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Abstract 
 

This paper presents a distributed object model MOIDE 
for solving irregularly structured problems on cluster. 
The primary appeal of MOIDE is its flexible system 
structure that is adaptive to heterogeneous architecture of 
a cluster. MOIDE integrates the object-oriented and 
multithreaded methodologies to set up a unified 
computing environment. Both the shared-data access and 
remote messaging are incorporated in a two-layer 
communication mechanism for efficient inter-object 
communication with the common communication 
interface. MOIDE supports dynamic load balancing by its 
autonomous load scheduling technique. A runtime 
support system implements the MOIDE model as a 
platform-independent infrastructure for developing and 
executing irregularly structured applications. N-body, ray 
tracing, and conjugate gradient applications are 
implemented to illustrate the advantages of MOIDE 
model. 
 
 

1. Introduction 
 

An Irregularly Structured Problem (ISP) is the 
application whose computation and communication 
patterns are input-dependent, unstructured, and evolving 
in the computation procedure [1]. A lot of applications in 
different fields can be classified as irregularly structured 
problems. Examples can be found in astrophysics, fluid 
dynamics, sparse matrix computations, system modeling 
and simulations, computer graphics and etc. 

The irregularly structured problems are usually 
computation-intensive applications. From the data 
structure aspect, the irregular and dynamic nature of data 
distribution in ISP usually needs more complicated data 
structures to flexibly represent its runtime feature. The 
computations based on these data structures exhibit strong 
data dependency and limited parallelism while solving ISP 
in distributed environment. As a result, the data structures 
that describe the input data and intermediate status of ISP 
should be flexible enough to suit the task decomposition 

and could be reconstructed in a flexible way to reflect the 
data evolution during the computation. 

It is also observed that the workload of ISP depends on 
the input data and its dynamic evolution in the 
computation, which cannot be accurately measured. Thus, 
it is usually difficult to evenly distribute the workload of 
an ISP onto multiprocessors by a static task mapping. The 
high data dependency among the decomposed subtasks 
further complicates the task scheduling. In addition, due to 
the high data dependency, ISP also presents irregular 
inter-process communication that severely affects the 
overall performance. To achieve high performance 
computation of ISP, we need an adaptive computing 
infrastructure and various efficient mechanisms for 
solving the above problems. 

This paper presents a distributed object model MOIDE 
(Multithreaded Object-oriented Infrastructure on 
Distributed Environment) for solving irregularly 
structured problems on cluster. Based on this model, we 
build an adaptive and architecture-independent computing 
infrastructure for developing and executing irregularly 
structured applications. MOIDE system supports the 
following features: 

(1) Hierarchical Collaborative System (HiCS): HiCS 
is the core of MOIDE. It is a runtime distributed 
object system built on the cluster nodes. HiCS helps 
to adaptively map the subtasks onto the underlying 
heterogeneous cluster nodes at runtime and 
seamlessly access the cluster resources. 

(2) Autonomous Task Scheduling and Asynchronous 
Computation: Non-predetermined and dynamically 
evolving load distribution in ISP is the main obstacle 
to load balancing. Autonomous task scheduling can 
guarantee the dynamic load balance during the 
execution. To further improve the asynchrony in 
computation, remote messaging is implemented in the 
form of one-sided communication in which the 
communication operation is started on either the 
sender or the receiver only without the explicit 
participation of the communication partner.  

(3) Multithreading and Two-level Communication: 
Multithreading support and two-level communication 



mechanism are implemented in MOIDE to enhance 
the performance. The ability to create and control 
multiple threads is especially important in developing 
irregularly structured applications, since the 
computations are typically more asynchronous and 
dynamic. The integration of object-oriented and 
multithreaded methods facilitates the efficient inter-
thread communication on heterogeneous cluster. A 
two-layer communication mechanism is implemented, 
which can dynamically link the communication 
interface to either local (object sharing) or remote 
(message passing) communication.  

Three irregularly structured applications, including N-
body problem, ray tracing and CG (conjugate gradient), 
are implemented to demonstrate the advantages of 
MOIDE model.  
 

2. MOIDE:  A Distributed Object Model 
 
2.1 System Architecture 

 
HiCS is constructed with a group of objects. Figure 1 

plots the structure of a hierarchical collaborative system 
built on a cluster of P hosts. The object on Host 0 is called 
compute coordinator, which is the initiator of the system. 
It creates the remote objects on other hosts and allocates 
computing tasks to them. It also coordinates the whole 
computing procedure and conducts the system-wide 
synchronization. Other objects are called compute 
engines, which accept and execute the computing tasks. 
The registration mechanism registers the references of the 
computer coordinator and compute engines for the 
interaction between them. The interaction mechanism is 
the communication interface that supports the two-layer 
communication. The host selection mechanism is used to 
detect and select the hosts in the underlying cluster.  

