet Explorer, Firefox, Google Chrome and Opera. We observed a large

0 50 100

Fasterfox

Google Chrome

Internet Explorer

Opera

RST flags

RST flags

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 60

variety of connection terminations, i.e. the connections with different sequences of the

termination flags. However, we have listed the most common termination flag sequences with

each of the web browsers, which account for more than 75% of the connections.

The most common termination type: The server sends a FIN flag after transferring the

data, which is followed by a FIN flag from the client side. Generally, this is the most common

termination flag sequence observed on the TCP connections launched on the network.

Transfers on Internet Explorer: The most common termination flag sequence observed

with the Internet Explorer is the following: The server sends the data, which is immediately

followed by one or more FINs from the server. The client then responds the server’s FIN with

one or more RST flags to tear down the connection. This is quite similar to what we observed

in our active tests. There are also significant numbers of connections that are terminated with

one or more RSTs from the client side. We infer that these connections are the mix of both

terminated by the client-side web browser (in the case of video transfers), as well the user to

abort a transfer.

Connection terminations with Firefox and Google Chrome: We see similar

termination flag sequences observed with Firefox and Google Chrome. The majority of the

connections are terminated with a FIN from the server, followed by a FIN from the client.

However, in many cases, the server sends a RST flag after sending a FIN to flag the end of

the connection. In these cases, we do not observe any termination flag from the client side.

Connection termination initiation by the client: There is also large number of cases in

which the connection termination handshake starts with a FIN flag from the client side

followed by a FIN flag from the server side. This is the most common in the case of Opera

and second most common in the cases of Firefox and Google Chrome. The client in such

cases detects the end of the data transfer and hence, it sends a FIN immediately along with an

ACK of last data segments from the server.

Table 3. Connection terminations on operational network

Web browser Most Common terminations Description

Internet

Explorer

FsRc One or more FINs from the server

followed by one or more RSTs from

the client

FsFc One or more FINs from the server

followed by one or more FINs from

the client

Rc One or more RSTs from the client

Firefox
FsFc One or more FINs from the server

followed by one or more FINs from

the client

FcFs One or more FINs from the client

followed by one or more FINs from

the server

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 61

FsRs One or more FINs from the server

followed by one or more RSTs from

the client

Google Chrome
FsFc One or more FINs from the server

followed by one or more FINs from

the client

FcFs One or more FINs from the client

followed by one or more FINs from

the server

FsRs One or more FINs from the server

followed by one or more RSTs from

the server

Opera
FcFs One or more FINs from the client

followed by one or more FINs from

the server

FsFc One or more FINs from the server

followed by one or more FINs from

the client

FcFsRs One or more FINs from the client

followed by one or more FINs from

the server followed by one or more

RSTs from the server.

7. The user-interruption criteria

In [20], the authors proposed a user-interruption criterion. This criterion is based on a

heuristic to determine those connections, which are interrupted by the users before a transfer

is completed. To test this criterion, we applied it on our collected traces with the help of Tstat

[22]. Tstat is a TCP statistics and analysis tool that implements the user interruption criterion.

We will first explain this criterion and then discuss the outcomes that we got after the

application of this criterion on our traces.

According to the criterion mentioned in [20], a connection is terminated by the client if

the server sent data but didn’t send a FIN or an RST segment, and the client sent an RST

segment. These connections were named as eligible connections, and are expressed by:

 (1)

Where FINs is a FIN flag from the server and RSTs is the RST flag from the server.

DATAs is the data transfer from the server and RSTc is the RST flag from the client. ”¬”

represents ”NOT”, ”∨” represents ”OR” and ”∧” represents ”AND” as logical signs. Hence,

the equation says: ”A connection is eligible, if NO FIN OR RST from the server is seen, AND

DATA from the server AND the RST flag from the client is observed.”

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 62

Although Eligible connections represent those terminated by the client, they do not tell

whether the connection is terminated by the user or not. The Eligible connections could be

terminated by the client-side software when the data is already transferred, and the server is

idle, waiting for the time-out. In order to identify the connections interrupted by the users

during a data transfer, the authors also consider the connection termination time. The

interruption criterion is thus expressed by:

 (2)

Where is the time elapsed between the last data segment from the server and the

actual flow end. and are the mean and the standard deviation of the RTT per

connection, respectively. Hence, if a connection is Eligible and is less than one RTT

time, then the connection is said to be interrupted by the user.

