

A Distributed Object Model for Solving Irregularly Structured Problems on

Cluster

Yudong Sun and Cho-Li Wang

Department of Computer Science and Information Systems
The University of Hong Kong
{ydsun, clwang}@csis.hku.hk

Abstract

This paper presents a distributed object model MOIDE
for solving irregularly structured problems on cluster.
The primary appeal of MOIDE is its flexible system
structure that is adaptive to heterogeneous architecture of
a cluster. MOIDE integrates the object-oriented and
multithreaded methodologies to set up a unified
computing environment. Both the shared-data access and
remote messaging are incorporated in a two-layer
communication mechanism for efficient inter-object
communication with the common communication
interface. MOIDE supports dynamic load balancing by its
autonomous load scheduling technique. A runtime
support system implements the MOIDE model as a
platform-independent infrastructure for developing and
executing irregularly structured applications. N-body, ray
tracing, and conjugate gradient applications are
implemented to illustrate the advantages of MOIDE
model.

1. Introduction

An Irregularly Structured Problem (ISP) is the
application whose computation and communication
patterns are input-dependent, unstructured, and evolving
in the computation procedure [1]. A lot of applications in
different fields can be classified as irregularly structured
problems. Examples can be found in astrophysics, fluid
dynamics, sparse matrix computations, system modeling
and simulations, computer graphics and etc.

The irregularly structured problems are usually
computation-intensive applications. From the data
structure aspect, the irregular and dynamic nature of data
distribution in ISP usually needs more complicated data
structures to flexibly represent its runtime feature. The
computations based on these data structures exhibit strong
data dependency and limited parallelism while solving ISP
in distributed environment. As a result, the data structures
that describe the input data and intermediate status of ISP
should be flexible enough to suit the task decomposition

and could be reconstructed in a flexible way to reflect the
data evolution during the computation.

It is also observed that the workload of ISP depends on
the input data and its dynamic evolution in the
computation, which cannot be accurately measured. Thus,
it is usually difficult to evenly distribute the workload of
an ISP onto multiprocessors by a static task mapping. The
high data dependency among the decomposed subtasks
further complicates the task scheduling. In addition, due to
the high data dependency, ISP also presents irregular
inter-process communication that severely affects the
overall performance. To achieve high performance
computation of ISP, we need an adaptive computing
infrastructure and various efficient mechanisms for
solving the above problems.

This paper presents a distributed object model MOIDE
(Multithreaded Object-oriented Infrastructure on
Distributed Environment) for solving irregularly
structured problems on cluster. Based on this model, we
build an adaptive and architecture-independent computing
infrastructure for developing and executing irregularly
structured applications. MOIDE system supports the
following features:

(1) Hierarchical Collaborative System (HiCS): HiCS
is the core of MOIDE. It is a runtime distributed
object system built on the cluster nodes. HiCS helps
to adaptively map the subtasks onto the underlying
heterogeneous cluster nodes at runtime and
seamlessly access the cluster resources.

(2) Autonomous Task Scheduling and Asynchronous
Computation: Non-predetermined and dynamically
evolving load distribution in ISP is the main obstacle
to load balancing. Autonomous task scheduling can
guarantee the dynamic load balance during the
execution. To further improve the asynchrony in
computation, remote messaging is implemented in the
form of one-sided communication in which the
communication operation is started on either the
sender or the receiver only without the explicit
participation of the communication partner.

(3) Multithreading and Two-level Communication:
Multithreading support and two-level communication

mechanism are implemented in MOIDE to enhance
the performance. The ability to create and control
multiple threads is especially important in developing
irregularly structured applications, since the
computations are typically more asynchronous and
dynamic. The integration of object-oriented and
multithreaded methods facilitates the efficient inter-
thread communication on heterogeneous cluster. A
two-layer communication mechanism is implemented,
which can dynamically link the communication
interface to either local (object sharing) or remote
(message passing) communication.

Three irregularly structured applications, including N-
body problem, ray tracing and CG (conjugate gradient),
are implemented to demonstrate the advantages of
MOIDE model.

2. MOIDE: A Distributed Object Model

2.1 System Architecture

HiCS is constructed with a group of objects. Figure 1

plots the structure of a hierarchical collaborative system
built on a cluster of P hosts. The object on Host 0 is called
compute coordinator, which is the initiator of the system.
It creates the remote objects on other hosts and allocates
computing tasks to them. It also coordinates the whole
computing procedure and conducts the system-wide
synchronization. Other objects are called compute
engines, which accept and execute the computing tasks.
The registration mechanism registers the references of the
computer coordinator and compute engines for the
interaction between them. The interaction mechanism is
the communication interface that supports the two-layer
communication. The host selection mechanism is used to
detect and select the hosts in the underlying cluster.

Figure 1. Hierarchical collaborative system

HiCS has a two-level structure. The compute engines
form the upper level that is directly managed by the
compute coordinator. The compute coordinator or

compute engines can generate multiple computing threads
within themselves. For example in Figure 1, multiple
threads are generated on Host 1, which is an SMP node.