Figure 1. Hierarchical collaborative system  

HiCS has a two-level structure. The compute engines 
form the upper level that is directly managed by the 
compute coordinator. The compute coordinator or 

compute engines can generate multiple computing threads 
within themselves. For example in Figure 1, multiple 
threads are generated on Host 1, which is an SMP node. 

A runtime support system, MOIDE-runtime, is 
developed to support MOIDE-based computation. The 
major components of MOIDE-runtime are shown in 
Figure 2. It includes the class of compute coordinator and 
the class of compute engine. MOIDE-runtime supports 
two types of system reconfiguration: system expansion 
that adds new compute engine into HiCS and host 
replacement that replaces the compute engine on an 
overloaded host by the new compute engine on another 
host. MOIDE-runtime is implemented in Java and RMI so 
that it is executable on heterogeneous platforms.  

Figure 2. MOIDE runtime support system  

 
2.2 Multiple Work Modes 

 
When building HiCS, the creation of the multiple 

threads are related to the architecture of the underlying 
hosts. With the location information maintained in the 
registration mechanism, the threads can be flexibly 
organized into one of the execution modes to run an 
application based on the computation requirement, (1) 
cooperative mode: the group of threads work together to 
cooperatively process a computing task; (2) independent 
mode: each thread works as an independent compute 
engine and processes individual computing task. 

 
2.3 Two-layer Communication 

 
There are two communication paths in HiCS. Local 

communication within a group of threads can be fulfilled 
by rapid local data-object access. Only the communication 
between the distributed objects calls for remote 
messaging. These two paths are integrated to create a two-
layer communication mechanism. The shared-data access 
can reduce the irregular communication cost. Therefore 
the two-layer communication can reduce the heavy and 
unpredictable communication overhead in irregularly 
structured problems.  

The two-layer communication mechanism is 
transparent to the applications. MOIDE runtime support 
system provides a uniform communication interface at 
application level. Application calls the same interface and 
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the runtime support system will decide the proper 
communication path depending on the locations of the 
communication partners. 

 
2.4 Autonomous Load Scheduling 

 
It is difficult to evenly decompose an irregular 

computation before execution. MOIDE supports 
autonomous load scheduling as a dynamic load balancing 
scheme. Differing from the master/slave load scheduling 
such as in [2], the autonomous load scheduling needs no 
dedicated load scheduler. It allows a compute engine or 
thread to directly fetch a computing task from the global 
task pool on demand. As a result, the computing tasks can 
be progressively distributed to the compute engines or 
threads. Therefore dynamic load balance can be 
automatically reached. 

 

3. Irregularly Structured Applications 
 

Three irregularly structured applications are developed 
on MOIDE model. These applications have distinct 
irregular features that demand specific techniques adopted 
in the design of high-performance solutions. 

 
3.1 Distributed N-body Method 

 
N-body problem simulates the evolution of a physical 

system that contains numerous particles (bodies). It is a 
computation- and communication-intensive problem. The 
N-body method on MOIDE model is derived from the 
Barnes-Hut method [3]. We designed a distributed tree 
structure as the distributed variation of the Barnes-Hut 
tree [4]. The distributed tree is created by space 
decomposition. Each compute engine builds a subtree. 
The threads in each compute engine work in cooperative 
mode to share the subtree and compute the force exerted 
on the bodies in the subset. The distributed tree structure 
also includes a partial subtree scheme to satisfy the data-
sharing requirement under low communication cost. A 
partial subtree contains the top-half levels of the subtree, 
which is broadcasted to all compute engines. If a body 
needs more information beyond a partial subtree in force 
computation, the body will be sent to the remote compute 
engine to access the full subtree there. 

The distributed N-body method is tested on a cluster of 
four quad-processor SMP nodes linked with Fast Ethernet 
switch. The N-body method runs on the cluster with the 
problem sizes N from 10,240 to 102,400 bodies. Figure 3 
depicts the execution time breakdowns. The computation 
dominates the execution time. There is not obvious 
uprising of the communication cost when increasing the 
number of processors and the problem size. The 

proportion of the communication time decreases in the 
total execution time on large problem size.  

Figure 3. Execution time breakdowns of the 
distributed N-body method  

 
3.2 Ray Tracing 

 
Ray tracing is a graphic rendering algorithm. It 

generates an image on a view plane from the mathematical 
description of the objects in the scene. In parallel ray 
tracing, the view plane is partitioned into blocks that can 
be rendered in parallel. We demonstrate the efficiency of 
the proposed autonomous load scheduling mechanism by 
a parallel ray tracing application, as the rendering of a 
block is independent from any other block.  

During the execution, all computing threads are 
working in independent mode and all threads can 
individually perform the rendering operations. Having 
finished the rendering of a block, a thread can directly 
fetch next block from the global task pool. Thus, the 
computation and communication procedures on all threads 
are fully asynchronous. The autonomous load scheduling 
can exploit the computing power of all threads and 
achieve the highest parallelism in the ray tracing. 