We executed Tstat on our interrupted and uninterrupted transfers. We found out that the

user interruption criterion was not working accurately for those video transfers, in which

Internet Explorer was used as client-side Web browser.

While this interruption criterion determines the connections interrupted within tgap, it

does not identify the user action performed in the Web browser that resulted in the

interruption of ongoing transfer. The identification of the user action in the Web browser is

also important to know, as there could be different motivation behind each user action. For

example, users usually press the stop or reload button when they are annoyed. However, they

might also follow a link before the completion of a page when they have already seen enough

information on the page, which may not be the result of anger or dissatisfaction.

To address the aforementioned shortcomings, we propose a set of criteria. The set of

criteria are specified by a finite state machine diagram in Figure 9. There are two types of

transitions shown in the diagram in Figure 9. One is the TCP flow transition triggered mainly

by the TCP control flags. It is shown with the solid black arrows in the diagram. Another type

of transition is the HTTP request transition, which is initiated each time by the arrival of a

new HTTP request from the client side. HTTP request transitions are represented with dotted

arrows in the diagram. Additionally, there is one more transition shown in the diagram, which

takes both TCP and HTTP into the idle state. This transition is shown by dashed arrow. The

machine comes out of this state when the user requests for the next web page from the same

Web server. We will first describe the TCP flow states in detail, followed by the description of

the HTTP transitions.

State 0. Start: The state machine starts with this state as soon as a new request from the

user is received. It refers to the user action of opening a new URL, clicking a link on a page

or starting a completely new Web session.

State 1. Handshake: When the user requests for a Web page, the handshake process for

the connection establishment starts. The Client-side TCP initiates this handshake with a SYN

flag, shown by the transition number 1a in the Figure 9.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 63

State 2. Connection established/data transfer: The server responds to the client with a

SYN/ACK shown by the transition 2a, which is further acknowledged by the client, and the

connection is established. The first HTTP transition is then made with the request for the base

file HB of the page, represented by the dotted arrow 2b. After the connection establishment

and HB request from the client, the data transfer starts. TCP and HTTP both stay in this state

until a termination flag (FIN or RST) is seen from any side (client or server). During or after

the data transfer, there could be any of the following three more events, which result in

transition out of state 2:

State 3. Eligible: If a RST flag is seen from the client before any FIN or RST from the

server as represented by 3a, then the connection becomes eligible, as defined by Equation 1.

This state could be reached before or after the completion of the data transfer (state 2).

Sometimes, client-side browsers send a RST flag after the completion of the data transfer.

Hence, merely seeing a RST flag from the client does not confirm that a data transfer is

interrupted. To identify those client-side RST flags indicating interruption of the data

transfer, HTTP transactions (request and response) and tgap (see Equation 2) should be taken

into account.

State 4. Uninterrupted: If a FIN or a RST flag is received from the server (transition

4a), then the connection is called uninterrupted and hence, TCP goes into state number 4,

which is named as uninterrupted in the diagram. HTTP also moves to the uninterrupted

state, if the FIN or RST flag from the server is seen after the HTTP response code.

Subsequently, the client web browser may request the embedded file of the page HE,

automatically. It takes both TCP and HTTP to the data transfer state, as shown by the

transition 2d.

State 5. Interrupted: If the RST flag from the client is seen when the data transfer from

the server is still going on (shown by transition 5a), then the connection is called interrupted.

However, there are two types of such interruptions: One made by the client-side web browser

and another one by the user. It is not possible to differentiate between both of them only by

observing the TCP flow. Let’s recall the video page download case, which was performed on

the IE web browser. We observed that the client terminates the data transfer each time after it

requests for the video player. In this case, although the TCP connection termination met the

interruption criteria, the transfer is not interrupted by the user. In order to identify the TCP

connections interrupted by the user and not by the browser, we need to take into account the

HTTP request and response messages. For instance, if a TCP connection interruption is

followed by the arrival of the last HTTP request, then it shows that the TCP connection is

interrupted automatically by the web browser (see Internet Explorer case with the video

transfer). Conversely, if the TCP interruption is followed by either of the transitions 2e, 2f

and 6b then the connection was interrupted by the user and not by the browser. When a

transfer is reloaded by user, request for the last base file HB is repeated. The transition 2e

shows that the Web transfer is reloaded by the user. Similarly, when a user follows a new link

or a bookmark (link-follow), before the completion of the previous transfer, clients sends the

HTTP message containing the request for a completely new file. The transition 2f shows this

link-follow behavior. Finally, if the user interrupts a transfer by pressing the stop button or by

killing the web browser, then it does not immediately trigger any new HTTP request message

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 64

but followed by the user think time (the time user takes before launching the new request for

a page). It is illustrated by the transition 6b in the state diagram.

