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Abstract 
Java supports distributed programming using threads and Remote Method Invocation 
(JRMI). However, a Java thread does not match well with the object concept, and JRMI 
cannot easily used to synchronize distributed objects. This work proposes a more object 
oriented model for concurrent and distributed programming using the notion of separate 
objects. Separate objects are asynchronous objects maybe running on different 
processors. These objects are also used for synchronization. The presented approach 
should encourage more seamless designs. The implementation is supported by JOODE 
(Java Object Oriented Development Environment) which supports the use of an 
adaptable platform of a net of processors. 

1 IS CONCURRENCY IN JAVA TRULY OBJECT-ORIENTED? 

To obtain asynchronous behavior of an action, a Java programmer must extend the class 
Thread, encapsulating the action in the run method. The classic production-consumption 
example can be illustrated with the following pattern. 

A class Producer extends Thread and encapsulates the production algorithm in its 
overridden run method, and a class Consumer, also extending Thread, encapsulates the 
consumption algorithm. Both, the production and consumption threads, will synchronize 
using a buffer. To initiate the production-consumption behavior a method must create 
instances of Producer and Consumer and “activate” both instances by calling their 
corresponding start methods (Listing 1). 

class Producer extends Thread { 
  private Buffer buf; 
  public void produce(){ 
  ..produces an object and puts it in the buffer.. 
  } 
  ... 
  public void run(){ 
    while (some condition) { produce(); } 
  } 
} 

http://www.jot.fm
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class Consumer extends Thread { 
  private Buffer buf; 
  public void consume(){ 
  ..consumes an object from the buffer.. 
  } 
  ... 
  public void run(){ 
    while (some condition) {consume();} 
  } 
} 
class Main { 
  public static void main(string[] args){ 
    Buffer b = new Buffer(); 
    Producer p = new Producer(b); 
    Consumer c = new Consumer(b); 
    /* do the production consumption in  
       an asynchronous way */ 
    p.start(); 
    c.start(); 
    ..do other actions.. 
} 

LISTING 1 Production - consumption using threads 
 
 

Supposing that the production process has two alternating production algorithms, the 
Producer class should be reprogrammed (Listing 2). 

class Producer extends Thread { 
  private Buffer buf; 
  public void produce1(){..one algorithm..} 
  public void produce2(){..other algorithm ..} 
  ... 
  public void run(){ 
    while (some condition) { produce1(); produce2();} 
  } 
} 

LISTING 2 Two alternating production algorithms 
 
 

But what if the production process changes again and we want two executions of the 
method produce1 for each execution of produce2? The class Producer must be 
reprogrammed (or extended) changing (or overriding) the run method (Listing 3). 

class Producer extends Thread { 
  private Buffer buf; 
  public void produce1(){ 
  ...one algorithm of production..} 
  public void produce2(){ 
  ..other algorithm of production..} 
  ... 
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  public void run(){ 
    while (some condition) { produce1(); produce1(); 
     produce2();} 
  } 
} 

LISTING 3 Another production approach 
 
 

The above approach is not particularly object oriented and does not enforce reusability 
because changes must be made in the Producer class and not in the class requiring the 
new production process. The only behavior that Producer should encapsulate is the two 
production algorithms, but how these algorithms should alternate in a production process 
should not be Producer's responsibility.  

A cook (the producer) knows to prepare various recipes. He works concurrently with a 
waiter. But it is the waiter who knows the sequence of the client's requests. The waiter 
sequentially requests the cook for menu items while she/he should continues serving 
clients. The cook's routine must not change because the waiter's has changed. 

Another solution could be to have two classes Producer1 and Producer2, one for each 
production method, and then create objects p11 and p12 of type Producer1 and p2 of 
type Producer2. The production strategy can now be placed in the client code (Listing 
4). 

But it is like having a cook for each recipe (a non too much efficient restaurant). 

class Producer1 extends Thread { 
  private Buffer buf; 
  public void produce(){..production algorithm 1..} 
  ... 
  public void run(){produce();} 
} 
class Producer2 extends Thread { 
  private Buffer buf; 
  public void produce(){..production algorithm 2..} 
  ... 
  public void run(){produce();} 
} 
class Main { 
  public static void main(string[] args){ 
    Buffer b = new Buffer(); 
    Consumer c = new Consumer(Buffer b); 
    c.start(); 
    Producer1 p11 = new Producer1(b); 
    Producer1 p12 = new Producer1(b); 
    Producer2 p2  = new Producer2(b); 
    while (some condition){ 
      p11.start(); 
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      p12.start(); 
      p2.start(); 
    ..do other actions.. 
} 

LISTING 4 Production objects with different threads 
 
 

This solution looks more object-oriented than the previous but it hides some drawbacks. 
Observe that when running Listing 4, the behavior may not be as intended. The three 
different threads were started in the order p11, p12 and p2 but this does not mean that 
the result of their production will be in this order in the buffer. This depends on the 
duration of each production method and on the time slicing scheduling mechanism of the 
threads in the JVM. 