A runtime support system, MOIDE-runtime, is
developed to support MOIDE-based computation. The
major components of MOIDE-runtime are shown in
Figure 2. It includes the class of compute coordinator and
the class of compute engine. MOIDE-runtime supports
two types of system reconfiguration: system expansion
that adds new compute engine into HiCS and host
replacement that replaces the compute engine on an
overloaded host by the new compute engine on another
host. MOIDE-runtime is implemented in Java and RMI so
that it is executable on heterogeneous platforms.

Figure 2. MOIDE runtime support system

2.2 Multiple Work Modes

When building HiCS, the creation of the multiple

threads are related to the architecture of the underlying
hosts. With the location information maintained in the
registration mechanism, the threads can be flexibly
organized into one of the execution modes to run an
application based on the computation requirement, (1)
cooperative mode: the group of threads work together to
cooperatively process a computing task; (2) independent
mode: each thread works as an independent compute
engine and processes individual computing task.

2.3 Two-layer Communication

There are two communication paths in HiCS. Local

communication within a group of threads can be fulfilled
by rapid local data-object access. Only the communication
between the distributed objects calls for remote
messaging. These two paths are integrated to create a two-
layer communication mechanism. The shared-data access
can reduce the irregular communication cost. Therefore
the two-layer communication can reduce the heavy and
unpredictable communication overhead in irregularly
structured problems.

The two-layer communication mechanism is
transparent to the applications. MOIDE runtime support
system provides a uniform communication interface at
application level. Application calls the same interface and

Compute
Coordinator

Host 0

Compute
Coordinator

Host 0

Host Selection Interaction Registration

Compute
Engine

Compute
Engine

Compute
Engine

Host 1 Host 2 Host 3

Compute
Engine

Compute
Engine

Compute
Engine

Host 1 Host 2 Host 3

Compute
Engine

Host (P -1)

Compute
Engine

Host (P -1)

Reference

!!!! !!!!

Thread1 Thread2 Thread k

Main thread

Shared Data

Compute

!!!! !!!!

Thread1 Thread2 Thread

Main thread

Shared Data

Engine

SMP

Uniform Communication Interface

Two-layer Communication Mechanism

System Creation Synchronization

Autonomous Load Scheduling

System Reconfiguration

Compute
Coordinator

Compute
Engine

the runtime support system will decide the proper
communication path depending on the locations of the
communication partners.

2.4 Autonomous Load Scheduling

It is difficult to evenly decompose an irregular

computation before execution. MOIDE supports
autonomous load scheduling as a dynamic load balancing
scheme. Differing from the master/slave load scheduling
such as in [2], the autonomous load scheduling needs no
dedicated load scheduler. It allows a compute engine or
thread to directly fetch a computing task from the global
task pool on demand. As a result, the computing tasks can
be progressively distributed to the compute engines or
threads. Therefore dynamic load balance can be
automatically reached.

3. Irregularly Structured Applications

Three irregularly structured applications are developed
on MOIDE model. These applications have distinct
irregular features that demand specific techniques adopted
in the design of high-performance solutions.

3.1 Distributed N-body Method

N-body problem simulates the evolution of a physical

system that contains numerous particles (bodies). It is a
computation- and communication-intensive problem. The
N-body method on MOIDE model is derived from the
Barnes-Hut method [3]. We designed a distributed tree
structure as the distributed variation of the Barnes-Hut
tree [4]. The distributed tree is created by space
decomposition. Each compute engine builds a subtree.
The threads in each compute engine work in cooperative
mode to share the subtree and compute the force exerted
on the bodies in the subset. The distributed tree structure
also includes a partial subtree scheme to satisfy the data-
sharing requirement under low communication cost. A
partial subtree contains the top-half levels of the subtree,
which is broadcasted to all compute engines. If a body
needs more information beyond a partial subtree in force
computation, the body will be sent to the remote compute
engine to access the full subtree there.

The distributed N-body method is tested on a cluster of
four quad-processor SMP nodes linked with Fast Ethernet
switch. The N-body method runs on the cluster with the
problem sizes N from 10,240 to 102,400 bodies. Figure 3
depicts the execution time breakdowns. The computation
dominates the execution time. There is not obvious
uprising of the communication cost when increasing the
number of processors and the problem size. The

proportion of the communication time decreases in the
total execution time on large problem size.

Figure 3. Execution time breakdowns of the
distributed N-body method

3.2 Ray Tracing

Ray tracing is a graphic rendering algorithm. It

generates an image on a view plane from the mathematical
description of the objects in the scene. In parallel ray
tracing, the view plane is partitioned into blocks that can
be rendered in parallel. We demonstrate the efficiency of
the proposed autonomous load scheduling mechanism by
a parallel ray tracing application, as the rendering of a
block is independent from any other block.

During the execution, all computing threads are
working in independent mode and all threads can
individually perform the rendering operations. Having
finished the rendering of a block, a thread can directly
fetch next block from the global task pool. Thus, the
computation and communication procedures on all threads
are fully asynchronous. The autonomous load scheduling
can exploit the computing power of all threads and
achieve the highest parallelism in the ray tracing.