State 6. Idle/User think time: Let’s recall the ON-OFF model of the Web transfer

described previously in Figure 1, where each web transfer is followed by inactive OFF time.

This state could be reached by either of the two possibilities. First, if a transfer is completed

without any interruption by the user, the user takes some time for reading the page or thinking

about the next link before launching the request for the new page. Second, when the user

interrupts the previous transfer by pressing the stop button or killing the web browser, then it

takes a period of silence time before the user requests for a new page.

 Summing up the above discussion, we observed from the active and passive tests that the

web browsers often do not follow the given TCP standards. We classified several types of

TCP connection terminations between the client and the server. The authors in [20] proposed

a criterion, which is quite helpful in detecting those TCP connections that are interrupted by

the client before the end of data transfer from the server. However, there could be two causes

of such client-side interruptions: the client web browser or the user. To identify the

interruptions done by the user and not by the web browser, we presented a set of criteria.

According to the criteria, the HTTP request and response messages need to be taken into

account beside the TCP flags in order to identify the transfers interrupted by the users.

Figure 6. State diagram of a Web transfer

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 65

8. Conclusions

In this paper, we proposed a set of criteria to monitor the user actions in the Web browser.

The monitoring of these actions can provide indications about user reaction to the network

performance. These are based on the TCP interruptions and HTTP requests. In order to study

whether TCP RST flags could be used to monitor the user behavior on the Web, we

conducted several experiments with different web browsers. We found out that some web

browsers send TCP RST flags without any interruption by the user. Therefore, TCP RST flags

alone could not be used to monitor the user actions in the web browser. However, TCP RST

flags along with the knowledge of HTTP request and response messages can allow us to

passively monitor the user-perceived performance.

Additionally, we also showed some of the abnormal behaviors by the web browsers. We

believe that there is a need of a better mechanism for communication between web browsers

and the web servers, in order to improve the performance of TCP connections and raise the

user experience.

Acknowledgment

This work has been sponsored by the Network of Excellence Euro-NF (FP7 ICT N° 216366)

and was started within Euro-NF’s Specific Joint Research Project QoEWeb. We would also

like to thank our master students Adeel Ashfaq and Umer Bilal for their work on the active

tests in the lab environment.

References

[1] Labovitz C., Iekel-Johnson S., Mcpherson D., Oberheide J., Jahanian F., “Internet

Inter-domain Traffic”. ACM SIGCOMM 2010. New Delhi, India, August 2010.

http://dx.doi.org/10.1145/1851182.1851194

[2] PhD comics. “http://www.phdcomics.com/comics/archive.php?comicid=1456”. Last seen:

Feb 3, 2012.

[3] Tao S., Apostolopoulos J., Guerin R., “Real-time Monitoring of Video Quality in IP

Networks”. IEEE/ACM Transactions on Networking. Volume 16, Issue 5, October 2008, pp.

1052-1065. http://dx.doi.org/10.1109/TNET.2007.910617

[4] De Moor K., Ketyko I., Joseph W., Deryckere T., De Marez L., Martens L., Verleye G.,

“Proposed Framework for Evaluating Quality of Experience in a Mobile, Testbed-Oriented

Living Lab Settings”. Mobile Networks and Applications. Volume 15, Number 3, 2010, pp.