Another drawback of this approach is the proliferation of classes. The original class 
Producer (Listing 2), having the two methods produce1 and produce2, has been split 
into two classes (Producer1 and Producer2), one for each production method. 
Nevertheless, in the original design, both production methods could share commonly 
defined information in their class. Such commonality could not be easily expressed in the 
new approach because there are two different classes with a single production method in 
each one. Where could this "common" information be located? 

A Java fan could argue that the Java thread and the synchronized specifier are 
sufficient to model every concurrent behavior. But in opposition to object-oriented goals, 
the price to be paid could be derived in a clever design and low maintainability with little 
adaptability to a distributed environment. This paper attempts to offer a more object-
oriented and expressive approach which serves as a foundation to the development of 
Java concurrent and distributed applications. 

2 SEPARATE OBJECTS 

The approach of Java separate objects is inspired by Meyer's proposal for the Eiffel 
language [Meyer 93, 97] but improves the synchronization model and at the same time 
attempt to fit better in a distributed and object-oriented environment. 

A Java separate object is an instance of a separate class (a class implementing the 
interface Separate). In a separate class, asynchronous behavior is not only in one 
method (as in Java run method), but in every method. A separate object that will be the 
target of a call to a command method (void returning method) will execute the called 
method asynchronously with the caller, i.e. the execution flow of the caller (more exactly 
the execution of the method where the call is produced) will continue without waiting for 
a return. But if the called method is a query (non-void returning method) the call will be 
synchronous, i.e. the caller waits for the returned result. 

class Producer implements Separate{ 
  private Buffer buf; 
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  public void produce1(){..production algorithm 1..} 
  public void produce2(){..production algorithm 2..} 
} 
class Consumer implements Separate{  ... 
  private Buffer buf; 
  public void consume(){...} 
} 
class Main { 
  public static void main(string[] args){ 
    Buffer b = new Buffer(); 
    Consumer c = new Consumer(b); 
    Producer p = new Producer(b); 
    while (some condition){ 
      p.produce1();...p.produce1();...p.produce2(); 
      ...c.consume();...c.consume();...c.consume(); 
    } 
    ..do other actions while the  
      production-consumption process is running 
 

LISTING 5 The separate solution for the production-consumption problem 
 
 

As will be explained later, the synchronization protocols are based on preconditions 
(boolean expressions acting as guards) preceding the methods. 

The discussed production strategy in the previous example (Listing 4) is now solved 
in a straightforward manner (Listing 5). Because class Producer is separate, both 
methods produce1 and produce2 will run asynchronously with their callers. The 
production-consumption process is defined neither in the Producer class nor in the 
Consumer. It is defined in the different calling classes (Main in this example). 
Therefore, unlike the thread-based solution, a change in this process will result in a 
change in the caller classes and not in the existing classes Producer and Consumer. 
This results in a clearer and more maintainable approach. 

Running the code in Listing 5 results in a scenario with three separate objects: the 
producer object p, the consumer object c and the main class (behaving as a "root" 
separate object). Due to the asynchronous behavior, the main method does not wait for 
the conclusion of the p production and the c consumption, but proceeds with other 
actions. 
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The Semantics of Separates Objects 

Each separate object, target of a command method call, guarantees that the call will be 
"registered" while the caller can continue its execution without waiting for the execution 
of the call. Only when the call is a query does the caller wait until the target returns the 
calculated value. This “call and continue” policy is the basis of the asynchronous 
execution in the separate model. 

Different callers can use a common target separate object. The target guarantees each 
caller that its calls will be executed in the order they were received. That is, calls coming 
from different callers could be interleaved, but keeping their relative order. For instance, 
a separate target s can receive from a caller s1 the sequence of calls 
s.h();...s.p();...s.r(); and from a caller s2 the sequence 
s.p();...s.g();...s.h(). The actual order that s will execute the calls could be 
h(from s1),p(from s2),g(from s2),p(from s1),h(from s2),r(from s1) 
but could never be h(from s1),p(from s2),g(from s2),r(from s1),h(from 
s2),p(from s1) because s1 executed the call s.p() before the call s.r() (see 
Figure 1). 

The separate semantics will be implemented by attaching a "logical processor" to 
each separate object. Because logical processors may run on different machines, the 
separate model serves as basis for the development of distributed applications (some 
implementation issues will be discussed later in this paper).  

Synchronously with the caller, a separate target of a call catches and "registers" the 
call for immediate or future execution, depending on whether the target is busy or not.  

The execution of the call by the target looks like an atomic operation. Once the target 
begins to execute the call it will not initiate the execution of any other. 

 

 
 
 

    Figure 1. Sequentiality and interleaving among calls   
from the same and different separates. 
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This approach tries to keep a separate object (more exactly the logical processor attached 
to it) continuously busy. It can be either executing a call or suspended because it needs 
certain synchronization (synchronization will be explained later), but it is always ready to 
catch and register the calls. 

If a separate object cannot initiate the execution of a call, or if it needs to suspend an 
executing call, then it will be able to execute other registered calls from other separate 
callers. That is, a separate object acts as if it has a different execution thread for each 
caller. Only one of the threads executes calls, while the others catch and register calls for 
future execution. 