Figure 4. Execution times of the ray tracing

The ray tracing application is tested on the cluster of
four quad-processor SMP nodes by comparing the
performance with the master/slave scheduling. As the
execution times in Figure 4 show, the autonomous load
scheduling is superior to the master/slave scheduling due
to the higher asynchrony in the autonomous load
scheduling.

�������������������� ��������������������
�����

��������������
�������������������

��

������
�����������������

��������������
������������

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Number of processors

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

Force computation

�����
Communication

N=10240

N=20480

N=40960

N=61440

N=81920

N=102400

0

50

100

150

200

250

1 2 4 6 8 10 12 14 16

Number of processors

E
x

e
cu

ti
o

n
 t

im
e

 (
s

e
co

n
d

s)

Master/Slave
Scheduling

Autonomous
load scheduling

3.3 Conjugate Gradient

The conjugate gradient (CG) is an iterative method for

solving large sparse linear systems. It obtains the
approximated solution by iteration. Parallel CG algorithm
is designed on the multiprocessors in mesh [5]. In each
iteration, it performs multiple reduction and transpose
communication operations for large vectors.

The implementation of CG is for the demonstration of
the efficiency of the proposed two-layer communication
and to verify the adaptability of MOIDE model. All
computing threads are performed in independent mode
and can be mapped into a mesh structure regardless of
their physical locations.

Figure 5. Execution time breakdowns of the CG
method on homogeneous SMP cluster

Figure 5 shows the execution time breakdowns of the
CG method on the cluster of four quad-processor SMP
nodes (the size of sparse matrix A is n×n). With the two-
layer communication, the communication overhead does
not increase linearly with the problem size. Higher
efficiency can be achieved on large problem size.

Figure 6. Execution time breakdowns of the CG
method on heterogeneous hosts

The CG method is also tested on a cluster of three
heterogeneous hosts: one quad-processor SMP and two

dual-processor nodes. All processors logically form a 2×4
mesh. The execution time breakdowns are shown in
Figure 6. The performance on the heterogeneous cluster is
close to that on the homogeneous SMP nodes but the
communication cost is a bit higher.

4. Conclusions

From the implementations of the irregularly structured
applications, we can find that MOIDE is a flexible model
to support the adaptive mapping of irregularly structured
problems onto heterogeneous systems. The two-layer
communication mechanism can reduce the communication
overhead and enhance the overall performance of
communication-intensive irregular applications. The
autonomous load scheduling is an effective approach to
produce a runtime workload balance and exploit the high
parallelism during the execution of the applications. The
distributed tree structure in the N-body method is the
communication-efficient data structure to handle the high
data-dependency involved in the irregular computation.

The future work will emphasize on the system
scalability. For wide-area network computing as on Grid,
the current two-level hierarchical collaborative system
should be expanded to a multilevel structure to integrate
large number of computer nodes on different levels in a
distributed system. All compute engines in the HiCS
should have more autonomy rather than the single
compute coordinator. The system coordination, load
scheduling, and communication strategies should be
improved to suit the multilevel system structure.

References

[1] T. Gautier, J. Roch and G. Villard, “Regular versus Irregular

Problems and Algorithms”, Proceedings of Second
International Workshop on Parallel Algorithms for
Irregularly Structured Problems, IRREGULAR’95, Lyon
France, September 1995, pp.1-25.

[2] A. Fava, E. Fava and M. Bertozzi, “MPIPOV: a parallel
implementation of POV-Ray based on MPI”, Proceedings of
Euro PVM/MPI, Barcellona, Spain, LNCS 1697, September
1999, pp. 426-433.

[3] J.P. Singh, C. Holt and et al., "Load Balancing and Data
Locality in Adaptive Hierarchical N-body Methods: Barnes-
Hut, Fast Multipole, and Radiosity", Journal of Parallel and
Distributed Computing, vol.27, No.2, 1995, pp.118-141.

[4] Y. Sun, Z. Liang and C.L. Wang, “Distributed Particle
Simulation Method on Adaptive Collaborative System”,
Future Generation Computer Systems, vol. 18, issue 1,
September 2001.

[5] V. Kumar, A. Grama and et al., “Introduction to Parallel
Computing: Design and Analysis of Algorithms  11.2.3
The Conjugate Gradient Method”, Benjamin/Cummings
Publishing Co., Redwood City, Calif., 1994, pp. 433-435.

���
�����������������

�����������
����������������

�������������
�����������

������

�����
���������

�����������
�������

�����
�����

On Homogeneous SMP nodes

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Number of processors

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

���
Communication

Computation

n=30000

n=50000

n=75000

n=90000

�����������������
�����������
�������

������
������

�����������������
������

�����������
�������������

������

On Heterogeneous Nodes

0

500

1000

1500

2000

2500

3000

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Number of processors

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

����
����Communication

Computation

n=30000

n=50000

n=75000

n=90000

	A Distributed Object Model for Solving Irregularly Structured Problems on Cluster
	References