378-391. http://dx.doi.org/10.1007/s11036-010-0223-0

[5] Fiedler M., Tutschku K., Chevul S., Isaksson L., Binzenhöfer A., “Throughput Utility

Function: Assessing Network Impact on Mobile Services”. Lecture Notes in Computer

Science. Vol. 3883, 2006, pp. 242.254. http://dx.doi.org/10.1007/11750673_19

[6] Shaikh J., Fiedler M., Collange D., “Quality of Experience from User and Network

Perspectives”. Annals of Telecommunication. Volume 65, Number 1-2. Pp. 47-57. 2010.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 66

http://dx.doi.org/10.1007/s12243-009-0142-x

[7] Shaikh J., Fiedler M., Arlos P., Minhas T., Collange D., “Classification of TCP

Termination Behaviors for Mobile Web”. In the proceedings of 1
st
 workshop on Smart

Communication Protocols and Algorithms (SCPA 2011), collocated with IEEE Globecom,

Houston, USA, December 2011.

http://dx.doi.org/10.1007/10.1109/GLOCOMW.2011.6162351

[8] Collange D., Hajji M., Shaikh J., Fiedler M., Arlos P., “User Impatience and Network

Performance”. 8
th

 Euro-NF Conference on Next Generation Internet (NGI 2012), Karlskrona,

Sweden, June 2012.

[9] Shaikh J., Fiedler M., Minhas T., Arlos P., Collange D., “Passive Methods for the

Assessment of User-perceived Quality of Delivery”, 7
th

 Swedish National Computer

Networking Conference (SNCNW 2011), Linköping, Sweden, June 2011.

[10] Postel J., “Transmission Control Protocol”, RFC 793. September 1981,

http://tools.ietf.org/html/rfc793

[11] Perez P., Macias J., Ruiz J., Garcia N., “Effect of Packet Loss on Video Quality of

Experience”. Bell Labs Technical Journal. Vol. 16, Issue 1. Pp. 91-104. June 2001.

http://dx.doi.org/10.1002/bltj.20488

[12] Jiang W., Schulzrinne H., “Modeling of Packet Loss and Delay and Their Effect on

Real-time Multimedia Service Quality”. In Proceedings of NOSSDAV, 2000.

[13] Chen K., Tu C., Xiao W., “OneClick: A Framework for Measuring Network Quality of

Experience”. In Proceedings of INFOCOM 2009. Rio De Janeiro, Brazil. April 2009.

http://dx.doi.org/10.1109/INFCOM.2009.5061978

[14] Diana Joumblatt, Renata Teixeira Jaideep Chandrashekar, Nina Taft “Performance of

Networked Applications:The Challenges in Capturing the User’s Perception”. In the first

workshop on Measurements Up the Stack 2011. Toronto, Canada. August 2011.

http://dx.doi.org/10.1145/2018602.2018612

[15] Miller S., Mondal A., Potharaju R., Dinda P., Kuzmanovic A., “Understanding End-user

Perception of Network Problems”. In the first workshop on Measurements Up the Stack 2011.

Toronto, Canada. August 2011. http://dx.doi.org/10.1145/2018602.2018613

[16] Shaikh J., Fiedler M., Collange D., Arlos P., “Modeling and Analysis of Web Usage and

Experience Based on Link-Level Measurements”. 24
th

 International Teletraffic Congress

(ITC-24), Krakov, Poland, September 2011.

[17] Arlitt M., Williamson C., “ An Analysis of TCP Reset Behaviour on the Internet”. ACM

Sigcomm Computer Communication Review. Vol. 35, Issue 1. January 2005.

http://dx.doi.org/ 10.1145/1052812.1052823

[18] John W., Tafvelin S., Olovsson T., “Trends and Difference in Connection-Behavior

within Classes of Internet backbone Traffic”. Proceedings of the 9th International Conference

on Passive and Active Measurement. 2008. http://dx.doi.org/10.1007/978-3-540-79232-1_20

[19] Fukuda K., “An Analysis of Longitudinal TCP Passive Measurements”. Lecture Notes

in Computer Science. Vol. 6613/2011. Pp.29-36. 2011.

http://dx.doi.org/10.1007/978-3-642-20305-3_3

[20] Rossi D., Mellia M., Casetti C., “User Patience and the Web: A Hands-on

Investigation”. In the Proceedings of IEEE Globecom 2003.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 2

www.macrothink.org/npa 67

http://dx.doi.org/10.1109/GLOCOM.2003.1259011

[21] http://www.webkit.org, Last visited: Feb 04, 2012.

[22] Tstat TCP Statistic and Analysis Tool, http://tstat.tlc.polito.it/index.shtml, Last visited:

Feb 06, 2012.

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the

Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