This approach is different from the one proposed by Meyer for Eiffel. In Eiffel, if a 
separate object is suspended while it is executing a call, then all other calls (even from 
other callers) must also wait. 

There are cases where a caller would want to ensure, not only the atomicity of the 
execution of a call, but also atomicity of the execution of a sequence of calls to a same 
target. For example, it could be necessary to express that a sequence of calls, coming 
from a caller, must be executed by the target in a strictly consecutive order (without 
interleaving calls coming from other callers). This can be solved with the notion of 
transaction precondition which will be discussed in a later section. 

Recursion and Separate Execution 

Consider the separate classes S1 and S2 (Listing 6) and let us consider a scenario with 
two objects s1 and s2 (of types S1 and S2 respectively) where s1 is executing a call 
to h1. During the execution of h1, is done the call, s2 catches and registers the call 
s2.h2() to h2. Later h1 calls s2.g2() and waits for the result. s2 catches the call to 
g2, registers it and continues executing h2. Only when s2 finishes the execution of h2 
will it execute g2. Nothing is wrong, s2 will register the call to g2 from s1 and it will 
execute this call after executing the previous call to h2. 

class S1 implements Separate{ 
  ... 
  public void h1(){s2.h2();...int m = s2.g2();...} 
  public void r1(){...s2.f2();...} 
  public  int f1(){...int k = s2.g2();...} 
} 
class S2 implements Separate{ 
  ... 
  public void h2(){...} 
  public void f2(){...int j = s1.f1();...} 
  public  int g2(){...} 
} 

LISTING 6 Recursion and separate objects 
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Consider another scenario of the Listing 6 where s1 is executing r1, s1 calls s2.f2() 
and continues executing r1. s2 catches the call to f2 and begins to execute it. While 
executing f2, s2 calls s1.f1() and waits for the result. s1 catches and registers the 
call to f1 to execute when it finishes with the previous r1. When s1 executes f1, it 
calls s2.g2() and waits for the result to be returned. If s2 catches and registers the call 
to g2, not executing it until the previous call to f2 has been completed, then s1 and s2 
will be in deadlock (Figure 2). s2 is blocked because it requires s1 to finish the 
execution of f1, and s1 is blocked because it needs s2 to finish the execution of g2! 

Assume a restaurant's chef is the only one who approves all the flavors. The chef 
receives an order for a pie from a waiter. While he is preparing the pie's shell he asks a 
fellow cook to prepare the filling. To finish the filling the second cook needs the taste 
approved by the chef. If the chef defers tasting the filling until he finishes the pie then 
he will fall into deadlock because he needs the filling to finish the pie. Nevertheless, if 
this fellow cook calls the chef to taste a barbecue sauce that he is preparing (for a third 
cook), then in such a case there is no trouble if the chef decides to defer the sauce's 
approval. 

 
 
 

To avoid this situation, apply the following rule to semantics of the separate objects: 
“A separate object that does a first call to other separate is named the origin of the 

sequence of calls beginning in such call. When a separate is running a method and then 
catches a query call having the same "origin", then the separate will catch the call and 
will immediately execute it” 
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      DEADLOCK 

Figure 2. Deadlock situation due to recursive calls 
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Note that the policy above avoids the deadlocks that could be created due to 
recursion loops. 

The implementation section offers an idea of how this can be implemented by 
passing an implicit parameter with each query call. This parameter represents the "origin" 
of the sequence of query calls. 

3 SYNCHRONIZING SEPARATE OBJECTS 

In practice, most applications using some asynchronous execution will require 
synchronization between the asynchronous components. Therefore the proposed separate 
model must include synchronization resources. 

For instance, in the producer-consumer example (Listing 5) a producer p and a 
consumer c need certain synchronization when using the buffer. The consumer must wait 
for the buffer to be non empty. When inserting a product the buffer must wait for room if 
it is full (Note that due to the asynchronous behavior of a call to produce, it is not  p that 
will wait but the buffer). The buffer must always work correctly if both p and c want to 
insert and extract at the same time. This classical synchronization example could be 
solved by integrating the Java synchronization resources with the separate model. 
However, this approach has the following drawbacks: 

1. The semantics of the Java wait and notify methods must be extended by adapting 
them to the proposed separate behavior. 

2. To prevent conflicting access to the buffer by p and c, the Buffer methods 
should be defined as synchronized. This can be done seamlessly if p and c 
are in the same address space as the buffer This is the case when each separate 
object is implemented using a different thread on the same processor [Avila 99], 
but this is not the case when we want to distribute the separate objects to be 
executed in different (and likely remote) processors. In this case, how would the 
distributed separate objects share a common buffer? 

3. A separate caller could want two successive calls to a target not be interleaved 
with calls coming from a second caller. Such behavior is not easily expressed 
using the synchronized specifier. 

Our approach proposes to use the separate objects themselves as the basis of the 
synchronization. This approach must suit a distributed model where separate objects do 
not share the same address space. 