Figure 4. Execution times of the ray tracing 

The ray tracing application is tested on the cluster of 
four quad-processor SMP nodes by comparing the 
performance with the master/slave scheduling. As the 
execution times in Figure 4 show, the autonomous load 
scheduling is superior to the master/slave scheduling due 
to the higher asynchrony in the autonomous load 
scheduling. 
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3.3 Conjugate Gradient 

 
The conjugate gradient (CG) is an iterative method for 

solving large sparse linear systems. It obtains the 
approximated solution by iteration. Parallel CG algorithm 
is designed on the multiprocessors in mesh [5]. In each 
iteration, it performs multiple reduction and transpose 
communication operations for large vectors.  

The implementation of CG is for the demonstration of 
the efficiency of the proposed two-layer communication 
and to verify the adaptability of MOIDE model. All 
computing threads are performed in independent mode 
and can be mapped into a mesh structure regardless of 
their physical locations. 

Figure 5. Execution time breakdowns of the CG 
method on homogeneous SMP cluster  

Figure 5 shows the execution time breakdowns of the 
CG method on the cluster of four quad-processor SMP 
nodes (the size of sparse matrix A is n×n). With the two-
layer communication, the communication overhead does 
not increase linearly with the problem size. Higher 
efficiency can be achieved on large problem size.  

Figure 6. Execution time breakdowns of the CG 
method on heterogeneous hosts  

The CG method is also tested on a cluster of three 
heterogeneous hosts: one quad-processor SMP and two 

dual-processor nodes. All processors logically form a 2×4 
mesh. The execution time breakdowns are shown in 
Figure 6. The performance on the heterogeneous cluster is 
close to that on the homogeneous SMP nodes but the 
communication cost is a bit higher. 
 

4. Conclusions 
 

From the implementations of the irregularly structured 
applications, we can find that MOIDE is a flexible model 
to support the adaptive mapping of irregularly structured 
problems onto heterogeneous systems. The two-layer 
communication mechanism can reduce the communication 
overhead and enhance the overall performance of 
communication-intensive irregular applications. The 
autonomous load scheduling is an effective approach to 
produce a runtime workload balance and exploit the high 
parallelism during the execution of the applications. The 
distributed tree structure in the N-body method is the 
communication-efficient data structure to handle the high 
data-dependency involved in the irregular computation.  

The future work will emphasize on the system 
scalability. For wide-area network computing as on Grid, 
the current two-level hierarchical collaborative system 
should be expanded to a multilevel structure to integrate 
large number of computer nodes on different levels in a 
distributed system. All compute engines in the HiCS 
should have more autonomy rather than the single 
compute coordinator. The system coordination, load 
scheduling, and communication strategies should be 
improved to suit the multilevel system structure. 
 

References 
 
[1] T. Gautier, J. Roch and G. Villard, “Regular versus Irregular 

Problems and Algorithms”, Proceedings of Second 
International Workshop on Parallel Algorithms for 
Irregularly Structured Problems, IRREGULAR’95, Lyon 
France, September 1995, pp.1-25. 

[2] A. Fava, E. Fava and M. Bertozzi, “MPIPOV: a parallel 
implementation of POV-Ray based on MPI”, Proceedings of 
Euro PVM/MPI, Barcellona, Spain, LNCS 1697, September 
1999, pp. 426-433. 

[3] J.P. Singh, C. Holt and et al., "Load Balancing and Data 
Locality in Adaptive Hierarchical N-body Methods: Barnes-
Hut, Fast Multipole, and Radiosity", Journal of Parallel and 
Distributed Computing, vol.27, No.2, 1995, pp.118-141. 

[4] Y. Sun, Z. Liang and C.L. Wang, “Distributed Particle 
Simulation Method on Adaptive Collaborative System”, 
Future Generation Computer Systems, vol. 18, issue 1, 
September 2001. 

[5] V. Kumar, A. Grama and et al., “Introduction to Parallel 
Computing: Design and Analysis of Algorithms   11.2.3 
The Conjugate Gradient Method”, Benjamin/Cummings 
Publishing Co., Redwood City, Calif., 1994, pp. 433-435. 

���
�����������������

�����������
����������������

�������������
�����������

������

�����
���������

�����������
�������

�����
�����

On Homogeneous SMP nodes

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Number of processors

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

���
Communication

Computation

n=30000

n=50000

n=75000

n=90000

�����������������
�����������
�������

������
������

�����������������
������

�����������
�������������

������

On Heterogeneous Nodes

0

500

1000

1500

2000

2500

3000

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Number of processors

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

����
����Communication

Computation

n=30000

n=50000

n=75000

n=90000


	A Distributed Object Model for Solving Irregularly Structured Problems on Cluster
	References