Any separate object s could be a "synchronization" object if it demands certain 
conditions to execute a method. We call such conditions synchronization preconditions. 
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Synchronization Preconditions 

The idea of using "guarded" statements for synchronization was used in [Decouchant 89]. 
The separate approach proposed by Meyer for Eiffel uses the "double semantics" of a 
method's preconditions to synchronize. But when preconditions are used for 
synchronization, the Eiffel approach imposes a syntactic constraint requiring the use of 
only formal parameters declared as separate objects. This restriction disallows the use of 
a target separate objects own state for synchronization purposes. Note that, because its 
asynchronous character, the state of the target could change due to its interaction with 
other callers. Therefore, this constraint may result in unnatural designs from an object-
oriented perspective, requiring the introduction of intermediate functions which query in 
their preconditions the separate objects "received" as parameters, and resulting in poor 
performance when separate objects are really remote objects. 

The attempt to include assertions in Java has been largely discussed [Mannion 98, 
Meemken 98, RST Corp 1998]. In previous papers the authors also discuss the inclusion 
of assertions in Java and the role that assertions could play in concurrent programming 
[Fdez 98, Avila 99]. However, a full integration of the design by contract metaphor of 
assertions and the Java separate model should also do a proposition about the role of 
postconditions and invariants in the model. This theme goes beyond the current paper, so 
for the moment only preconditions will be examined. 

A synchronization precondition has the form  
synchronization_precondition ::=  
  require (list of boolean expressions) 

A synchronization precondition goes between the method signature and the method body 
of a public method in a separate class. 

method ::= method_signature [synchronization_precondition] 
method_body 

To execute the called method, all the boolean expressions belonging to its precondition 
must evaluate to true. So the precondition acts as a guard for the method. As was 
explained above, when calling a method on a target separate object, that separate object 
captures the call and registers it, allowing the caller to proceed. Due to the asynchronous 
execution of the caller and target, if the method has a precondition, then that precondition 
will not be evaluated when the target catches the call but later when the target executes 
that call (i.e. after evaluating previous calls from the same caller).  

It is important to note the foundation of the model. The caller method, whether the 
called method has a precondition or not, continues its execution (remember that we are 
talking about command methods because in a query call the caller always waits). It is 
only when the target separate object has executed previous calls from the same caller, that 
called method will be executed. If, at that moment, the precondition is not fulfilled, then 
the execution of the call is suspended and the separate object likely begins executing 
other hanging calls from other callers. 
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In traditional Java designs, the following two approaches can be applied to prevent 
insertion into a full buffer: 

1. A check in the caller. The caller guarantees the synchronization: 
synchronized(b){ 
  while (b.full()) b.wait(); 
  b.insert(x); 
} 
2. A check in the target. The called method guarantees the synchronization: 
synchronized void insert(Object x){ 
  while (full()) wait(); 
  // insert the x 
} 

Both approaches can also be applied in JRMI for distributed applications. 
The first approach puts the burden on each caller; the second one puts it on the target 

only. 
The second approach is also more suitable in distributed (maybe remote) 

applications. Note that a remote call to the insert method will be made in both cases, 
but in the first approach a query remote call to b.full() is also made. 

The role of precondition for synchronization used in the current separate model is 
inspired by the above second approach. It promotes designs where synchronization is 
encapsulated in the target, based as much as possible on the target state.  

In the two above traditional Java approaches, both called and caller, will be really 
blocked. But in the separate model, based on the second approach, the caller will not be 
blocked. Due to the asynchronous semantics, the caller makes the call and continues. It is 
the target (the buffer) which will be blocked or not. Only if the same caller needs to later 
query this target, then the caller may have to wait. 

So, this separate approach could result in improved performance when designing 
distributed and remote systems. 

Each time a separate object finishes the execution of a call, and then all suspended 
calls (from other callers) will be "activated", because they may have a chance of 
proceeding because its precondition may now be fulfilled. This process is explained in 
more detail in the section "The Rationale of the Locking Mechanism". 

The separate class Buffer of the production-consumption example can synchronize 
its usage by various producers and consumers by placing preconditions in its methods 
(Listing 7). 

class Buffer implements Separate{ 
  ... 
  public void insert(x) require (!full()){ 
]..inserts x in the buffer..} 
  public Object get() require (!empty()){ 
  ..extracts an object from the buffer..} 
  public boolean full(){...} 
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  public boolean empty(){...} 
  public int total(){...} 
  public int maxLength(){...} 
} 

LISTING 7 A separate buffer with preconditions 
 
 

Figure 3 shows a snapshot of pending calls to a buffer b from two producers p1 and p2 
and from a consumer c. If b tries to execute the insert coming from p1 when the 
buffer's memory is full, the execution of that call is suspended and b will try to execute a 
pending call from another caller (p2). But because p2 call is also an insert it will also 
be suspended. Then b tries to execute the get coming from c, it will be executed 
because its precondition evaluates to true. When that execution of get finishes, all 
suspended calls will pass to the ready state and b will again try to reevaluate some of 
them. By default the precondition to be evaluated will be chosen in a non-deterministic 
way among the waiting preconditions (a different scheduling policy could be applied to 
fine tune this behavior). 
 

 
 
 

Having a common target with all of its callers suspended does not mean that we are in a 
deadlock situation. In a distributed scenario, a new separate caller could appear on the 
scene to be attached to that target and then to call a method that changes the target’s state 
(perhaps allowing some suspended calls to proceed).  

In this example of the Buffer class (Listing 7) the preconditions include only 
information about the buffer, so that when evaluating a precondition, to decide about the 
execution of the called method, the buffer does not need to ask another separate object. It 
is a good approach, mainly in a distributed platform, because the buffer does not need to 
query another separate object (more costly operation). From the design perspective, this 
approach matches well with the following scenario: 

insert(Object x) 
require !full() 
(not fulfilled) 

insert(Object x) 
require !full() 
(not fulfilled) 

Object get() 
require !empty() 
(fulfilled) 

full buffer

Figure 3. A full buffer trying to satisfy three pending 
calls. For the moment, just the get() coming from c 
may proceed because its requirements are fulfilled. 



 
 
Synchronizing Separate Objects 
 
 
 
 
 

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 131 

Several separate objects are coordinating their tasks through one of them (the 
"coordinator"). Using preconditions in the methods, the coordinator should try to 
express as much coordination protocol as it can, attempting to not query other 
separate objects. Thanks to the asynchronous behavior, a separate object is not 
forced to wait for the coordinator (unless it requests some information from it). It 
only requests a service (makes a call) and continues. The coordinator will later 
execute the call (if the precondition is fulfilled). 

Nevertheless, not all of design situations can be handled using the above pattern. Likely, 
to execute some methods a target separate object cannot decide from its own state only 
but also needs to query other separate objects. This will be discussed in the next section. 

Transaction Precondition 

As it was explained previously, separate semantics guarantees that all the calls coming 
from a separate caller to a target will be evaluated in the order that the caller invoked 
them. But this does not mean that calls from other separate callers will not interleave 
them in the target queue. To enhance the design capability of the model, it is necessary to 
have a way to ensuring that a target must execute a sequence of calls, coming from a 
particular caller, without executing calls from other callers, i.e. a way for a separate 
object own other separate object for a certain period of time. During the owned state, the 
separate object can capture and register calls from other separate objects but can only 
execute those calls coming from its owner. Only when the owned object is released can it 
proceed to execute other pending calls. 

In the Buffer example, separate semantics and the Buffer method preconditions 
guarantee that a consumer will consume two objects coming from a same producer in the 
same order that the producer produced them. But this does not mean that the consumer 
will not consume other interleaved objects from other producers. A solution to this 
situation is to include an insert2 method in the class Buffer. This method should have 
the precondition  

void insert2(Object x, Object y) 
  require (total<=maxLength-2) { 
  ...insert x and y contiguous in the buffer 
} 

So, a producer wanting two objects x and y to be consumed consecutively should call 
b.insert2(x,y) and not b.insert(x); b.insert(y). This is a good solution 
because again the precondition requires information only from the target of the call (no 
remote access required). But what if another producer wants to guarantee that three 
consecutive objects will be consumed without any other object between them, or four, or 
five? Reprogramming (or extending) the class Buffer each time may not be a good 
approach. From the design point of view the main pitfall here is that the solution would 
not be a burden on the buffer but on the producer. 
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The proposed mechanism to solve this problem is the notion of transaction 
preconditions. If the precondition of a method h of a separate object s includes other 
separate objects (e.g. qualified calls to other separate objects s1 and s2) then the 
precondition is a transaction precondition. The method h could be considered a 
"transaction" on the separate objects appearing in its precondition, i.e. during the 
execution of h no calls from a separate object other than s will be executed by s1 and 
s2 appearing in the h precondition. 

If the method precondition does not include queries to other separates, it could be 
considered as a transaction on the method itself. Note that while executing a method, a 
separate object can catch and register other calls, but the execution of the method is 
atomic, that is, the separate object will not execute any registered calls until it finished 
the current execution. 

For the example above, the claim that two consecutive productions result in two 
consecutive objects in the buffer can be now expressed in the producer and not in the 
buffer. A separate class Producer, using the separate buffer b, could include the method 

public void doubleProduction() 
  require (b.total()<=b.maxLength()-2){ 
..produce an object x.. 
b.insert(x); 
..produce an object y.. 
b.insert(y); 
  ... 
} 

Note the qualified queries b.total()<=b.maxLength() appearing in the 
precondition. To execute the call p1.doubleProduction(x,y) the separate object 
p1 must first own the separate object b and then the precondition must evaluate true. 
During the execution of doubleProduction, b will not execute calls coming from 
separate objects other than p1, then the produced objects x and y, inserted into the buffer 
through the calls b.insert(x) and b.insert(y), will be consecutive in the buffer 
without no other object z between them. Only when the execution of the method 
doubleProduction is finished, will release b and then other separate objects (maybe 
other producer or a consumer) waiting for b can proceed. 

Compare the latter approach above with the former defining the insert2 method in 
the class Buffer. The former may be better from the performance point of view because 
the precondition of insert2 queries only target object (the buffer) and no remote 
queries (to other separate objects) are necessary. The latter may be better from the 
extendibility and maintainability points of view. A distributed application may be running 
where there's a need that two consecutive products will be consumed also consecutively. 
To include insert2 in the Buffer class and to substitute dynamically (without stopping 
the application) the existing buffer b by a new one, will cause problems for existing 
producers and consumers. However, defining a new Producer class with the new 
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doubleProduction method, and introducing a new producer object on the scene, 
should not cause disharmony in the running application. 

This tradeoff is a design decision. In the Eiffel approach, only the latter is possible 
because Eiffel requires a precondition to use only separate objects passed as parameters 
to the called method. This may result in a poor object-oriented design, and bad 
performance in simple cases such as the basic buffer methods. In the current proposition 
of the Java separate model, where both approaches are possible, the decision can be made 
by the developer. 

class Fork implements Separate{...} 
 
class Philosopher implements Separate{ 
  private Fork left, right; 
  public Philosopher(Fork l, Fork r){ 
    left=l; right=r;} 
  public void think(){...} 
  public void eat() 
   require (left.available() && right.available()){ 
   ... 
  } 
 
class Host { 
  ... 
  public void twoDinnersMeeting(int n){ 
    Fork[] forks = new Fork[n]; 
    for (int k=0; k<=forks.length-1; k++) 
     forks[k]=new  Fork(); 
    Philosopher[] p = new Pilosopher[n]; 
    for (int j=0; j<=p.length-1; j++) 
      p[j]=new Philosopher(forks[j], forks[(j+1)%n]); 
    for (int j=0; j<=p.length-1; j++){ 
      p[j].think(); p[j].eat(); 
    } 
    for (int j=0; j<=p.length-1; j++){ 
      p[j].think(); p[j].eat(); 
    } 
  } 

LISTING 8 The dining philosophers 
 
 

How to avoid deadlock? The dining-philosophers metaphor 

The proposed approach of synchronization based on preconditions also promotes the 
design of deadlock free applications [Katrib 99]. Applying a "multiple atomic owning 
policy" to separate objects appearing in a precondition facilitates avoiding situations 
where a separate object s owns a separate object s1 while it is waiting for a separate 
object s2, and in the meantime another separate object q owns s2 while waiting for s1. 
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The classical example of the dining philosopher's metaphor could be expressed 
without deadlock as shown in Listing 8. Note the precondition require 
(left.available() && right.available()) of the method eat. A separate 
philosopher p either takes control of both left and right forks or does not take anyone, 
giving another philosopher a chance to eat. 

Note the use of the boolean method available. The available method could be 
applied to any separate object. It always returns true. To use this available in a 
method's precondition means that to execute the method it is necessary to own the 
separate object target of the available call. 

The available method has also an added benefit. Used as another query statement 
inside the body of a method as in f(){...s.h(); ...s.p();...boolean 
b=s.available();...} it means that the caller to f will wait for s to resume all its 
previous calls (h and p). 

To conceive of a fork as a truly separate object introduces other advantages. For 
example, promoting a less promiscuous and more hygienic behavior, the class Fork 
could include methods like isClean, clean and dirty. In this case the eat method 
should change its precondition to require (left.isClean() && 
right.isClean()). 

So, the separate object "hosting" the philosopher's meeting should create an object 
waiter of the separate class Cleaner (see Listing 9) 

In order to eat, the hygienic philosopher waits for his neighbor forks to be cleaned, 
while a humble waiter is always watching for dirty forks to clean. 

If, in place of the clean precondition, the "a priori" query style was applied before 
the call, as in 

void doService(Fork[] forks){ 
  while (...meeting is open...) 
    for (int i=0; i<=forks.length-1; i++)  
      if (!forks[i].isClean())forks[i].clean(); 
  } 
} 

then the call forks[i].clean() won't be executed until the query call 
forks[i].isClean() has returned. But note that this query will not return while a 
philosopher is using the fork. The waiter is waiting for the philosopher to finish with the 
fork when he should be trying to clean another fork. 

class Fork implements Separate{ 
  ... 
  public boolean isClean(){...}; 
  public void clean()require (!isClean()){...}; 
} 
 
class Philosopher implements Separate{ 
  //...as in Listing 8 
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} 
 
class Cleaner{ 
  ... 
  Cleaner( ){...} 
  void doService(Fork[] forks){ 
    while (..meeting is on..) 
      for (int i=0; i<=forks.length-1; i++)  
        forks[i].clean(); 
  } 
} 
 
class Host { 
  ... 
  public void twoDinnersMeeting(int n){ 
    //create forks and philosophers as in Listing 8 
    Cleaner waiter = new Cleaner( ); 
    waiter.doService(forks); 
    // 

LISTING 9 A healthy philosopher meeting 
 
 

4 WHY NOT JAVA JRMI? 

The Java distributed object model is known as JRMI (Java Remote Method Invocation). 
In this section the main drawbacks of the JRMI, compared to the proposed separate 
model, are analyzed. Another work to synchronize separate objects in JRMI or CORBA 
based environment based on the design by contract metaphor and using IDL languages is 
presented in [Pastrana 01].  

JRMI is just a way of localizing remote objects and remotely executing calls on such 
objects. Implicitly, it does not assume asynchronous behavior between callers and those 
called methods. If we want to achieve such asynchrony, we must explicitly some patterns 
such as the following 

1. Define a thread class C and encapsulate the remote call r.h() in the run 
method. 

2. Substitute the intended original synchronous remote call r.h() by an 
instantiation x of the class C and execute the start method of x (likely passing 
the same parameters that the run method should pass in the remote call to r). 

But it is an obligation on the developer and again, from the design and programming 
point of view, this has not an object-oriented flavor. 

Moreover, a remote object does not have any kind of autonomous synchronization 
when it is called from several remote objects. Once more, the burden is on the developer 
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of the remote class. Accordingly, the developer must use the synchronized operator 
and the wait and notify methods, in the implementation of the remote methods. But, as 
previously discussed, such Java synchronization resources are not too expressive for the 
development of concurrent and deadlock free applications. Using these resources could 
easily result in a scenario in which a remote r1 is blocked, by its work with another 
remote object r2, while r1 could be serving another remote object r3. This problem 
was solved in the current separate model. 

In JRMI a remote method declaration must include the throws 
java.rmi.RemoteException clause, forcing the caller to catch it. This requires more 
effort by the programmer when developing a highly distributed system with many remote 
calls. This policy could be justified because in JRMI objects are truly remote, and then 
there are more chances of connection failures. 

The separate model is a more abstract model than that of JRMI. In the separate 
model, the separate objects are attached to logical processors. Two logical processors 
may be running on different remote processors or on the same machine. In both cases 
JOODE hides the details, encapsulating and protecting the connection operations (but the 
developers can change the maping between real and logical processors). This gives more 
flexibility and enhances expressiveness, hiding a lot of the dirty work. Therefore, many 
exceptions that could occur in JRMI, and that must be handled by the developer will now 
be captured and handled by the JOODE platform. The exceptions that are raised by the 
separate model are defined as Java runtime exceptions. 

5 IMPLEMENTATION ISSUES 

The JOODE platform 

The Java Object Oriented Development Environment (JOODE) can join the “processing 
capability” of a number of physical processors located in a LAN. For an application's 
programming layer, JOODE may look like a single machine with multiple processors. 

The JOODE’s dynamic behavior allows the addition or the leaving of a physical 
processor into (from) the platform. JOODE tries to preserve the calculated information 
and to keep the consistency of the system, avoiding application crashing. 

JOODE supports the transparent distribution, communication and migration of Java 
objects throughout the physical processors existing in the platform. 

The presence of several physical processors to run a Java application in the JOODE 
platform is not mandatory. Even if there is only one processor, JOODE can create each 
Java object locally, and assign a different execution thread to "run" each object. 

Based on JOODE, the proposed separate model offers a greater level of abstraction 
to the developer. The developer does not have to detect and locate free processors in the 
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network, because this is done by JOODE. Therefore, a concurrent distributed application 
can be more flexible and more fault-tolerant. 

JOODE has a default policy behavior that makes good use of this "computational 
distributed power". However, JOODE also includes a mapping tool which allows the 
developer to modify this policy or to decide on the actual location of the separate objects 
on the network. 

Logical Processors and Calls-queue 

For each separate class C the separate compiler renames it as CCore, and adds a class 
C which acts as a proxy decorator of CCore. This proxy class C has an interface which 
is analogous to the interface of its corresponding separate class. For each method f(...) 
in the original separate class C a corresponding method f(...)is included in the new C. 
This means that client classes of C do not need to change. 

Each proxy object runs in the same address space (JVM) as the client creating (or 
using) the corresponding separate object.  

Each separate object has an associated logical processor (lp) to execute the calls to it. 
This logical processor is mapped by JOODE to the physical resources. The proxy 
transforms each call from a client object to a "call" to the JOODE service layer. If the 
called method is a void method the proxy will return the control to the caller while the 
JOODE organizes the asynchronous execution of the call. But if the called method is a 
query (non-void method), then the proxy will not return to the client until the service 
layer returns the computed value to the proxy. 

The service layer locates the lp associated with the separate object and passes the 
call to it. The lp puts the necessary information in a queue for its execution and 
immediately returns control to the service layer. 

The queue corresponding to calls coming from a caller s1 to a target s2 is named 
the calls-queue (s1,s2). 

To make this easier to understand, imagine that calls in the calls-queues are executed 
based on a timestamp assigned when the lp captured the call. Different scheduling 
policies could be applied to enhance this behavior, for example to give a higher priority 
to calls close to their expiration time or to query calls because the caller is waiting. This 
could help avoiding starvation and similar unfair behaviors. JOODE includes resources 
so that the developer can fine tune the scheduling policy. 

The basic unit of execution in an lp is a call inserted into one of its queues. As much 
as possible the scheduling policy will not request the lp to begin execution of another call 
if the lp is executing a call. But if the execution of a call in a particular calls-queue is not 
possible, due to synchronization precondition, then the lp can execute other calls from 
another calls-queue. Having one calls-queue for each caller makes easier to implement 
the avoidance of unnecessary delays in the lp behavior. 

A calls-queue associated to an lp can be in one of the following three states:  
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1. Running .The lp is executing the call at the head of the queue. 
2. Ready. The call at the head of the queue is waiting for a chance to be executed (it 

will be selected or not according to the scheduling policy) 
3. Suspended. The call at the head of the queue is suspended because a previous 

evaluation of its precondition was unsuccessful. The call is waiting for an event 
occurrence ( i.e the necessary separates used in the precondition were unlocked by 
their corresponding owners.) "signaling" that the call has a chance of fulfilling its 
precondition. 

As was explained previously, a call always has a chance of being executed. 
Figure 4 shows a snapshot of a likely scenario with two producers, one consumer 

and a buffer. 

 
 
 

JOODE assigns a global identifier to each separate object. To enforce the recursion rule, 
a proxy passes this identifier with a call. The lp knows the global identifier of the call 
being executed. If the lp catches a new query call having the same global identifier, then 
it will not queue the call but will synchronously execute it just in time. 

A well designed distributed application should not have a very long sequence of such 
calls. Furthermore, if we want to take advantage of having several distributed 
processors, a divide and conquer algorithm (typical of many recursive methods in the 
sequential approach) should be matched in different separates objects, so resulting in a 
non strictly recursive execution. 

The Rationale of the Locking Mechanism 

An lp can be in one of two states locked or unlocked. An lp is locked when a caller owns 
the separate object running on the lp. The lp will execute only calls of the calls-queue of 
the separate object that owns it. 

The locking mechanism is based on a mutexes' pool supported in JOODE. 

insert(s)

insert(r)

rem
ove()

LP 

Full buffer

insert(y)

insert(x)

Suspended 
calls-queues

Ready  
calls-queue

Figure 4. This is the same situation as figure 3, 
but showing the calls-queues of the buffer b, 
and its associated logical processor
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In the mutexes' pool each lp has a reference to the separate object owning it, and a 
counter for the number of times it was locked. 

The procedure by which an lp executes a call to a method h (including separate 
objects a1, a2, ...an in the precondition of h) at the head of the calls-queue (s1,s2), 
involves the following steps (to simplify this, the lp associated with a separate object ai 
will also be referred to as ai): 

1. If some of the a1, a2, ...an are locked by a separate object other than s2, then 
the calls-queue is updated to the suspended state.  

2. If all a1, a2, ...an are unlocked (or locked by s2 itself) then they will be locked 
(the lock counter is incremented). Using the mutexes' pool, JOODE guarantees 
that this locking procedure will be atomic. 

3. After locking a1, a2, ...an the precondition expression is evaluated. If it evaluates 
to true, the call to h in the calls-queue is executed. If it evaluates to false, then the 
lock counters are decremented and the calls-queue passes to the suspended state.  

4. When the execution of h finishes then the lock counters a1, a2, ...an are 
decremented. Note that this "unlocking" procedure does not need to be atomic, i.e. 
as soon as one of the ai is unlocked; other suspended calls (from the same or 
other separate objects) can take advantage of this. 

 

A JOODE service layer maintains different waiting lists for the activation suspended 
calls-queues when the required lp is unlocked. 

Note that a calls-queue (s1,s2) in a ready state will not necessarily pass to the 
running state. The ready state only means that the lp associated with s2 intends to 
execute the call at the head of (s1,s2) (it could pass back to the suspended state if 
steps 1 and 3 once again do not succeed). 

To avoid latency problems, all of the above locking-unlocking procedure is done by 
a JOODE service layer concentrated in one JVM address space. This JOODE service 
layer will only ask the lp to evaluate a suspended call when all the separate objects that 
the called method requires are available, and then locked by the service layer. So, useless 
requests to, likely a remote, lp are avoided. 

6 CONCLUSIONS 

The presented work explain a model and a tool to design an implement concurrent an 
distributed Java applications based on the notion of separate object. These separate 
objects serve also for synchronization purposes, when used in the method’s 
preconditions.  

This approach intent to avoid some limitations and impedances, between the Java 
model of threads and the JRMI, to facilitate the design and implementation of object 
oriented and distributed Java applications.  
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The implicit synchronous-asynchronous policy, applied by default to the calls to void 
or non void methods of a separate target, is insufficient to develop more customized 
distributed applications. For example, contrary to the default policy, we could like that a 
call to a void method will done synchronously or a call to a non void will be done 
asynchronously. Furthermore, we could need that a call begins to be executed before an 
expiration time. In other work [Del Valle 02] authors will present the notion of behavior 
object acting as a pattern to customize the interaction between separate objects and the 
calls between them. 
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